

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87j10t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.6 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also aids in migrating to the next larger device. This is true when moving between the 64-pin members, between the 80-pin members, or even jumping from 64-pin to 80-pin devices.

The PIC18F87J10 family is also pin compatible with other PIC18 families, such as the PIC18F8720 and PIC18F8722. This allows a new dimension to the evolution of applications, allowing developers to select different price points within Microchip's PIC18 portfolio, while maintaining the same feature set.

1.2 Other Special Features

- Communications: The PIC18F87J10 family incorporates a range of serial communication peripherals, including 2 independent Enhanced USARTs and 2 Master SSP modules, capable of both SPI and I²C[™] (Master and Slave) modes of operation. In addition, one of the general purpose I/O ports can be reconfigured as an 8-bit Parallel Slave Port for direct processor-to-processor communications.
- CCP Modules: All devices in the family incorporate two Capture/Compare/PWM (CCP) modules and three Enhanced CCP modules to maximize flexibility in control applications. Up to four different time bases may be used to perform several different operations at once. Each of the three ECCPs offers up to four PWM outputs, allowing for a total of 12 PWMs. The ECCPs also offer many beneficial features, including polarity selection, programmable dead time, auto-shutdown and restart and Half-Bridge and Full-Bridge Output modes.
- 10-Bit A/D Converter: This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reducing code overhead.
- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit prescaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 27.0 "Electrical Characteristics" for time-out periods.

1.3 Details on Individual Family Members

Devices in the PIC18F87J10 family are available in 64-pin and 80-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in four ways:

- 1. Flash program memory (six sizes, ranging from 32 Kbytes for PIC18FX5J10 devices to 128 Kbytes for PIC18FX7J10).
- 2. Data RAM (2048 bytes for PIC18FX5J10/X5J15/X6J10 devices, 3936 bytes for PIC18FX6J15/X7J10 devices).
- 3. A/D channels (11 for 64-pin devices, 15 for 80-pin devices).
- 4. I/O ports (7 bidirectional ports on 64-pin devices, 9 bidirectional ports on 80-pin devices).

All other features for devices in this family are identical. These are summarized in Table 1-1 and Table 1-2.

The pinouts for all devices are listed in Table 1-3 and Table 1-4.

TABLE 1-3: PIC18F6XJ10/6XJ15 PINOUT I/O DESCRIPTIONS

Dis Norse	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
MCLR	7	I	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
OSC1/CLKI OSC1 CLKI	39	I	ST CMOS	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; CMOS otherwise. External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI,
OSC2/CLKO OSC2 CLKO	40	0		OSC2/CLKO pins.) Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA0/AN0 RA0 AN0	24	I/O I	TTL Analog	PORTA is a bidirectional I/O port. Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	23	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF- RA2 AN2 VREF-	22	I/O I I	TTL Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input.
RA3/AN3/VREF+ RA3 AN3 VREF+	21	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.
RA4/T0CKI RA4 T0CKI	28	I/O I	ST ST	Digital I/O. Timer0 external clock input.
RA5/AN4 RA5 AN4	27	I/O I	TTL Analog	Digital I/O. Analog input 4.
Legend: TTL = TT ST = ScI = InP = $PcI^2C/SMB = I^2C$	L compatible in chmitt Trigger in out ower C™/SMBus inpt	nput put with (ut buffer	CMOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

Note 1: Default assignment for ECCP2/P2A when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared.

