

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f85j15-i-pt

Email: info@E-XFL.COM

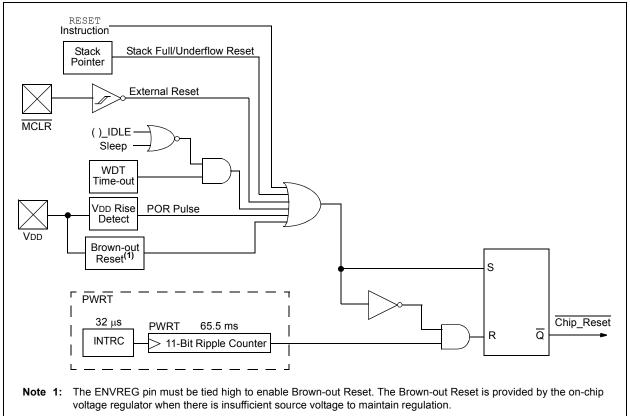
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.0 RESET

The PIC18F87J10 family of devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR and covers the operation of the various start-up timers. Stack Reset events are covered in Section 6.1.6.4 "Stack Full and Underflow Resets". WDT Resets are covered in Section 24.2 "Watchdog Timer (WDT)".


A simplified block diagram of the on-chip Reset circuit is shown in Figure 5-1.

5.1 RCON Register

Device Reset events are tracked through the RCON register (Register). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be set by the event and must be cleared by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 5.6 "Reset State of Registers"**.

The RCON register also has a control bit for setting interrupt priority (IPEN). Interrupt priority is discussed in **Section 10.0 "Interrupts"**.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

9.0 8 x 8 HARDWARE MULTIPLIER

9.1 Introduction

All PIC18 devices include an 8 x 8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 9-1.

9.2 Operation

Example 9-1 shows the instruction sequence for an 8 x 8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 9-2 shows the sequence to do an 8 x 8 signed multiplication. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 9-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1,	W	;	
MULWF	ARG2		;	ARG1 * ARG2 ->
			;	PRODH: PRODL

EXAMPLE 9-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVF	ARG1, W		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH:PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVF	ARG2, W		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG2

		Program	Cycles	Time			
Routine	Multiply Method	Memory (Words)	(Max)	@ 40 MHz	@ 10 MHz	@ 4 MHz	
	Without Hardware Multiply	13	69	6.9 μs	27.6 μs	69 μs	
8 x 8 unsigned	Hardware Multiply	1	1	100 ns	400 ns	1 μs	
	Without Hardware Multiply	33	91	9.1 μs	36.4 μs	91 μs	
8 x 8 signed	Hardware Multiply	6	6	600 ns	2.4 μs	6 μs	
16 x 16 uppigned	Without Hardware Multiply	21	242	24.2 μs	96.8 μs	242 μs	
16 x 16 unsigned	Hardware Multiply	28	28	2.8 μs	11.2 μs	28 μs	
16 x 16 signed	Without Hardware Multiply	52	254	25.4 μs	102.6 μs	254 μs	
16 x 16 signed	Hardware Multiply	35	40	4.0 μs	16.0 μs	40 μs	

TABLE 9-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

REGISTER 10-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
OSCFIF	CMIF		_	BCL1IF	_	TMR3IF	CCP2IF
bit 7							bit (
Legend:							
R = Readabl		W = Writable		•	nented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7		cillator Fail Inte	rrunt Elag hit				
				as changed to I	NTRC (must b	e cleared in sof	tware)
		clock operating	·	0	,		,
bit 6	CMIF: Comp	arator Interrupt	Flag bit				
				t be cleared in s	software)		
	0 = Compar	ator input has r	ot changed				
bit 5-4	•	nted: Read as '					
bit 3	BCL1IF: Bus	Collision Inter	rupt Flag bit (I	MSSP1 module)		
		ollision occurred	•	ared in software	e)		
bit 2	Unimpleme	nted: Read as '	0'				
bit 1	TMR3IF: TM	R3 Overflow In	terrupt Flag b	it			
		egister overflow		cleared in softwa	are)		
bit 0		CP2 Interrupt F					
	Capture mod	•					
	1 = A TMR1		•	rred (must be c :urred	leared in softv	vare)	
	Compare mo	ode:					
				tch occurred (m match occurred		l in software)	
	PWM mode:						
	Unused in th	ic modo					

