

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status Core Processor	Active SH-2
Core Processor	SH.2
	511 ⁻ 2
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	EBI/EMI, FIFO, I ² C, SCI, SSU
Peripherals	DMA, POR, PWM, WDT
Number of I/O	65
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LFBGA
Supplier Device Package	112-LFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df70834ad80bgv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	8.2.10	Bus Function Extending Register (BSCEHR)	183
8.3	Activati	ion Sources	
8.4	Location	n of Transfer Information and DTC Vector Table	184
8.5	Operatio	on	189
	8.5.1	Transfer Information Read Skip Function	194
	8.5.2	Transfer Information Writeback Skip Function	195
	8.5.3	Normal Transfer Mode	195
	8.5.4	Repeat Transfer Mode	196
	8.5.5	Block Transfer Mode	198
	8.5.6	Chain Transfer	199
	8.5.7	Operation Timing	201
	8.5.8	Number of DTC Execution Cycles	204
	8.5.9	DTC Bus Release Timing	206
	8.5.10	DTC Activation Priority Order	209
8.6	DTC Ac	ctivation by Interrupt	
8.7	Example	les of Use of the DTC	211
	8.7.1	Normal Transfer Mode	
	8.7.2	Chain Transfer when Counter = 0	211
8.8	Interrup	ot Sources	213
8.9	Usage N	Notes	213
	8.9.1	Module Standby Mode Setting	213
	8.9.2	On-Chip RAM	213
	8.9.3	DTCE Bit Setting	213
	8.9.4	Chain Transfer	213
	8.9.5	Transfer Information Start Address, Source Address,	
		and Destination Address	
	8.9.6	Access to DMAC or DTC Registers through DTC	214
	8.9.7	Notes on IRQ Interrupt as DTC Activation Source	
	8.9.8	Notes on SCI and SCIF as DTC Activation Sources	214
	8.9.9	Clearing Interrupt Source Flag	214
	8.9.10	Conflict between NMI Interrupt and DTC Activation	215
	8.9.11	Operation when a DTC Activation Request Is Cancelled While in Progress	s 215
Sect	ion 9 B	Bus State Controller (BSC)	217
9.1		s	
9.2	Input/O	Output Pins	220
9.3	Area Ov	verview	222
	9.3.1	Area Division	222
	9.3.2	Address Map	
9.4	Register	r Descriptions	241

1.4 Pin Functions

Table 1.2 summarizes the pin functions.

Table 1.2Pin Functions

Classification	Symbol	I/O	Name	Function		
Power supply	Vcc	Ι	Power supply	Power supply pins. Connect all Vcc pins to the system. There will be no operation if any pins are open.		
	Vss	I	Ground	Ground pin. Connect all Vss pins to the system power supply (0V). There will be no operation if any pins are open.		
	Vcl O		Power supply for internal power- down	External capacitance pins for internal power-down power supply. Connect these pins to Vss via a 0.47 μ F capacitor (placed close to the pins).		
Clock	PLLVss	I	PLL ground	Ground pin for the on-chip PLL oscillator		
	EXTAL	I	External clock	Connected to a crystal resonator. An external clock signal may also be input to the EXTAL pin.		
	XTAL	0	Crystal	Connected to a crystal resonator.		
	СК	0	System clock	Supplies the system clock to external devices.		
Operating mode control	MD1, MD0	Ι	Mode set	Sets the operating mode. Do not change values on these pins during operation.		
	FWE	I	Flash memory write enable	Pin for flash memory. Flash memory can be protected against programming or erasure through this pin.		