						-	/ -	- /	Value on	Dotaile		
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	on page:		
TMR0H	Timer0 Regis	ster High Byte							0000 0000	54, 153		
TMR0L	Timer0 Regis	ster Low Byte							XXXX XXXX	54, 153		
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	54, 151		
OSCCON	IDLEN	—	—	_	OSTS ⁽⁵⁾	—	SCS1	SCS0	0 q-00	36, 54		
WDTCON	—	—	—	_		—	—	SWDTEN	0	54, 287		
RCON	IPEN	_	—	RI	TO	PD	POR	BOR	01 1100	48, 54, 123		
TMR1H	Timer1 Regis	ster High Byte							XXXX XXXX	54, 159		
TMR1L	Timer1 Regis	ster Low Byte							XXXX XXXX	54, 159		
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	54, 155		
TMR2	Timer2 Regis	ster	•	•		•	•		0000 0000	54, 162		
PR2	Timer2 Perio	d Register							1111 1111	54, 162		
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	54, 161		
SSP1BUF	MSSP1 Rece	eive Buffer/Tra	nsmit Register	r					XXXX XXXX	54, 203, 238		
SSP1ADD	MSSP1 Addr	MSSP1 Address Register (I ² C™ Slave mode), MSSP1 Baud Rate Reload Register (I ² C Master mode)										
SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	54, 194, 204		
SSP1CON1	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	54, 195, 204		
SSP1CON2	GCEN	ACKSTAT	ACKDT/ ADMSK5	ACKEN/ ADMSK4	RCEN/ ADMSK3	PEN/ ADMSK2	RSEN/ ADMSK1	SEN	0000 0000	54, 206		
ADRESH	A/D Result R	XXXX XXXX	54, 269									
ADRESL	A/D Result R	egister Low B	yte						XXXX XXXX	54, 269		
ADCON0	ADCAL	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0-00 0000	54, 261		
ADCON1	—	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	54, 262		
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00 0000	54, 263		
CCPR1H	Capture/Com	npare/PWM Re	egister 1 High	Byte					XXXX XXXX	55, 192		
CCPR1L	Capture/Com	npare/PWM Re	egister 1 Low E	Byte					XXXX XXXX	55, 192		
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	55, 177		
CCPR2H	Capture/Com	npare/PWM Re	egister 2 High	Byte					XXXX XXXX	55, 192		
CCPR2L	Capture/Com	npare/PWM Re	egister 2 Low E	Byte					XXXX XXXX	55, 192		
CCP2CON	P2M1	P2M0	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	0000 0000	55, 177		
CCPR3H	Capture/Com	npare/PWM Re	egister 1 High	Byte					XXXX XXXX	55, 192		
CCPR3L	Capture/Com	npare/PWM Re	egister 1 Low E	Byte					XXXX XXXX	55, 192		
CCP3CON	P3M1	P3M0	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	0000 0000	55, 177		
ECCP1AS	ECCP1ASE	ECCP1AS2	ECCP1AS1	ECCP1AS0	PSS1AC1	PSS1AC0	PSS1BD1 ⁽²⁾	PSS1BD0(2)	0000 0000	55, 189		
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000 0000	55, 277		
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	55, 271		
TMR3H	Timer3 Regis	ster High Byte							XXXX XXXX	55, 165		
TMR3L	Timer3 Regis	ster Low Byte							XXXX XXXX	55, 165		
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	55, 163		
PSPCON	IBF	OBF	IBOV	PSPMODE	—	—	_	_	0000	55, 149		
SPBRG1	EUSART1 B	aud Rate Gene	erator Registe	r Low Byte					0000 0000	55, 243		
RCREG1	EUSART1 R	eceive Registe	er						0000 0000	55, 251, 252		

TABLE 6-4: REGISTER FILE SUMMARY (PIC18F87J10 FAMILY) (CONTINUED)

Legend: Note 1

x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

1: Bit 21 of the PC is only available in Serial Programming modes.

2: These bits and/or registers are only available in 80-pin devices; otherwise, they are unimplemented and read as '0'. Reset values are shown for 80-pin devices.

3: This register and its bits are not implemented in 64-pin devices. In 80-pin devices, the bits are unwritable and read as '0' in Microcontroller mode.

4: The PLLEN bit is available only when either ECPLL or HSPLL Oscillator modes are selected; otherwise, the bit is read as '0'.

5: Reset value is '0' when Two-Speed Start-up is enabled and '1' if disabled.

10.0 INTERRUPTS

Members of the PIC18F87J10 family of devices have multiple interrupt sources and an interrupt priority feature that allows most interrupt sources to be assigned a high-priority level or a low-priority level. The high-priority interrupt vector is at 0008h and the low-priority interrupt vector is at 0018h. High-priority interrupt events will interrupt any low-priority interrupts that may be in progress.

There are thirteen registers which are used to control interrupt operation. These registers are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2, PIR3
- PIE1, PIE2, PIE3
- IPR1, IPR2, IPR3

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/compiler to automatically take care of the placement of these bits within the specified register.

In general, interrupt sources have three bits to control their operation. They are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- **Priority bit** to select high priority or low priority

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is enabled, there are two bits which enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all interrupts that have the priority bit cleared (low priority). When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 0008h or 0018h, depending on the priority bit setting. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. INTCON<6> is the PEIE bit which enables/disables all peripheral interrupt sources. INTCON<7> is the GIE bit which enables/disables all interrupt sources. All interrupts branch to address 0008h in Compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High-priority interrupt sources can interrupt a low-priority interrupt. Low-priority interrupts are not processed while high-priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (0008h or 0018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used) which re-enables interrupts.