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RD6/AD6/	RD6	0	0	DIG	LATD<6> data output.
PSP6/SCK2/		1	Ι	ST	PORTD<6> data input.
SCL2	AD6 ⁽²⁾	x	0	DIG-3	External memory interface, address/data bit 6 output. ⁽¹⁾
		х	Ι	TTL	External memory interface, data bit 6 input. ⁽¹⁾
	PSP6	х	0	DIG	PSP read output data (LATD<6>); takes priority over port data.
		x	Ι	TTL	PSP write data input.
	SCK2	0	0	DIG	SPI clock output (MSSP2 module); takes priority over port data.
		1	I	ST	SPI clock input (MSSP2 module).
	SCL2	0	0	DIG	I ² C [™] clock output (MSSP2 module); takes priority over port data.
		1	Ι	I ² C/SMB	I ² C clock input (MSSP2 module); input type depends on module setting.
RD7/AD7/	RD7	0	0	DIG	LATD<7> data output.
PSP7/SS2		1	I	ST	PORTD<7> data input.
	AD7 ⁽²⁾	x	0	DIG	External memory interface, address/data bit 7 output. ⁽¹⁾
		x	Ι	TTL	External memory interface, data bit 7 input. ⁽¹⁾
	PSP7	х	0	DIG	PSP read output data (LATD<7>); takes priority over port data.
		х	I	TTL	PSP write data input.
	SS2	х	I	TTL	Slave select input for MSSP (MSSP2 module).

TABLE 11-9: PORTD FUNCTIONS (CONTINUED)

Legend: PWR = Power Supply, O = Output, I = Input, I²C™/SMB = I²C/SMBus input buffer, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: External memory interface I/O takes priority over all other digital and PSP I/O.

2: Available on 80-pin devices only.

TABLE 11-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	56
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	56
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	56
PORTG	RDPU	REPU	RJPU ⁽¹⁾	RG4	RG3	RG2	RG1	RG0	56

Legend: Shaded cells are not used by PORTD.

Note 1: Unimplemented on 64-pin devices, read as '0'.

11.7 PORTF, LATF and TRISF Registers

PORTF is a 7-bit wide, bidirectional port. The corresponding Data Direction register is TRISF. Setting a TRISF bit (= 1) will make the corresponding PORTF pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISF bit (= 0) will make the corresponding PORTF pin an output (i.e., put the contents of the output latch on the selected pin). Only pin 7 of PORTF has no analog input; it is the only pin that can tolerate voltages up to 5.5V.

The Output Latch register (LATF) is also memory mapped. Read-modify-write operations on the LATF register read and write the latched output value for PORTF.

All pins on PORTF are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTF is multiplexed with several analog peripheral functions, including the A/D Converter and comparator inputs, as well as the comparator outputs. Pins, RF2 through RF6, may be used as comparator inputs or outputs by setting the appropriate bits in the CMCON register. To use RF<6:3> as digital inputs, it is also necessary to turn off the comparators.

- Note 1: On device Resets, pins, RF<6:1>, are configured as analog inputs and are read as '0'.
 - **2:** To configure PORTF as digital I/O, turn off comparators and set ADCON1 value.

EXAMPLE 11-6: INITIALIZING PORTF

CLRF PORTF	; Initialize FORTF by ; clearing output : data latches
CLRF LATF	<pre>; Alternate method ; to clear output ; data latches</pre>
MOVLW 07h	;
MOVWF CMCON	; Turn off comparators
MOVLW OFh;	
MOVWF ADCON1	; Set PORTF as digital I/O
MOVLW OCEh	; Value used to
	; initialize data
	; direction
MOVWF TRISF	; Set RF3:RF1 as inputs
	; RF5:RF4 as outputs
	; RF7:RF6 as inputs

11.9 PORTH, LATH and TRISH Registers

ſ	Note:	PORTH	is	available	only	on	80-pin
		devices.					

