

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	SH-2
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	EBI/EMI, FIFO, I ² C, SCI, SSU
Peripherals	DMA, POR, PWM, WDT
Number of I/O	65
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/de70835rn80ftv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit	Bit Name	Initial Value	R/W	Description
2, 1	_	All 0	R	Reserved
				These are read-only bits and cannot be modified.
0	ERR	0	R/(W)*	Transfer Stop Flag
				Indicates that the DTC address error or NMI interrupt request has occurred. If a DTC address error or NMI interrupt occurs while the DTC is active, address error handling or NMI interrupt handling processing is executed after the DTC has released the bus mastership. The DTC stops in the transfer information writing state after transferring data.
				0: No interrupt occurs
				1: An interrupt occurs
				[Clearing condition]
				When writing 0 after reading 1
Note:	* Writing 0	to this bit a	after read	ing it as 1 clears the flag and is the only allowed way.

8.6 DTC Activation by Interrupt

The procedure for using the DTC with interrupt activation is shown in figure 8.18.

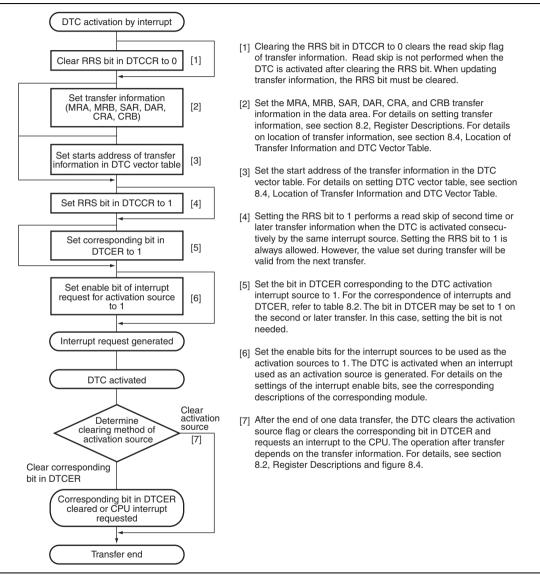
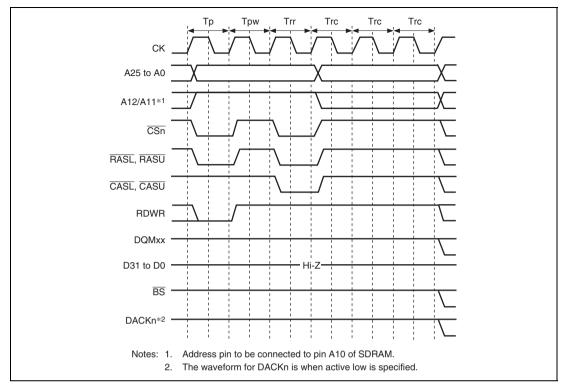


Figure 8.18 Activation of DTC by Interrupt

Address	Area	Memory Type	Capacity	Bus Width	
H'18000000 to	CS6 space	Normal space	64 Mbytes	8, 16, or	
H'1BFFFFF		SRAM with byte selection		32 bits*2	
		PCMCIA			
		Burst MPX-I/O			
H'1C000000 to	CS7 space	Normal space	64 Mbytes	8, 16, or	
H'1FFFFFF		SRAM with byte selection		32 bits*2	
H'20000000 to H'FFF7FFF	Reserved				
H'FFF80000 to H'FFF9FFFF	SDRAM mode setting space				
H'FFFA0000 to H'FFFF3FFF	Reserved				
H'FFFF4000 to H'FFFFBFFF	On-chip RAM		32 Kbytes	32 bits	
H'FFFFC000 to H'FFFFFFF	On-chip peripheral modules		16 Kbytes	8 or 16 bits	

cannot be guaranteed.