For external interrupt events, such as the INTx pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding enable bit or the GIE bit.

Note: Do not use the MOVFF instruction to modify any of the interrupt control registers while any interrupt is enabled. Doing so may cause erratic microcontroller behavior.

Pin Name	Function	TRIS Setting	I/O	I/О Туре	Description					
RC0/T1OSO/	RC0	0	0	DIG	LATC<0> data output.					
T13CKI		1	I	ST	PORTC<0> data input.					
	T1OSO	х	0	ANA	Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disables digital I/O.					
	T13CKI	1	Ι	ST	Timer1/Timer3 counter input.					
RC1/T1OSI/	RC1	0	0	DIG	LATC<1> data output.					
ECCP2/P2A		1	Ι	ST	PORTC<1> data input.					
	T1OSI	х	Ι	ANA	Timer1 oscillator input; enabled when Timer1 oscillator enabled. Disables digital I/O.					
	ECCP2 ⁽¹⁾	0	0	DIG	CCP2 compare output and CCP2 PWM output; takes priority over port data.					
		1	Ι	ST	CCP2 capture input.					
	P2A ⁽¹⁾	0	0	DIG	ECCP2 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.					
RC2/ECCP1/	RC2	0	0	DIG	LATC<2> data output.					
P1A		1	Ι	ST	PORTC<2> data input.					
	ECCP1	0	0	DIG	CCP1 compare output and CCP1 PWM output; takes priority over port data.					
		1	Ι	ST	CCP1 capture input.					
	P1A	0	0	DIG	DIG ECCP1 Enhanced PWM output, Channel A. May be configured for tri-si during Enhanced PWM shutdown events. Takes priority over port data. DIG LATC<3> data output.					
RC3/SCK1/	RC3	0	0	DIG	LATC<3> data output.					
SCL1		1	Ι	ST	PORTC<3> data input.					
	SCK1	0	0	DIG	SPI clock output (MSSP1 module); takes priority over port data.					
		1 I ST SPI clock input (MSSP1 module). 0 0 DIG I ² C [™] clock output (MSSP1 module): takes priority over port		SPI clock input (MSSP1 module).						
	SCL1	0	0	DIG	I ² C™ clock output (MSSP1 module); takes priority over port data.					
		1	Ι	I ² C/SMB	I ² C clock input (MSSP1 module); input type depends on module setting.					
RC4/SDI1/	RC4	0	0	DIG	LATC<4> data output.					
SDAT		1	Ι	ST	PORTC<4> data input.					
	SDI1	1	I	ST	SPI data input (MSSP1 module).					
	SDA1	1	0	DIG	I ² C data output (MSSP1 module); takes priority over port data.					
		1	I	I ² C/SMB	I ² C data input (MSSP1 module); input type depends on module setting.					
RC5/SDO1	RC5	0	0	DIG	LATC<5> data output.					
		1		ST	PORTC<5> data input.					
	SDO1	0	0	DIG	SPI data output (MSSP1 module); takes priority over port data.					
RC6/TX1/CK1	RC6	0	0	DIG	LAI C<6> data output.					
	T)/4	1		SI	PORIC<6> data input.					
		1	0	DIG	Synchronous serial data output (EUSART1 module); takes priority over port data.					
	CKI	1	0	DIG	an input.					
		1		ST	Synchronous serial clock input (EUSART1 module).					
RC7/RX1/DT1	RC7	0	0	DIG	LATC<7> data output.					
1 I ST PORTC<7> data		ST	PORTC<7> data input.							
	RX1	1		ST	Asynchronous serial receive data input (EUSART1 module).					
	DT1	1	0	DIG	Synchronous serial data output (EUSART1 module); takes priority over port data.					
		1	I	ST	Synchronous serial data input (EUSART1 module). User must configure as an input.					

TABLE 11-7: PORTC FUNCTIONS

Legend: PWR = Power Supply, O = Output, I = Input, $l^2C^{TM}/SMB = l^2C/SMB$ us input buffer, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignment for ECCP2/P2A when the CCP2MX Configuration bit is set.