PLL Multipli-	FRQCR Division Ratio Setting				Clock Ratio				Clock Frequency (MHz)*							
cation Ratio	lφ	Βφ	Ρφ	ΜIφ	ΜРφ	Ιφ	Вф	Ρφ	ΜIφ	ΜРφ	Input Clock	Ιφ	Βφ	Ρφ	ΜIφ	ΜРφ
×8	1/1	1/2	1/4	1/2	1/2	8	4	2	4	4	10	80	40	20	40	40
	1/1	1/2	1/4	1/1	1/4	8	4	2	8	2	-	80	40	20	80	20
	1/1	1/2	1/4	1/1	1/2	8	4	2	8	4	-	80	40	20	80	40
	1/1	1/2	1/2	1/2	1/2	8	4	4	4	4	-	80	40	40	40	40
	1/1	1/2	1/2	1/1	1/2	8	4	4	8	4	-	80	40	40	80	40
	1/1	1/1	1/4	1/4	1/4	8	8	2	2	2	5	40	40	10	10	10
	1/1	1/1	1/4	1/2	1/4	8	8	2	4	2	-	40	40	10	20	10
	1/1	1/1	1/4	1/2	1/2	8	8	2	4	4	-	40	40	10	20	20
	1/1	1/1	1/4	1/1	1/4	8	8	2	8	2	-	40	40	10	40	10
	1/1	1/1	1/4	1/1	1/2	8	8	2	8	4	-	40	40	10	40	20
	1/1	1/1	1/4	1/1	1/1	8	8	2	8	8	-	40	40	10	40	40
	1/1	1/1	1/3	1/3	1/3	8	8	8/3	8/3	8/3	-	40	40	13	13	13
	1/1	1/1	1/3	1/1	1/3	8	8	8/3	8	8/3	-	40	40	13	40	13
	1/1	1/1	1/3	1/1	1/1	8	8	8/3	8	8	-	40	40	13	40	40
	1/1	1/1	1/2	1/2	1/2	8	8	4	4	4	-	40	40	20	20	20
	1/1	1/1	1/2	1/1	1/2	8	8	4	8	4	-	40	40	20	40	20
	1/1	1/1	1/2	1/1	1/1	8	8	4	8	8	-	40	40	20	40	40
	1/1	1/1	1/1	1/1	1/1	8	8	8	8	8	-	40	40	40	40	40

5.5.3 Illegal Slot Instructions

An instruction placed immediately after a delayed branch instruction is called "instruction placed in a delay slot". When the instruction placed in the delay slot is an undefined code, illegal slot exception handling starts after the undefined code is decoded. Illegal slot exception handling also starts when an instruction that changes the program counter (PC) value is placed in a delay slot and the instruction is decoded. The CPU handles an illegal slot instruction as follows:

- 1. The status register (SR) is saved to the stack.
- 2. The program counter (PC) is saved to the stack. The PC value saved is the target address of the delayed branch instruction immediately before the undefined code or the instruction that rewrites the PC.
- 3. The start address of the exception handling routine is fetched from the exception handling vector table that corresponds to the exception that occurred. Program execution branches to that address and the program starts. This branch is not a delayed branch.

5.5.4 General Illegal Instructions

When an undefined code placed anywhere other than immediately after a delayed branch instruction (i.e., in a delay slot) is decoded, general illegal instruction exception handling starts. The CPU handles the general illegal instructions in the same procedures as in the illegal slot instructions. Unlike processing of illegal slot instructions, however, the program counter value that is stacked is the start address of the undefined code.

Bit	Bit Name	Initial Value	R/W	Description
4	IRQ4F	0	R/W	 Indicates the status of an IRQ4 interrupt request. When level detection mode is selected O: An IRQ4 interrupt has not been detected [Clearing condition] Driving pin IRQ4 high
				 An IRQ4 interrupt has been detected <pre>[Setting condition] Driving pin IRQ4 low</pre> When edge detection mode is selected <pre>O: An IRQ4 interrupt has not been detected [Clearing conditions]</pre>
				1: An IRQ4 interrupt request has been detected [Setting condition] Detecting the specified edge of pin IRQ4
3	IRQ3F	0	R/W	 Indicates the status of an IRQ3 interrupt request. When level detection mode is selected Chan IRQ3 interrupt has not been detected [Clearing condition] Driving pin IRQ3 high An IRQ3 interrupt has been detected [Setting condition] Driving pin IRQ3 low When edge detection mode is selected Chan IRQ3 interrupt has not been detected [Clearing conditions] - Writing 0 after reading IRQ3F = 1 - Accepting an IRQ3 interrupt An IRQ3 interrupt request has been detected [Setting condition] Detecting the specified edge of pin IRQ3

6.6.2 Stack after Interrupt Exception Handling

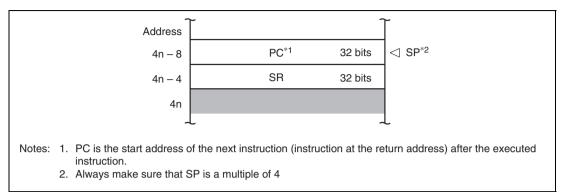


Figure 6.4 shows the stack after interrupt exception handling.