1. The bus width is selected by the mode pins.

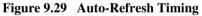

2. The bus width is selected by the register setting.

Table 9.14 Address Map: SH7086 in On-Chip ROM-Enabled Mode

Address	Area	Memory Type	Capacity	Bus Width	
H'00000000 to H'0007FFFF	On-chip ROM		512 Kbytes	32 bits	
H'00080000 to H'01FFFFF	Reserved				
H'02000000 to H'03FFFFFF	CS0 space	Normal space SRAM with byte selection Burst ROM (asynchronous) Burst ROM (synchronous)	32 Mbytes	8, 16, or 32 bits*	
H'04000000 to H'07FFFFF	CS1 space	Normal space SRAM with byte selection	64 Mbytes	8, 16, or 32 bits*	

Address	Area	Memory Type	Capacity	Bus Width
H'08000000 to H'0BFFFFF	CS2 space	Normal space SRAM with byte selection	64 Mbytes	8, 16, or 32 bits*
		SDRAM		
H'0C000000 to H'0FFFFFF	CS3 space	Normal space	64 Mbytes	8, 16, or 32 bits*
		SRAM with byte selection SDRAM		02 013
H'10000000 to H'13FFFFF	CS4 space	Normal space	64 Mbytes	8, 16, or 32 bits*
		SRAM with byte selection Burst ROM (asynchronous)		32 Dits*
H'14000000 to	CS5 space	Normal space	64 Mbytes	8, 16, or
H'17FFFFFF		SRAM with byte selection		32 bits*
		PCMCIA MPX-I/O		
H'18000000 to H'1BFFFFF	CS6 space	Normal space SRAM with byte selection	64 Mbytes	8, 16, or 32 bits*
		PCMCIA		
		Burst MPX-I/O		
H'1C000000 to	CS7 space	Normal space	64 Mbytes	8, 16, or
H'1FFFFFFF		SRAM with byte selection		32 bits*
H'20000000 to H'3FFFFFF	Reserved			
H'40000000 to H'7FFFFFF	CS8 space	Normal space SRAM with byte selection	1 Gbyte	8, 16, or 32 bits*
H'80000000 to H'FFF7FFFF	Reserved			
H'FFF80000 to H'FFF9FFFF	SDRAM mode setting space			
H'FFFA0000 to H'FFFF3FFF	Reserved			

2. Self-refreshing

Self-refresh mode is a kind of standby mode in which the refresh timing and refresh addresses are generated within SDRAM. Self-refreshing is activated by setting both the RMODE bit and the RFSH bit in SDCR to 1. After starting the self-refreshing, PALL command is issued in the Tp cycle after the completion of the precharging bank. A SELF command is then issued after inserting idle cycles of which number is specified by the WTRP[1:0] bits in CS3WCR. SDRAM cannot be accessed while in the self-refresh state. Self-refresh mode is cleared by clearing the RMODE bit to 0. After self-refresh mode has been cleared, command issuance is disabled for the number of cycles specified by the WTRC[1:0] bits in CS3WCR.

Self-refresh timing is shown in figure 9.30. After self-refreshing is cleared, settings must be made so that auto-refreshing is performed at the correct intervals. When self-refreshing is activated from the state in which auto-refreshing is set, auto-refreshing is restarted if the RFSH bit is set to 1 and the RMODE bit is cleared to 0 when self-refresh mode is cleared. If the transition from clearing of self-refresh mode to the start of auto-refreshing takes time, making the RTCNT value 1 less than the RTCOR value will enable auto-refreshing to be started immediately.

Bus Mode and Channel Priority: When the priority is set in fixed mode (CH0 > CH1) and channel 1 is transferring in burst mode, if there is a transfer request to channel 0 with a higher priority, the transfer of channel 0 will begin immediately.

At this time, if channel 0 is also operating in burst mode, the channel 1 transfer will continue after the channel 0 transfer has completely finished.

When channel 0 is in cycle steal mode, channel 0 with a higher priority performs the transfer of one transfer unit and the channel 1 transfer is continuously performed without releasing the bus mastership. The bus mastership will then switch between the two in the order channel 0, channel 1, channel 0, and channel 1. Therefore, the bus state is such that the CPU cycle after the completion of cycle steal mode transfer has been replaced with the channel 1 burst mode transfer. (Hereinafter referred to as burst mode priority execution.)

This example is shown in figure 10.13. When multiple channels are operating in burst modes, the channel with the highest priority is executed first.

When DMA transfer is executed in the multiple channels, the bus mastership will not be given to the bus master until all competing burst transfers are complete.

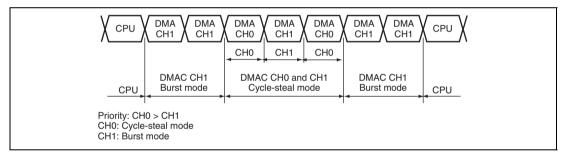


Figure 10.13 Bus State when Multiple Channels Are Operating

In round-robin mode, the priority changes according to the specification shown in figure 10.3. However, the channel in cycle steal mode cannot be mixed with the channel in burst mode.