19.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCKx. The master determines when the slave (Processor 1, Figure 19-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDOx output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDIx pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming the CKP bit (SSPxCON1<4>). This then, would give waveforms for SPI communication as

shown in Figure 19-3, Figure 19-5 and Figure 19-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 19-3 shows the waveforms for Master mode. When the CKE bit is set, the SDOx data is valid before there is a clock edge on SCKx. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

FIGURE 19-3: SPI MODE WAVEFORM (MASTER MODE)

19.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Enable bit, SEN (SSPxCON2<0>). If the SDAx and SCLx pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and starts its count. If SCLx and SDAx are both sampled high when the Baud Rate Generator times out (TBRG), the SDAx pin is driven low. The action of the SDAx being driven low while SCLx is high is the Start condition and causes the S bit (SSPxSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPxCON2<0>) will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDAx line held low and the Start condition is complete.

Note: If at the beginning of the Start condition, the SDAx and SCLx pins are already sampled low, or if during the Start condition, the SCLx line is sampled low before the SDAx line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

19.4.8.1 WCOL Status Flag

If the user writes the SSPxBUF when a Start sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPxCON2 is disabled until the Start condition is complete.

FIGURE 19-21: FIRST START BIT TIMING

R/W-	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0							
CSR	C TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D							
bit 7	·				·		bit C							
Legend:														
R = Read	lable bit	W = Writable	bit	U = Unimplei										
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown							
bit 7	CSRC: Clock <u>Asynchronou</u> Don't care. <u>Synchronous</u> 1 = Master m 0 = Slave mo	Source Select <u>s mode:</u> <u>mode:</u> ode (clock gen de (clock from	bit erated interna external sour	ally from BRG) ce)										
bit 6	TX9: 9-Bit Tra 1 = Selects 9 0 = Selects 8	 Slave mode (clock from external source) TX9: 9-Bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission 												
bit 5	TXEN: Trans 1 = Transmit 0 = Transmit	 0 = Selects 8-bit transmission TXEN: Transmit Enable bit⁽¹⁾ 1 = Transmit enabled 0 = Transmit disabled 												
bit 4	SYNC: EUSA 1 = Synchron 0 = Asynchro	ART Mode Sele lous mode nous mode	ct bit											
bit 3	SENDB: Sen Asynchronouu 1 = Send Syr 0 = Sync Brea Synchronous Don't care.	d Break Charad <u>s mode:</u> nc Break on nex ak transmissior <u>mode:</u>	cter bit kt transmissic n completed	on (cleared by h	nardware upon o	completion)								
bit 2	BRGH: High Asynchronouu 1 = High spee 0 = Low spee Synchronous Unused in thi	BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode:												
bit 1	TRMT: Transi 1 = TSR emp 0 = TSR full	mit Shift Regist ty	er Status bit											
bit 0	TX9D: 9th bit Can be addre	of Transmit Da ess/data bit or a	ita parity bit.											
Note 1:	SREN/CREN over	rides TXEN in	Sync mode.											

REGISTER 20-1: TXSTAX: TRANSMIT STATUS AND CONTROL REGISTER

R/W-0 R-1 U-0 R/W-0 R/W-0 U-0 R/W-0 ABDOVF RCIDL SCKP BRG16 WUE bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

REGISTER 20-3: **BAUDCONX: BAUD RATE CONTROL REGISTER**

-n = Value	at POR '1'	= Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	ABDOVF: Auto-E	Baud Acquisition Ro	ollover Status bit	
	1 = A BRG rollov 0 = No BRG rollo	/er has occurred du	ring Auto-Baud Rate Detect m	ode (must be cleared in software)
bit 6	RCIDL : Receive 1 = Receive oper 0 = Receive oper	Operation Idle State ation is Idle ation is active	us bit	
bit 5	Unimplemented	: Read as '0'		
bit 4	SCKP: Synchron	ous Clock Polarity	Select bit	
	Asynchronous me Unused in this me	<u>ode:</u> ode.		
	1 = Idle state for $0 = $ Id	<u>ues.</u> clock (CKx) is a hic clock (CKx) is a lov	jh level v level	
bit 3	BRG16: 16-Bit B	aud Rate Register	Enable bit	
	1 = 16-bit Baud F 0 = 8-bit Baud Ra	≀ate Generator – S ate Generator – SP	PBRGHx and SPBRGx BRGx only (Compatible mode)	, SPBRGHx value ignored
bit 2	Unimplemented	: Read as '0'		
bit 1	WUE: Wake-up E	Enable bit		
	Asynchronous me 1 = EUSART will hardware on 0 = RXx pin not	<u>ode:</u> I continue to sampl the following rising monitored or rising	e the RXx pin – interrupt gener gedge edge detected	ated on falling edge; bit cleared in
	Synchronous mo Unused in this mo	<u>de:</u> ode.		
bit 0	ABDEN: Auto-Ba	ud Detect Enable I	pit	
	Asynchronous me 1 = Enable baud cleared in ha 0 = Baud rate me	<u>ode:</u> rate measuremen ardware upon comp easurement disable	t on the next character. Require eletion. ed or completed	es reception of a Sync field (55h);
	<u>Synchronous mo</u> Unused in this mo	<u>de:</u> ode.		