PORTH is an 8-bit wide, bidirectional I/O port. The corresponding Data Direction register is TRISH. Setting a TRISH bit (= 1) will make the corresponding PORTH pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISH bit (= 0) will make the corresponding PORTH pin an output (i.e., put the contents of the output latch on the selected pin). PORTH<3:0> pins are digital only and tolerate voltages up to 5.5V.

The Output Latch register (LATH) is also memory mapped. Read-modify-write operations on the LATH register read and write the latched output value for PORTH.

All pins on PORTH are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output. When the external memory interface is enabled, four of the PORTH pins function as the high-order address lines for the interface. The address output from the interface takes priority over other digital I/O. The corresponding TRISH bits are also overridden.

PORTH pins, RH4 through RH7, are multiplexed with analog converter inputs. The operation of these pins as analog inputs is selected by clearing or setting the PCFG<3:0> control bits in the ADCON1 register.

PORTH can also be configured as the alternate Enhanced PWM output Channels B and C for the ECCP1 and ECCP3 modules. This is done by clearing the ECCPMX Configuration bit.

EXAMP	LE 11-8:	INITIALIZING PORTH
CLRF	PORTH	; Initialize PORTH by
		; clearing output
		; data latches
CLRF	LATH	; Alternate method
		; to clear output
		; data latches
MOVLW	OFh	; Configure PORTH as
MOVWF	ADCON1	; digital I/O
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISH	; Set RH3:RH0 as inputs
		; RH5:RH4 as outputs
		; RH7:RH6 as inputs

13.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 13-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 13-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

Timer1 is controlled through the T1CON Control register (Register 13-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER

Legend:				
R = Readal	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknowr
bit 7	RD16: 16	-Bit Read/Write Mode Enal	ble bit	
		-	mer1 in one 16-bit operation mer1 in two 8-bit operations	
bit 6	T1RUN:	Fimer1 System Clock Status	s bit	
		ce clock is derived from Tim ce clock is derived from and		
bit 5-4	T1CKPS	<1:0>: Timer1 Input Clock F	Prescale Select bits	
	10 = 1:4 01 = 1:2	Prescale value Prescale value Prescale value Prescale value		
bit 3		N: Timer1 Oscillator Enable	bit	
	0 = Time	r1 oscillator is enabled r1 oscillator is shut off ator inverter and feedback	resistor are turned off to elimin	ate power drain
bit 2			ut Synchronization Select bit	
	<u>When TN</u> 1 = Do no 0 = Syncl	I <u>R1CS = 1:</u> ot synchronize external cloc nronize external clock input	k input	
		I <u>R1CS = 0:</u> ignored. Timer1 uses the i	nternal clock when TMR1CS =	0.
bit 1	TMR1CS	: Timer1 Clock Source Sele	ect bit	
		nal clock from the RC0/T10 nal clock (Fosc/4)	DSO/T13CKI pin (on the rising	edge)
bit 0	TMR10N	: Timer1 On bit		
	1 = Enat 0 = Stops	les Timer1 s Timer1		

REGISTER 19-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
bit 7				•			bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