10.4.5 Number of Bus Cycle States and DREQ Pin Sampling Timing

Number of Bus Cycle States: When the DMAC is the bus master, the number of bus cycle states is controlled by the bus state controller (BSC) in the same way as when the CPU is the bus master. For details, see section 9, Bus State Controller (BSC).

DREQ Pin Sampling Timing: Figures 10.14 to 10.17 show the sample timing of the DREQ input in each bus mode, respectively.

Determination of DMAC activation by DREQ takes $3 \times Bcyc$ (Bcyc is the external clock (B ϕ = CK) cycle). Timing of the DACK output for the first DREQ acceptance differs depending on the internal bus state, the AM bit setting in CHCR, and the configuration of the BSC regarding the transfer source/destination areas, but the fastest case is $6 \times Bcyc$.

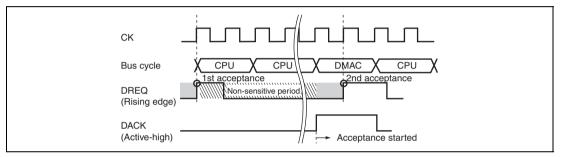


Figure 10.14 Example of DREQ Input Detection in Cycle Steal Mode Edge Detection

Bit	Bit Name	Initial Value	R/W	Description
1	CMFV5	0	R/(W)*1	Compare Match/Input Capture Flag V5
				Status flag that indicates the occurrence of TGRV_5 input capture or compare match.
				[Setting conditions]
				 When TCNTV_5 = TGRV_5 and TGRV_5 is functioning as output compare register
				 When TCNTV_5 value is transferred to TGRV_5 by input capture signal and TGRV_5 is functioning as input capture register
				 When TCNTV_5 value is transferred to TGRV_5 and TGRV_5 is functioning as a register for measuring the pulse width of the external input signal. The transfer timing is specified by the IOC bits in timer I/O control register V_5 (TIORV_5).*²
				[Clearing conditions]
				• When DTC is activated by a TGIV_5 interrupt and the DISEL bit of MRB in DTC is 0
				• When 0 is written to CMFV5 after reading CMFV5 = 1

Table 11.57 MTU2 Interrupts

Channel	Name	Interrupt Source	Interrupt Flag	DMAC Activation	DTC Activation	Priority
0	TGIA_0	TGRA_0 input capture/compare match	TGFA_0	Possible	Possible	High
	TGIB_0	TGRB_0 input capture/compare match	TGFB_0	Not possible	Possible	- ↑
	TGIC_0	TGRC_0 input capture/compare match	TGFC_0	Not possible	Possible	-
	TGID_0	TGRD_0 input capture/compare match	TGFD_0	Not possible Possible		-
	TCIV_0			Not possible	Not possible	-
	TGIE_0	TGRE_0 compare match	match TGFE_0 Not po		Not possible	-
	TGIF_0	TGRF_0 compare match	TGFF_0	Not possible	Not possible	-
1	TGIA_1	TGRA_1 input capture/compare match	TGFA_1	Possible	Possible	-
	TGIB_1	TGRB_1 input capture/compare match	TGFB_1	Not possible	Possible	-
	TCIV_1	TCNT_1 overflow	TCFV_1	Not possible	Not possible	-
	TCIU_1	TCNT_1 underflow	TCFU_1	Not possible	Not possible	-
2	TGIA_2	TGRA_2 input capture/compare match	TGFA_2	Possible	Possible	-
	TGIB_2	TGRB_2 input capture/compare match	TGFB_2	Not possible	Possible	-
	TCIV_2	TCNT_2 overflow	TCFV_2	Not possible	Not possible	-
	TCIU_2	TCNT_2 underflow	TCFU_2	Not possible	Not possible	-
3	TGIA_3	TGRA_3 input capture/compare match	TGFA_3	Possible	Possible	-
	TGIB_3	TGRB_3 input capture/compare match	TGFB_3	Not possible	Possible	-
	TGIC_3	TGRC_3 input capture/compare match	TGFC_3	Not possible	Possible	-
	TGID_3	TGRD_3 input capture/compare match	TGFD_3	Not possible	Possible	-
_	TCIV_3	TCNT_3 overflow	TCFV_3	Not possible	Not possible	
4	TGIA_4	TGRA_4 input capture/compare match	TGFA_4	Possible	Possible	
	TGIB_4	TGRB_4 input capture/compare match	TGFB_4	Not possible	Possible	-
	TGIC_4	TGRC_4 input capture/compare match	TGFC_4	Not possible	Possible	-
	TGID_4	TGRD_4 input capture/compare match	TGFD_4	Not possible	Possible	_
	TCIV_4	TCNT_4 overflow/underflow	TCFV_4	Not possible	Possible	_
5	TGIU_5	TGRU_5 input capture/compare match	TGFU_5	Not possible	Possible	_
	TGIV_5	TGRV_5 input capture/compare match	TGFV_5	Not possible	Possible	_ ↓
	TGIW_5	TGRW_5 input capture/compare match	TGFW_5	Not possible	Possible	Low