R/W-0

ABDEN

bit 0

EXAMPLE 20-1: CALCULATING BAUD RATE ERROR

For a device with FOSC	For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:										
Desired Baud Rate	=	Fosc/(64 ([SPBRGHx:SPBRGx] + 1))									
Solving for SPBRGHx:SPBRGx:											
Х	=	((FOSC/Desired Baud Rate)/64) – 1									
	=	((16000000/9600)/64) - 1									
	=	[25.042] = 25									
Calculated Baud Rate	=	16000000/(64 (25 + 1))									
	=	9615									
Error	=	(Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate									
	=	(9615 - 9600)/9600 = 0.16%									

TABLE 20-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page		
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	55		
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	55		
BAUDCONx	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	56		
SPBRGHx	EUSARTx	EUSARTx Baud Rate Generator Register High Byte									
SPBRGx	EUSARTx	Baud Rate	Generator	Register Lo	w Byte				56		

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

		SYNC = 0, BRGH = 0, BRG16 = 1													
BAUD	Fosc = 40.000 MHz			Fosc	Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz				
(К)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)			
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665			
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415			
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207			
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51			
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25			
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8			
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_			

TABLE 20-3:	BAUD RATES FOR	ASYNCHRONOUS MODES	(CONTINUED)
-------------	----------------	---------------------------	-------------

		SYNC = 0, BRGH = 0, BRG16 = 1													
BAUD	Foso	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz								
(K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)						
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207						
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51						
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25						
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_						
19.2	19.231	0.16	12	_	_	_	_	_	_						
57.6	62.500	8.51	3	—	_	_	—	_	_						
115.2	125.000	8.51	1	—	_	_	—	_	_						

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1													
BAUD RATE (K)	Fosc = 40.000 MHz			Fosc	= 20.000) MHz	Fosc	Fosc = 10.000 MHz Fosc = 8.0			: = 8.000	.000 MHz			
	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)			
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665			
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665			
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832			
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207			
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103			
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34			
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16			

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 4.000 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz						
(K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)				
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832				
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207				
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103				
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25				
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12				
57.6	58.824	2.12	16	55.555	3.55	8	—	_	_				
115.2	111.111	-3.55	8	_	—	_	_	—	_				

FIGURE 20-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 20-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	55
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	55
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	55
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	55
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	55
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP	55
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	55
TXREGx	EUSARTx	Transmit Re	gister						55
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	55
BAUDCONx	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	56
SPBRGHx	EUSARTx Baud Rate Generator Register High Byte								
SPBRGx	EUSARTx	Baud Rate (Generator R	egister Low	v Byte				56

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

21.2 Selecting and Configuring Automatic Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/\overline{DONE} bit is set.

When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This occurs when the ACQT<2:0> bits (ADCON2<5:3>) remain in their Reset state ('000') and is compatible with devices that do not offer programmable acquisition times.

If desired, the ACQT bits can be set to select a programmable acquisition time for the A/D module. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

21.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable.

There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible but greater than the minimum TAD (see parameter 130 in Table 27-27 for more information).

Table 21-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 21-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	Maximum	
Operation	ADCS<2:0>	Device Frequency
2 Tosc	000	2.86 MHz
4 Tosc	100	5.71 MHz
8 Tosc	001	11.43 MHz
16 Tosc	101	22.86 MHz
32 Tosc	010	40.0 MHz
64 Tosc	110	40.0 MHz
RC ⁽²⁾	x11	1.00 MHz ⁽¹⁾

Note 1: The RC source has a typical TAD time of $4 \ \mu s$.

2: For device frequencies above 1 MHz, the device must be in Sleep mode for the entire conversion or the A/D accuracy may be out of specification.

21.4 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

23.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 16-tap resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently of them.

A block diagram of the module is shown in Figure 23-1. The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference.

23.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 23-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution. The equations used to calculate the output of the comparator voltage reference are as follows:

<u>If CVRR = 1:</u> CVREF = ((CVR<3:0>)/24) x (CVRSRC) <u>If CVRR = 0:</u> CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) x (CVRSRC)

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF- that are multiplexed with RA2 and RA3. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 27-3 in **Section 27.0 "Electrical Characteristics"**).

REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE ⁽¹⁾	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	CVREN: Comparator Voltage Reference Enable bit
	1 = CVREF circuit powered on
	0 = CVREF circuit powered down
bit 6	CVROE: Comparator VREF Output Enable bit ⁽¹⁾
	 1 = CVREF voltage level is also output on the RF5/AN10/CVREF pin 0 = CVREF voltage is disconnected from the RF5/AN10/CVREF pin
bit 5	CVRR: Comparator VREF Range Selection bit
	 1 = 0 to 0.667 CVRsRc, with CVRsRc/24 step size (low range) 0 = 0.25 CVRsRc to 0.75 CVRsRc, with CVRsRc/32 step size (high range)
bit 4	CVRSS: Comparator VREF Source Selection bit
	 1 = Comparator reference source, CVRSRC = (VREF+) – (VREF-) 0 = Comparator reference source, CVRSRC = VDD – VSS
bit 3-0	CVR<3:0>: Comparator VREF Value Selection bits ($0 \le (CVR<3:0>) \le 15$)
	When CVRR = 1:
	CVREF = ((CVR<3:0>)/24) • (CVRSRC)
	When CVRR = 0:
	CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) • (CVRSRC)

Note 1: CVROE overrides the TRISF<5> bit setting.

TABLE 24-2: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value ⁽¹⁾
300000h	CONFIG1L	DEBUG	XINST	STVREN	_	_	_	_	WDTEN	1111
300001h	CONFIG1H	(2)	(2)	(2)	(2)	_(3)	CP0	_	_	01
300002h	CONFIG2L	IESO	FCMEN	_	_	—	FOSC2	FOSC1	FOSC0	11111
300003h	CONFIG2H	(2)	(2)	(2)	(2)	WDTPS3	WDTPS2	WDTPS1	WDTPS0	1111
300004h	CONFIG3L	WAIT ⁽⁴⁾	BW ⁽⁴⁾	EMB1 ⁽⁴⁾	EMB0 ⁽⁴⁾	EASHFT(4)	_	_	_	1111 1
300005h	CONFIG3H	(2)	(2)	(2)	(2)	—	_	ECCPMX ⁽⁴⁾	CCP2MX	11
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	×××× ×××××(5)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 10x1 (5)

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Values reflect the unprogrammed state as received from the factory and following Power-on Resets. In all other Reset states, the configuration bytes maintain their previously programmed states.

2: The value of these bits in program memory should always be '1'. This ensures that the location is executed as a NOP if it is accidentally executed.

3: This bit should always be maintained as '0'.

4: Implemented in 80-pin devices only. On 64-pin devices, these bits are reserved and should always be maintained as '1'.

5: See Register 24-7 and Register 24-8 for DEVID values. These registers are read-only and cannot be programmed by the user.

Branch if Carry

BC n -128 ≤ n ≤ 127

ANDWF AND W with f					вс	
Syntax:	ANDWF	f {,d {,a}	}		Syn	tax:
Operands:	$0 \le f \le 255$				Ope	erands:
	d ∈ [0,1] a ∈ [0,1]				Ope	eration:
Operation:	(W) .AND.	$(f) \rightarrow des$	t		Stat	us Affected
Status Affected:	N, Z				Enc	odina:
Encoding:	0001	01da	ffff	ffff		cription:
Description:	The conter register 'f'. in W. If 'd' is in register ' If 'a' is '0', 1 If 'a' is '1', 1 GPR bank.	Its of W a If 'd' is '0' s '1', the r f'. the Acces the BSR i				
	lf 'a' is '0' a	ind the ex	tended in	struction	Wor	ds:
	set is enab	led, this i	nstruction	operates	Сус	les:
	mode when Section 25 Bit-Oriente Literal Off	never f ≤ 5 5.2.3 "By ad Instru set Mode	Q (If J	Cycle Activity: ump: Q1 Decode		
Words:	1					
Cycles:	1					No
Q Cycle Activity:					If N	
Q1	Q2	Q3		Q4		Q1
Decode	Read register 'f'	Proce Data	ss V a des	/rite to stination		Decode
Example:	ANDWF	REG,	0, 0		<u>Exa</u>	mple:
Before Instruc W REG After Instructio	tion = 17h = C2h on					Before Instruc PC After Instructio
w REG	= 02h = C2h					PC If Carry PC

ation:	if Carry bit is '1', (PC) + 2 + 2n \rightarrow PC								
is Affected:	None	None							
oding:	1110	0010 nn	nn nnnn						
cription:	If the Carry will branch.	If the Carry bit is '1', then the program will branch.							
	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.								
ls:	1								
es:	1(2)								
ycle Activity: Imp:									
Q1	Q2	Q3	Q4						
Decode	Read literal 'n'	Process Data	Write to PC						
No operation	No operation	No operation	No operation						
o Jump:									
Q1	Q2	Q3	Q4						
Decode	Read literal 'n'	Process Data	No operation						
nple:	HERE	BC 5							
Before Instruc	tion								
PC After Instruction	= ad	dress (HERE)						
If Carry PC	= 1; = ad	dress (HERE	+ 12)						