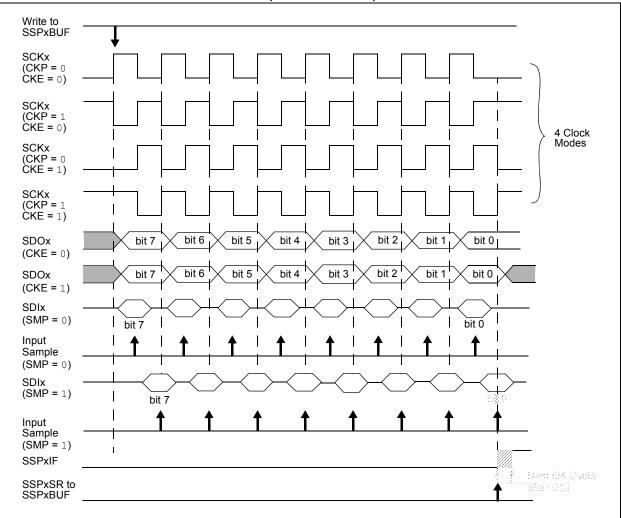
bit 7	WCOL: Write Collision Detect bit
	 1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in software)
	0 = No collision
bit 6	SSPOV: Receive Overflow Indicator bit ⁽¹⁾
	 SPI Slave mode: 1 = A new byte is received while the SSPxBUF register is still holding the previous data. In case of overflow, the data in SSPxSR is lost. Overflow can only occur in Slave mode. The user must read the SSPxBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software). 0 = No overflow
bit 5	SSPEN: Master Synchronous Serial Port Enable bit
	 1 = Enables serial port and configures SCKx, SDOx, SDIx and SSx as serial port pins⁽²⁾ 0 = Disables serial port and configures these pins as I/O port pins⁽²⁾
bit 4	CKP: Clock Polarity Select bit
	 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level
bit 3-0	SSPM<3:0>: Master Synchronous Serial Port Mode Select bits
	 0101 = SPI Slave mode, clock = SCKx pin, SSx pin control disabled, SSx can be used as I/O pin⁽³⁾ 0100 = SPI Slave mode, clock = SCKx pin, SSx pin control enabled⁽³⁾ 0011 = SPI Master mode, clock = TMR2 output/2⁽³⁾ 0010 = SPI Master mode, clock = Fosc/64⁽³⁾ 0001 = SPI Master mode, clock = Fosc/16⁽³⁾
	0001 = SPI Master mode, clock = FOSC/16(3)0000 = SPI Master mode, clock = FOSC/4(3)
	In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPxBUF register.

- 2: When enabled, these pins must be properly configured as input or output.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.

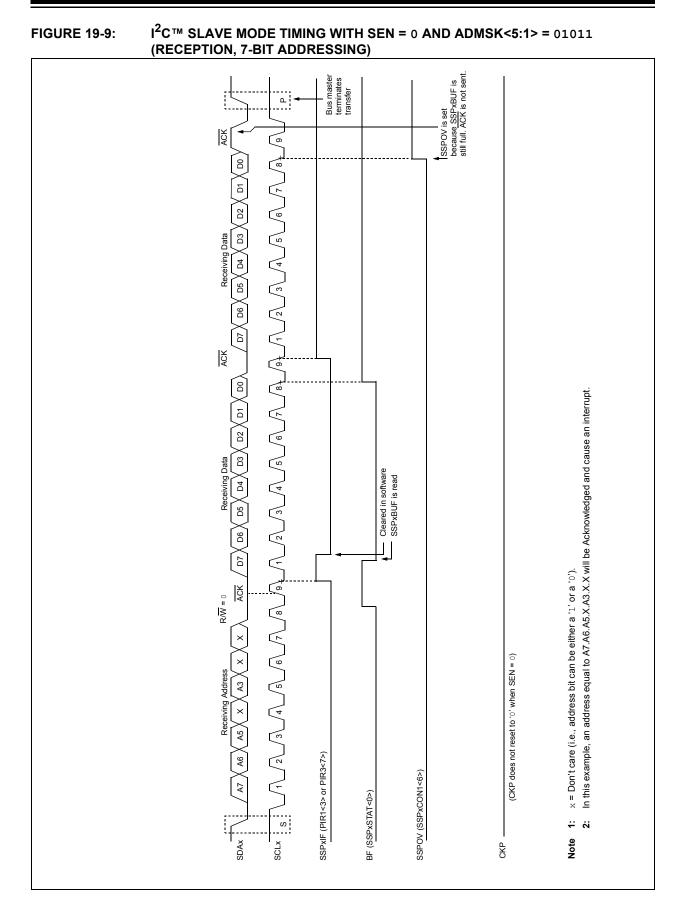
19.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCKx. The master determines when the slave (Processor 1, Figure 19-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDOx output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDIx pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