Note: This table shows the initial state immediately after a reset. The relative channel priorities can be changed by the interrupt controller.

Bit	Bit Name	Initial Value	R/W	Description
4	SOL	0	R/W	Serial Data Output Value Select
				The serial data output retains its level of the last bit after completion of transmission. The output level before or after transmission can be specified by setting this bit. When specifying the output level, use the MOV instruction after clearing the SOLP bit to 0. Since writing to this bit during data transmission causes malfunctions, this bit should not be changed.
				0: Serial data output is changed to low.
				1: Serial data output is changed to high.
3	SOLP	1	R/W	SOL Bit Write Protect
				When changing the output level of serial data, set the SOL bit to 1 or clear the SOL bit to 0 after clearing the SOLP bit to 0 using the MOV instruction.
				0: Output level can be changed by the SOL bit
				1: Output level cannot be changed by the SOL bit. This bit is always read as 1.
2	_	1	R	Reserved
				This bit is always read as 1. The write value should always be 1.
1, 0	CSS[1:0]	01	R/W	SCS Pin Select
				Select that the $\overline{\text{SCS}}$ pin functions as $\overline{\text{SCS}}$ input or output.
				00: Setting prohibited
				01: Setting prohibited
				 Function as SCS automatic input/output (function as SCS input before and after transfer and output a low level during transfer)
				 Function as SCS automatic output (outputs a high level before and after transfer and outputs a low level during transfer)

- Writing 1 to IICRST does not clear the BBSY bit in ICCR2 to 0. However, if the states of the SCL and SDA pins lead to the generation of a stop condition, (rising edge on SDA while SCL is at the high level), the BBSY bit may be cleared to 0 as a result. This can also affect other bits in the same way.
- Data transfer stops while a reset is being applied by writing 1 to IICRST. However, functions for detecting start conditions, stop conditions, and failure in bus contention continue to operate. Signals input to the SCL and SDA pins may alter the states of ICCR1, ICCR2, and ICSR.

18.3.3 I²C Bus Mode Register (ICMR)

ICMR is an 8-bit readable/writable register that selects whether the MSB or LSB is transferred first and selects the transfer bit count.

ICMR is initialized to H'38 by a power-on reset. Bits BC[2:0] are initialized to B'000 by the IICRST bit in ICCR2.

Bit:	7	6	5	4	3	2	1	0
	MLS	-	-	-	BCWP		BC[2:0]	
Initial value:	0	0	1	1	1	0	0	0
R/W:	R/W	R	R	R	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
7	MLS	0	R/W	MSB-First/LSB-First Select
				0: MSB-first
				1: LSB-first
				Set this bit to 0 when the I ² C bus format is used.
6	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
5, 4	_	All 1	R	Reserved
				These bits are always read as 1. The write value should always be 1.