Figure 6.4 Stack after Interrupt Exception Handling

6.7 Interrupt Response Time

Table 6.4 lists the interrupt response time, which is the time from the occurrence of an interrupt request until the interrupt exception handling starts and fetching of the first instruction of the interrupt handling routine begins.

Bit	Bit Name	Initial Value	R/W	Description
2, 1	_	All 0	R	Reserved
				These are read-only bits and cannot be modified.
0	ERR	0	R/(W)*	Transfer Stop Flag
				Indicates that the DTC address error or NMI interrupt request has occurred. If a DTC address error or NMI interrupt occurs while the DTC is active, address error handling or NMI interrupt handling processing is executed after the DTC has released the bus mastership. The DTC stops in the transfer information writing state after transferring data.
				0: No interrupt occurs
				1: An interrupt occurs
				[Clearing condition]
				When writing 0 after reading 1
Note:	* Writing 0	to this bit a	after read	ing it as 1 clears the flag and is the only allowed way.

When the WM bit in CSnWCR is cleared to 0, the external wait input $\overline{\text{WAIT}}$ signal is also sampled. $\overline{\text{WAIT}}$ pin sampling is shown in figure 9.9. A 2-cycle wait is specified as a software wait. The $\overline{\text{WAIT}}$ signal is sampled at the falling edge of CK at the transition from the T1 or Tw cycle to the T2 cycle.

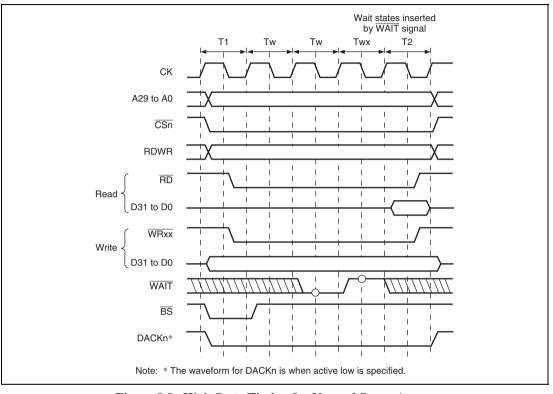


Figure 9.9 Wait State Timing for Normal Space Access (Wait State Insertion Using WAIT Signal)

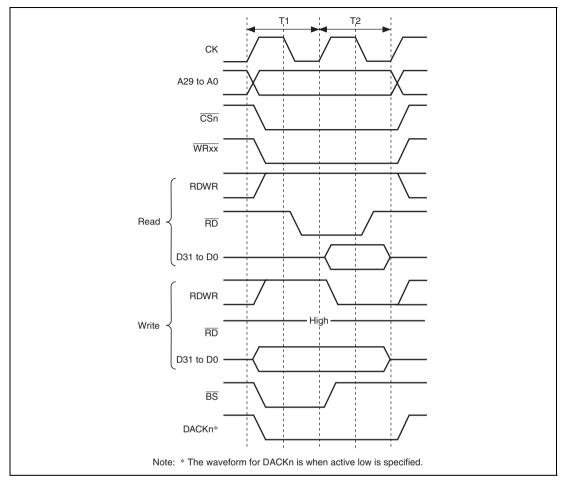
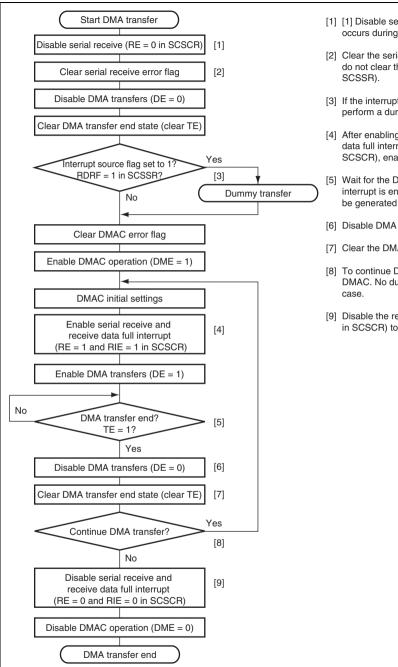
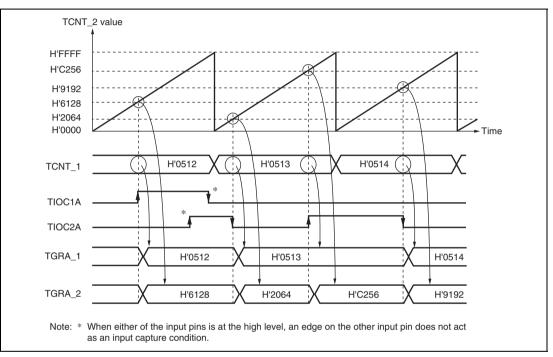