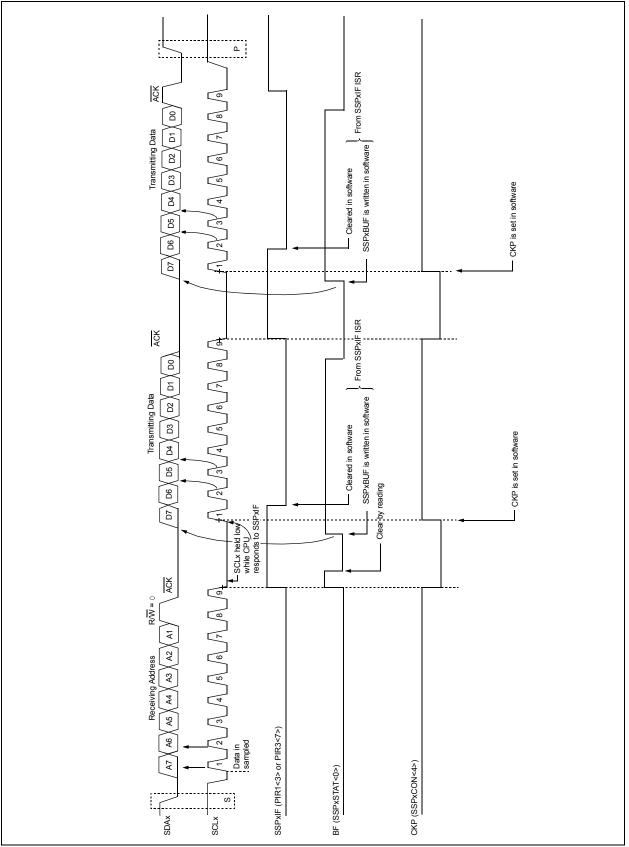

The clock polarity is selected by appropriately programming the CKP bit (SSPxCON1<4>). This then, would give waveforms for SPI communication as

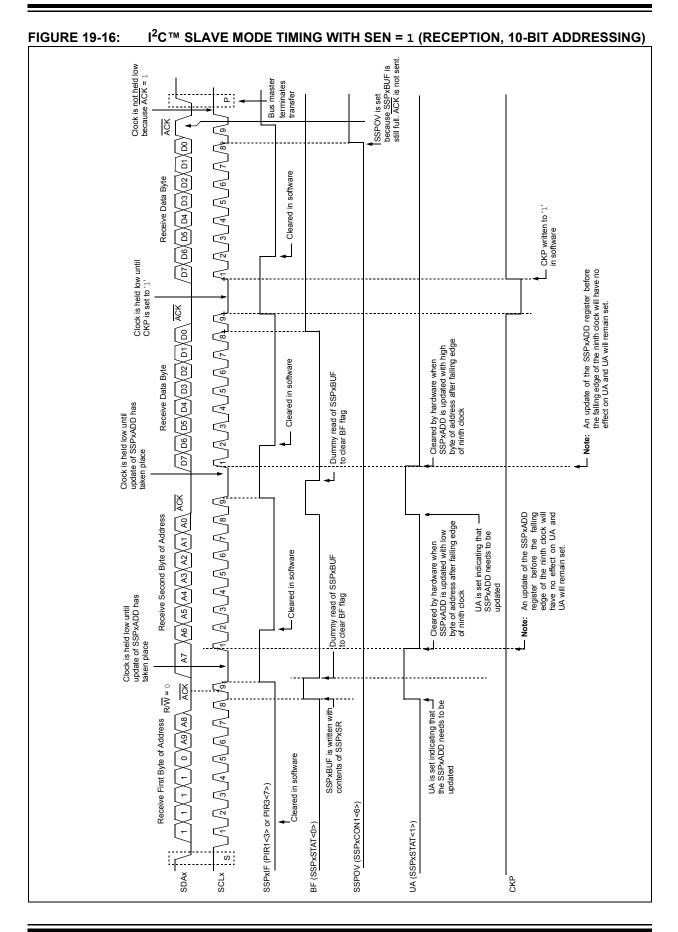
shown in Figure 19-3, Figure 19-5 and Figure 19-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:


- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 19-3 shows the waveforms for Master mode. When the CKE bit is set, the SDOx data is valid before there is a clock edge on SCKx. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.