Table 21.14 SH7086 Multiplexed Pins (Port E)

Port	Function 1 (Related Module)	Function 2 (Related Module)	Function 3 (Related Module)	Function 4 (Related Module)	Function 5 (Related Module)	Function 6 (Related Module)
E	PE0 I/O (port)	DREQ0 input (DMAC)	TIOC0A I/O (MTU2)	AUDCK output (AUD)* ¹	_	_
	PE1 I/O (port)	TEND0 output (DMAC)	TIOC0B I/O (MTU2)	_	—	_
	PE2 I/O (port)	DREQ1 input (DMAC)	TIOC0C I/O (MTU2)	_	—	_
	PE3 I/O (port)	TEND1 output (DMAC)	TIOC0D I/O (MTU2)	AUDATA3 output (AUD)* ¹	_	_
	PE4 I/O (port)	IOIS16 input (BSC)	TIOC1A I/O (MTU2)	RXD3 input (SCIF)	AUDATA2 output (AUD)* ¹	_
	PE5 I/O (port)	CS6/CE1B output (BSC)	TIOC1B I/O (MTU2)	TXD3 output (SCIF)	AUDATA1 output (AUD)* ¹	_
	PE6 I/O (port)	CS7 output (BSC)	TIOC2A I/O (MTU2)	SCK3 I/O (SCIF)	AUDATA0 output (AUD)* ¹	_
	PE7 I/O (port)	BS output (BSC)	TIOC2B I/O (MTU2)	UBCTRG output (UBC)	RXD2 input (SCI)	SSI I/O (SSU)
	PE8 I/O (port)	TIOC3A I/O (MTU2)	SCK2 I/O (SCI)	SSCK I/O (SSU)	TMS input (H-UDI)*2	_
	PE9 I/O (port)	TIOC3B I/O (MTU2)	SCK3 I/O (SCIF)	RTS3 output (SCIF)	TRST input (H-UDI)* ²	_
	PE10 I/O (port)	TIOC3C I/O (MTU2)	TXD2 output (SCI)	SSO I/O (SSU)	TDI input (H-UDI)*2	_
	PE11 I/O (port)	TIOC3D I/O (MTU2)	RXD3 input (SCIF)	CTS3 input (SCIF)	TDO output (H-UDI)* ²	_
	PE12 I/O (port)	TIOC4A I/O (MTU2)	TXD3 output (SCIF)	SCS I/O (SSU)	TCK input (H-UDI)*2	_
	PE13 I/O (port)	TIOC4B I/O (MTU2)	MRES input (INTC)	ASEBRKAK output (E10A)* ²	ASEBRK input (E10A)* ²	_
	PE14 I/O (port)	PE14 I/O (port) WRHH/ICIOWR/AH /DQMUU output (BSC)		TIOC4C I/O (MTU2)	_	_
	PE15 I/O (port)	CKE output (BSC)	DACK1 output (DMAC)	TIOC4D I/O (MTU2)	IRQOUT output (INTC)	_
	PE16 I/O (port)	CS8 output (BSC)	TIOC3BS I/O (MTU2S)	_	_	_
	PE17 I/O (port)	TIOC3DS I/O (MTU2S)	_	_	_	_

22.2.3 Port B Port Register L (PBPRL)

The port B port register L (PBPRL) is a 16-bit read-only register that always returns the states of the pins regardless of the PFC setting. Bits PB9PR to PB4PR and PB2PR to PB0PR correspond to pins PB9 to PB4 and PB2 to PB0, respectively (multiplexed functions omitted here) in the SH7083. Bits PB9PR to PB0PR correspond to pins PB9 to PB0 (multiplexed functions omitted here) in the SH7084, SH7085, and SH7086

• PBPRL (SH7083)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	PB9 PR	PB8 PR	PB7 PR	PB6 PR	PB5 PR	PB4 PR	-	PB2 PR	PB1 PR	PB0 PR
Initial value:	0	0	0	0	0	0	*	*	*	*	*	*	0	*	*	*
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit	Bit Name	Initial Value	R/W	Description
15 to 10	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
9	PB9PR	Pin state	R	The pin state is returned regardless of the PFC setting.
8	PB8PR	Pin state	R	These bits cannot be modified.
7	PB7PR	Pin state	R	_
6	PB6PR	Pin state	R	_
5	PB5PR	Pin state	R	_
4	PB4PR	Pin state	R	
3	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
2	PB2PR	Pin state	R	The pin state is returned regardless of the PFC setting.
1	PB1PR	Pin state	R	These bits cannot be modified.
0	PB0PR	Pin state	R	

23.4.4 RAM Emulation Register (RAMER)

When the realtime programming of the user MAT is emulated, RAMER sets the area of the user MAT which is overlapped with a part of the on-chip RAM. The RAM emulation must be executed in user mode or in user program mode.