=

0; address (HERE + 2)

27.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	-40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any digital only I/O pin or MCLR with respect to Vss (except VDD)	-0.3V to 6.0V
Voltage on any combined digital and analog pin with respect to Vss (except VDD)	0.3V to (VDD + 0.3V)
Voltage on VDDCORE with respect to Vss	0.3V to 2.75V
Voltage on VDD with respect to Vss	-0.3V to 3.6V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	
Maximum output current sunk by any PORTB and PORTC I/O pin	25 mA
Maximum output current sunk by any PORTD, PORTE and PORTJ I/O pin	8 mA
Maximum output current sunk by any PORTA, PORTF, PORTG and PORTH I/O pin	4 mA
Maximum output current sourced by any PORTB and PORTC I/O pin	25 mA
Maximum output current sourced by any PORTD, PORTE and PORTJ I/O pin	8 mA
Maximum output current sourced by any PORTA, PORTF, PORTG and PORTH I/O pin	4 mA
Maximum current sunk by all ports	
Maximum current sourced by all ports	

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

27.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 27-5 apply to all timing specifications unless otherwise noted. Figure 27-3 specifies the load conditions for the timing specifications.

TABLE 27-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial
	Operating voltage VDD range as described in DC spec Section 27.1 and
	Section 27.3.

FIGURE 27-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions	
100	Thigh	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms		
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
102	TR	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	300	ns		
103	TF	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	100	ns		
90	TSU:STA	Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	Only relevant for	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	Repeated Start	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	condition	
91	THD:STA	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	After this period, the first	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	clock pulse is generated	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	ns		
			400 kHz mode	0	0.9	ms		
			1 MHz mode ⁽¹⁾	—	_	ns		
107	TSU:DAT	Data Input	100 kHz mode	250	_	ns	(Note 2)	
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode ⁽¹⁾	_	_	ns		
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
109	ΤΑΑ	Output Valid	100 kHz mode	—	3500	ns		
		from Clock	400 kHz mode	_	1000	ns		
			1 MHz mode ⁽¹⁾	_	_	ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	ms	Time the bus must be free	
			400 kHz mode	1.3	_	ms	before a new transmission	
			1 MHz mode ⁽¹⁾	—	_	ms	can start	
D102	Св	Bus Capacitive L	oading	—	400	pF		
			-					

TABLE 27-23: MASTER SSP I²C[™] BUS DATA REQUIREMENTS

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.

SSPxSTAT Register R/W Bit 209, 211 SSx 193 Stack Full/Underflow Resets 65 SUBFSR 339 SUBFWB 328 SUBLW 329 SUBULNK 339 SUBWF 329 SUBWF 329	SSPOV Status Flag	
R/W Bit 209, 211 SSx 193 Stack Full/Underflow Resets 65 SUBFSR 339 SUBFWB 328 SUBLW 329 SUBULNK 339 SUBWF 329 SUBWFB 329 SUBWF 329 SUBWFB 330	SSPxSTAT Register	
SSx 193 Stack Full/Underflow Resets 65 SUBFSR 339 SUBFWB 328 SUBLW 329 SUBULNK 339 SUBWF 329 SUBWF 329 SUBVER 330 SWAPF 330	R/W Bit	
Stack Full/Underflow Resets 65 SUBFSR 339 SUBFWB 328 SUBLW 329 SUBULNK 339 SUBWF 329 SUBWF 329 SUBULNK 330 SUBWFB 330 SWAPF 330	SSx	193
SUBFSR 339 SUBFWB 328 SUBLW 329 SUBULNK 339 SUBWF 329 SUBWF 330	Stack Full/Underflow Resets	65
SUBFWB 328 SUBLW 329 SUBULNK 339 SUBWF 329 SUBWF 329 SUBWFB 330 SWAPF 330	SUBFSR	
SUBLW 329 SUBULNK 339 SUBWF 329 SUBWFB 330 SWAPF 330	SUBFWB	
SUBULNK 339 SUBWF 329 SUBWFB 330 SWAPF 330	SUBLW	
SUBWF 329 SUBWFB 330 SWAPF 330	SUBULNK	
SUBWFB	SUBWF	
SWAPF	SUBWFB	
	SWAPF	