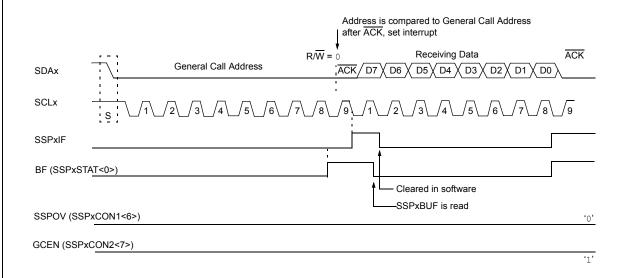

FIGURE 19-3: SPI MODE WAVEFORM (MASTER MODE)

PIC18F87J10 FAMILY

19.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I²C protocol. It consists of all '0's with R/W = 0.


The general call address is recognized when the General Call Enable bit, GCEN, is enabled (SSPxCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPxSR and the address is compared against the SSPxADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPxSR is transferred to the SSPxBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPxIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPxBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPxADD is required to be updated for the second half of the address to match and the UA bit is set (SSPxSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-Bit Addressing mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 19-17).

20.1 Baud Rate Generator (BRG)

The BRG is a dedicated 8-bit or 16-bit generator that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCONx<3>) selects 16-bit mode.

The SPBRGHx:SPBRGx register pair controls the period of a free-running timer. In Asynchronous mode, bits BRGH (TXSTAx<2>) and BRG16 (BAUDCONx<3>) also control the baud rate. In Synchronous mode, BRGH is ignored. Table 20-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRGHx:SPBRGx registers can be calculated using the formulas in Table 20-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 20-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 20-2. It may be advantageous to use the high baud rate (BRGH = 1) or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGHx:SPBRGx registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

20.1.1 OPERATION IN POWER-MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power-managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRGx register pair.

20.1.2 SAMPLING

The data on the RXx pin (either RC7/RX1/DT1 or RG2/RX2/DT2) is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RXx pin.

Configuration Bits		its			
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Rate Formula	
0	0	0	8-Bit/Asynchronous	Fosc/[64 (n + 1)]	
0	0	1	8-Bit/Asynchronous		
0	1	0	16-Bit/Asynchronous	Fosc/[16 (n + 1)]	
0	1	1	16-Bit/Asynchronous		
1	0	х	8-Bit/Synchronous	Fosc/[4 (n + 1)]	
1	1	х	16-Bit/Synchronous		

TABLE 20-1: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGHx:SPBRGx register pair

25.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, the PIC18F87J10 family of devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment Indirect and Indexed Addressing operations and the implementation of Indexed Literal Offset Addressing for many of the standard PIC18 instructions.

The additional features of the extended instruction set are disabled by default on unprogrammed devices. Users must properly set or clear the XINST Configuration bit during programming to enable or disable these features.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers, or use them for Indexed Addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- function pointer invocation
- software Stack Pointer manipulation
- manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 25-3. Detailed descriptions are provided in **Section 25.2.2 "Extended Instruction Set"**. The opcode field descriptions in Table 25-1 (page 294) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

25.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of Indexed Addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. The MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byte-oriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 25.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemonic, Description		Description	16-Bit Instruction Word			/ord	Status	
Opera	nds	Description	Cycles	MSb			LSb	Affected
ADDFSR	f, k	Add Literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add Literal to FSR2 and Return	2	1110	1000	11kk	kkkk	None
CALLW		Call Subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0 z z z	ZZZZ	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	1zzz	ZZZZ	None
		z _d (destination) 2nd word		1111	XXXX	XZZZ	ZZZZ	
PUSHL	k	Store Literal at FSR2,	1	1110	1010	kkkk	kkkk	None
		Decrement FSR2						
SUBFSR	f, k	Subtract Literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract Literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		Return						