For the division method of the user-MAT area, see table 23.7. In order to operate the emulation function certainly, the target MAT of the RAM emulation must not be accessed immediately after RAMER is programmed. If it is accessed, the normal access is not guaranteed.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ	-	-	-	-	-	-	-	-	-	-	-	-	RAMS		RAM[2:0]
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
15 to 4	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
3	RAMS	0	R/W	RAM Select
				Sets whether the user MAT is emulated or not. When RAMS = 1, all blocks of the user MAT are in the programming/erasing protection state.
				 Emulation is not selected Programming/erasing protection of all user-MAT blocks is invalid
				 Emulation is selected Programming/erasing protection of all user-MAT blocks is valid
2 to 0	RAM[2:0]	000	R/W	User MAT Area Select
				These bits are used with bit 3 to select the user-MAT area to be overlapped with the on-chip RAM. (See table 23.7.)

Command Error

Command errors are generated by undefined commands, commands sent in an incorrect order, and the inability to accept a command. For example, sending the clock-mode selection command before device selection or an inquiry command after the transition-to-programming/erasure state command generates a command error.

Error		
response	H'80	H'xx

- Error response H'80 (1 byte): Command error

- Command H'xx (1 byte): Received command
- Order of Commands

In the inquiry-and-selection state, commands should be sent in the following order.

- 1. Send the inquiry on supported devices command (H'20) to get the list of supported devices.
- 2. Select a device from the returned device information, and send the device selection command (H'10) to select that device.
- 3. Send the inquiry on clock mode command (H'21) to get the available clock modes.
- 4. Select a clock mode from among the returned clock modes, and send the clock-mode selection command (H'11).
- 5. After selection of the device and clock mode, send the commands to inquire about frequency multipliers (H'22) and operating frequencies (H'23) to get the information required to select a new bit rate.
- 6. Taking into account the returned information on the frequency multipliers and operating frequencies, send a new-bit-rate selection command (H'3F).
- 7. After the device and clock mode have been selected, get the information required for programming and erasure of the user boot MAT and user MAT by sending the commands to inquire about the user boot MAT (H'24), user MAT (H'25), erasure block (H'26), and programming size (H'27).
- 8. After making all necessary inquiries and the new bit rate selection, send the transition-toprogramming/erasure state command (H'40) to place the boot program in the programming/erasure state.

28.3.8 Watchdog Timer (WDT) Timing

Table 28.13 Watchdog Timer (WDT) Timing

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V or 4.0 V to 5.5 V, $AV_{cc} = 4.0 \text{ V}$ to 5.5 V, $AV_{ref} = 4.0 \text{ V}$ to AV_{cc} , $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (consumer applications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (industrial applications)

Item	Symbol	Min.	Max.	Unit	Reference Figure
WDTOVF delay time	t _{wovd}		50	ns	Figure 28.50
ск					
WDTOVF					

Figure 28.50 WDT Timing

[Legend]

- I: Input
- O: Output
- H: High-level output
- L: Low-level output
- Z: High-impedance
- K: Input pins become high-impedance, and output pins retain their state.
- Notes: 1. Output pins become high-impedance when the HIZ bit in standby control register 6 (STBCR6) is set to 1.
 - 2. Becomes output when the HIZCNT bit in the common control register (CMNCR) is set to 1.
 - 3. Becomes output when the HIZMEM bit in the common control register (CMNCR) is set to 1.
 - 4. Becomes high-impedance when the MZIZDL bit in the high-current port control register (HCPCR) is cleared to 0.
 - 5. Becomes high-impedance when the MZIZEL bit in the high-current port control register (HCPCR) is cleared to 0.
 - 6. Becomes input during a power-on reset. Pull-up to prevent erroneous operation. Pull-down with a resistance of at least 1 M Ω as required.
 - 7. Pulled-up inside the LSI when there is no input.