Т

Table Pointer Operations (table)	
Table Reads/Table Writes	65
TBLRD	331
TBLWT	332
Timer0	151
Associated Registers	153
Operation	152
Overflow Interrupt	153
Prescaler	153
Switching Assignment	153
Prescaler Assignment (PSA Bit)	153
Prescaler Select (T0PS2'T0PS0 Bits)	153
Prescaler See Prescaler Timer()	
Reads and Writes in 16-Bit Mode	152
Source Edge Select (TOSE Bit)	152
Source Select (TOCS Bit)	152
Timor1	155
	100
Accessized Degisters	107
	159
Interrupt	158
Low-Power Option	15/
Operation	156
Oscillator	155, 157
Layout Considerations	158
Oscillator, as Secondary Clock	
Overflow Interrupt	155
Resetting, Using the ECCP	
Special Event Trigger	158
Special Event Trigger (ECCP)	180
TMR1H Register	155
TMR1L Register	155
Use as a Clock Source	157
Use as a Real-Time Clock	158
Timer2	161
Associated Registers	162
Interrupt	162
Operation	161
Output	162
PR2 Register	181
TMR2 to PR2 Match Interrupt	181
Timer3	163
16-Bit Read/Write Mode	165
Associated Registers	165
Operation	16/
Oscillator	163 165
Overflow Interrupt	163 165
Special Event Trigger (ECCD)	100, 100
TMD211 Degister	160
	163
I MR3L Register	163

Timer	4	167
А	Associated Registers	168
N	ASSP Clock Shift	168
C	Operation	167
F	Postscaler. See Postscaler. Timer4.	
F	PR4 Register	167
F	Prescaler See Prescaler Timer4	
Т	MR4 Register	167
, т	IMP4 to PP4 Match Interrupt 16	7 168
Timino	n Diagrame	7,100
۲ ۲ ۸	VD Conversion	200
~	Aurobranaua Bacantian	302
	Asynchronous Reception	202
	Asynchronous Transmission (Bask to Bask)	200
, н , н	Asynchionous fransmission (Back to Back)	200
A .		248
μ	Auto-wake-up Bit (WOE) During	0.50
	Normal Operation	253
A	Auto-Wake-up Bit (WUE) During Sleep	253
В	Baud Rate Generator with Clock Arbitration	226
E	3RG Overflow Sequence	248
E	3RG Reset Due to SDAx Arbitration During	
	Start Condition	235
E	Bus Collision During a Repeated Start	
	Condition (Case 1)	236
E	Bus Collision During a Repeated Start	
	Condition (Case 2)	236
E	Bus Collision During a Start Condition	
	(SCLx = 0)	235
E	Bus Collision During a Stop	
	Condition (Case 1)	237
E	Bus Collision During a Stop	
	Condition (Case 2)	237
Е	Bus Collision During Start Condition	
	(SDAx Only)	234
В	Bus Collision for Transmit and Acknowledge	233
Ċ	Capture/Compare/PWM (Including	00
	FCCP Modules)	372
C	CLKO and I/O	366
	Clock Synchronization	210
	Clock/Instruction Cycle	210
	ELISART Synchronous Receive	00
L .	(Master/Slave)	201
_	(Master/Slave)	501
L	(Master/Slove)	201
-	(Waster/Slave)	301
	Example SPI Master Mode (CKE = 0)	373
	Example SPI Master Mode (CKE = 1)	374
		3/5
	Example SPI Slave Mode (CKE = 1)	376
	External Clock (All Modes Except PLL)	364
E	External Memory Bus for Sleep	
_	(Extended Microcontroller Mode) 10	2, 104
E	External Memory Bus for TBLRD	
	(Extended Microcontroller Mode) 10	2, 104
F	ail-Safe Clock Monitor	291
F	First Start Bit Timing	227
F	Full-Bridge PWM Output	185
F	Half-Bridge PWM Output	184
ľ	² C Acknowledge Sequence	232
ľ	² C Bus Data	377
ľ	² C Bus Start/Stop Bits	377
ľ	² C Master Mode (7 or 10-Bit Transmission)	230
ľ	² C Master Mode (7-Bit Reception)	231