TABLE 25-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

27.3 DC Characteristics: PIC18F87J10 Family (Industrial)

DC CHA	RACTE	RISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions	
	VIL	Input Low Voltage					
		All I/O Ports:					
D030		with TTL buffer	Vss	0.15 Vdd	V	Vdd < 3.3V	
D030A			—	0.8	V	$3.3V \leq V\text{DD} \leq 3.6V$	
D031		with Schmitt Trigger Buffer	Vss	0.2 VDD	V		
D031A		RC3 and RC4	Vss	0.3 VDD	V	I ² C™ enabled	
D031B			Vss	0.8	V	SMBus enabled	
D032		MCLR	Vss	0.2 VDD	V		
D033		OSC1	Vss	0.3 VDD	V	HS, HSPLL modes	
D033A		OSC1	Vss	0.2 VDD	V	EC, ECPLL modes ⁽¹⁾	
D034		T1CKI	Vss	0.3	V		
	Vih	Input High Voltage					
		I/O Ports with non 5.5V Tolerance: ⁽⁴⁾					
D040		with TTL Buffer	0.25 VDD + 0.8V	Vdd	V	Vdd < 3.3V	
D040A			2.0	Vdd	V	$3.3V \leq V\text{DD} \leq 3.6V$	
D041		with Schmitt Trigger Buffer	0.8 Vdd	Vdd	V		
		I/O Ports with 5.5V Tolerance: ⁽⁴⁾					
D041A		RC3 and RC4	0.7 Vdd	Vdd	V	I ² C enabled	
D041B			2.1	Vdd	V	SMBus enabled	
Dxxx		with TTL Buffer	0.25 VDD + 0.8V	5.5	V	Vdd < 3.3V	
DxxxA			2.0	5.5	V	$3.3V \leq V\text{DD} \leq 3.6V$	
Dxxx		with Schmitt Trigger Buffer	0.8 Vdd	5.5	V		
D042		MCLR	0.8 VDD	Vdd	V		
D043		OSC1	0.7 Vdd	Vdd	V	HS, HSPLL modes	
D043A		OSC1	0.8 Vdd	Vdd	V	EC, ECPLL modes	
D044		T1CKI	1.6	Vdd	V		
	lı∟	Input Leakage Current ^(2,3)					
D060		I/O Ports with non 5.5V Tolerance: ⁽⁴⁾	_	±1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
D060A		I/O Ports with 5.5V Tolerance: ⁽⁴⁾	_	±1	μA	Vss \leq VPIN \leq 5.5V. Pin at high-impedance	
D061		MCLR	_	±1	μA	$Vss \le VPIN \le VDD$	
D063		OSC1		±5	μA	$Vss \le VPIN \le VDD$	

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 11-2 for the pins that have corresponding tolerance limits.

DC CH4			Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for industrial				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Program Flash Memory					
D130	Eр	Cell Endurance	100	1K	—	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage
D132	Vpew	Voltage for Self-Timed Erase or Write					
		VDD	2.35	_	3.6	V	ENVREG = 0
		VDDCORE	2.25	_	2.7	V	ENVREG = 1
D133A	Tiw	Self-Timed Write Cycle Time		2.8	_	ms	
D133B	TIE	Self-Timed Page Erase Cycle Time	_	33.0	—	ms	
D134	TRETD	Characteristic Retention	20	_	—	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	_	10	—	mA	
D140	TWE	Writes per Erase Cycle			1		For each physical address

TABLE 27-1:MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Param. No.	Symbol	Characteris	tic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	_	μs	
			400 kHz mode	0.6	_	μS	
			MSSP Module	1.5 TCY	_		
101	TLOW	Clock Low Time	100 kHz mode	4.7	_	μs	
			400 kHz mode	1.3	_	μs	
			MSSP Module	1.5 TCY	—		
102	TR	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDAx and SCLx Fall Time	100 kHz mode	_	300	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90 Tsu:s	TSU:STA		100 kHz mode	4.7		μS	Only relevant for Repeated
			400 kHz mode	0.6	_	μs	Start condition
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μs	After this period, the first clock
			400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	—	0.9	μS	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	—	—	ns	
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	_	μS	
			400 kHz mode	0.6	—	μS	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	—	—	μS	before a new transmission can start
D102	Св	Bus Capacitive Loading		—	400	pF	

TABLE 27-21: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.