Main Revisions for This Edition

Item	Page	Revis	sion	(Se	e Ma	nual for Deta	ils)				
Overall	_	"l ² C2"	cha	inge	d to "	IIC2"					
3.1 Selection of Operating Modes	55	Table amended							Bue Wid	th of CS0	Snace
		Mode No.	FWE	-		Mode Name	On-Chip ROM		85 SH7086		
Table 3.1 Selection of		Mode 0	0	0	0	MCU extension mode		8	8	16	16
Operating Modes*1		Mode 1	0	0	1	MCU extension mode		16	16	32	32
		Mode 2	0	1	0	MCU extension mode		Set by	CSOBC	R in BS	2
		Mode 3	0	1	1	Single chip mode	Active	_			
		Mode 4*2	1	0	0	Boot mode	Active	_			
		Mode 5*2	1	0	1	User boot mode	Active	Set by	CSOBC	CR in BS	0
		Mode 6*2	1	1	0	User programming	Active	Set by	CSOBC	CR in BS	0
		Mode 7*2	1	1	1	mode		_			
5.8.4 Notes on Slot	103	Family E10A-USB Emulator, Additional Document for User's Manual: Supplementary Information on Using the SH7083, SH7084, SH7085, and SH7086. 2. These are flash memory programming modes. Description deleted									
Illegal Instruction		3. Others									
Exception Handling		The slot illegal instruction exception handling may be generated in this LSI in a case where the instruction is described in assembler or when the middleware of the object is introduced.									object
8.2.2 DTC Mode	176	Table	am	onde	bd						
	170	raple	am								
Register B (MRB)		Bit B	it Nan		itial alue	R/W Descriptio	n				
		5 D	ISEL	Ur	ndefined	 DTC Interr 	upt Select				
						to the CPU ends. Whe	bit is set to 1, I every time a n this bit is se ated when the nd.	data tra t to 0, a	nsfer o CPU ir	r a block nterrupt	transfer request is
							bit should be cted as the ac				IC2 is

Item	Page	Revisio	on (See Manual for De	tails)					
15.5 Interrupt Sources	801	Table amended							
and DMAC/DTC		Interrupt Source	Description	Interrupt Enable Bit	DMAC/DTC Activation	Priority			
Table 15.14 SCI Interrupt Sources		ERI	Interrupt caused by receive error (ORER, FER, or PER)	RIE = 1	Not possible	High ♠			
		RXI	Interrupt caused by receive data full (RDRF)	RIE = 1 and $EIO = 0$	Possible	-			
		TXI	Interrupt caused by transmit data empty (TDRE)	TIE = 1	Possible				
		TEI	Interrupt caused by transmit end (TEND)	TEIE = 1	Not possible	Low			
15.6 Serial Port Register (SCSPTR) and SCI Pins Figure 15.19 SPB1IO Bit, SPB1DT bit, and SCK Pin		SCK	and title amended	Reset Reset SPB10 C SPTRW Reset Reset C SPTRW SPTRW	Serial close	ut enable signal* k output signal* k input signal* t enable signal*			
Figure 15.20 SPB0IO Bit, <u>SPB0DT</u> bit, and TXD Pin	802	TXD	and title amended	Reset R D SPB0IO C SPTRW Reset R D SPB0DT C SPTRW	t 0 Transr	al data bus nit enable signal transmit data			

Item	Page	Revision (See Manual for Details)
18.4.5 Slave Receive	950	Description amended
Operation		The reception procedure and operations in slave receive mode are described below. For operation up to reception of the 1st frame (slave address + R/\overline{W}), see 18.4.4, Slave Transmit Operation.
		 Perform a dummy read of ICDRR. (The read data indicates slave address + R/W, and is therefore unnecessary.) The slave device outputs to SDA the level indicated by the setting of ACKBT in ICIER at the 9th clock pulse of the receive clock.
		 After reception of one frame of data finishes, RDRF in ICSR is set to 1 at the rising edge of the 9th receive clock pulse. At this time, the received data can be read by reading ICDRR, and RDRF is cleared to 0 simultaneously. Continuous receive operation can be accomplished by reading ICDRR each time RDRF is set to 1. If 8th receive clock pulse falls while RDRF is 1, SCL is fixed low until ICDRR is read. If the next receive operation is the final frame, set ACKBT in ICIER to 1 before reading ICDRR. When RDRF in ICSR is set to 1, read the final receive data from ICDRR.
Figure 18.12 Slave		Figure amended
Receive Mode Operation Timing (1)		RDRF ICDRS ICDRA <
Figure 18.13 Slave	951	Figure amended
Receive Mode Operation	501	
Timing (2)		(Slave output)
		RDRF
		ICDRR
		User [3] Set ACKBT [3] Read ICDRR [4] Read ICDRR

RENESAS