NOTES:

INDEX

Α	
A/D	261
A/D Converter Interrupt, Configuring	
Acquisition Requirements	
ADCAL Bit	269
ADCON0 Register	
ADCON1 Register	261
ADCON2 Register	261
ADRESH Register261,	
ADRESL Register	
Analog Port Pins	
Analog Port Pins, Configuring	
Associated Registers	
Automatic Acquisition Time	267
Calculating the Minimum Required	000
Acquisition Time	
Calibration	
Configuring the Module	
Conversion Clock (TAD) Conversion Requirements	
Conversion Status (GO/DONE Bit)	
Conversions	
Converter Characteristics	
Operation in Power-Managed Modes	
Special Event Trigger (ECCP)	268
Use of the ECCP2 Trigger	
Absolute Maximum Ratings	
AC (Timing) Characteristics	
Load Conditions for Device Timing	
Specifications	363
Parameter Symbology	
Temperature and Voltage Specifications	
Timing Conditions	
ACKSTAT	
ACKSTAT Status Flag	229
ADCAL Bit	269
ADCON0 Register	261
GO/DONE Bit	264
ADCON1 Register	261
ADCON2 Register	261
ADDFSR	336
ADDLW	299
ADDULNK	
ADDWF	299
ADDWFC	
ADRESH Register	
ADRESL Register	264
Analog-to-Digital Converter. See A/D.	
ANDLW	
ANDWF	301
Assembler	244
MPASM Assembler	
Auto-Wake-up on Sync Break Character	252
В	
Basic Connection Requirements	27
Baud Rate Generator	
BC	301
BCF	302
BF	
BF Status Flag	229

PIC18F87J1	0 FAMILY
-------------------	-----------------

Bloc	k Diagrams	
	16-Bit Byte Select Mode	
	16-Bit Byte Write Mode	
	16-Bit Word Write Mode	
	8-Bit Multiplexed Modes	
	A/D	
	Analog Input Model	
	Baud Rate Generator	
	Capture Mode Operation Comparator Analog Input Model	
	Comparator I/O Operating Modes	
	Comparator Output	
	Comparator Voltage Reference	
	Comparator Voltage Reference Output	270
	Buffer Example	279
	Compare Mode Operation	
	Connections for On-Chip Voltage Regulator	
	Device Clock	
	Enhanced PWM Simplified	
	EUSART Receive	
	EUSART Transmit	
	External Power-on Reset Circuit	
	(Slow VDD Power-up)	49
	Fail-Safe Clock Monitor	
	Generic I/O Port Operation	125
	Interrupt Logic	110
	MSSP (I ² C Master Mode)	223
	MSSP (I ² C Mode)	203
	MSSP (SPI Mode)	
	On-Chip Reset Circuit	47
	PIC18F6XJ10/6XJ15	
	PIC18F8XJ10/8XJ15	
	PLL	
	PORTD and PORTE (Parallel Slave Port)	
	PWM Operation (Simplified)	
	Reads from Flash Program Memory	
	Recommended Minimum Connections	
	Single Comparator	
	Table Read Operation Table Write Operation	
	Table Writes to Flash Program Memory	
	Timer0 in 16-Bit Mode	
	Timer0 in 8-Bit Mode	
	Timer1	
	Timer1 (16-Bit Read/Write Mode)	
	Timer2	
	Timer3	
	Timer3 (16-Bit Read/Write Mode)	164
	Timer4	
	Watchdog Timer	287
BN.	-	302
BNC	:	303
BNN	l	303
BNO	V	304
		304
	R. See Brown-out Reset.	
	·	
	k Character (12-Bit) Transmit and Receive	254
	6. See Baud Rate Generator.	40
RLOW	vn-out Reset (BOR)	
	and On-Chip Voltage Regulator	
	Detecting	49