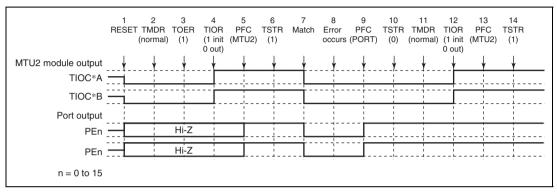
Figure 9.34 Basic Access Timing for SRAM with Byte Selection (BAS = 1)

- [1] [1] Disable serial receive so no interrupt (RXI) occurs during the transfer sequence.
- [2] Clear the serial receive error flag. At this point, do not clear the interrupt source flag (RDRF in SCSSR).
- [3] If the interrupt source flag has been set to 1, perform a dummy transfer to clear it.
- [4] After enabling serial receive and the receive data full interrupt (RE = 1 and RIE = 1 in SCSCR), enable DMA transfers (DE = 1).
- [5] Wait for the DMA transfer to end. If the DEI interrupt is enabled (IE = 1), a DEI interrupt will be generated when the DMA transfer ends.
- [6] Disable DMA transfers (DE = 0).
- [7] Clear the DMA transfer end state (clear TE).
- [8] To continue DMA transfer operation, reset the DMAC. No dummy transfer is needed in this case.
- [9] Disable the receive data full interrupt (RIE = 0 in SCSCR) to disable interrupt requests.

Figure 10.22 Example DMA Transfer Sequence in Peripheral Module Request Mode (RXI)

Cascaded Operation Example (c): Figure 11.23 illustrates the operation when TCNT_1 and TCNT_2 have been cascaded and the I2AE and I1AE bits in TICCR have been set to 1 to include the TIOC2A and TIOC1A pins in the TGRA_1 and TGRA_2 input capture conditions, respectively. In this example, the IOA[3:0] bits in both TIOR_1 and TIOR_2 have selected both the rising and falling edges for the input capture timing. Under these conditions, the ORed result of TIOC1A and TIOC2A input is used for the TGRA_1 and TGRA_2 input capture conditions.




Figure 11.23 Cascaded Operation Example (c)

Cascaded Operation Example (d): Figure 11.24 illustrates the operation when TCNT_1 and TCNT_2 have been cascaded and the I2AE bit in TICCR has been set to 1 to include the TIOC2A pin in the TGRA_1 input capture conditions. In this example, the IOA[3:0] bits in TIOR_1 have selected TGRA_0 compare match or input capture occurrence for the input capture timing while the IOA[3:0] bits in TIOR_2 have selected the TIOC2A rising edge for the input capture timing.

Under these conditions, as TIOR_1 has selected TGRA_0 compare match or input capture occurrence for the input capture timing, the TIOC2A edge is not used for TGRA_1 input capture condition although the I2AE bit in TICCR has been set to 1.

Pin initialization procedures are described below for the numbered combinations in table 11.59. The active level is assumed to be low.

Operation when Error Occurs during Normal Mode Operation, and Operation is Restarted in Normal Mode: Figure 11.141 shows an explanatory diagram of the case where an error occurs in normal mode and operation is restarted in normal mode after re-setting.

Figure 11.141 Error Occurrence in Normal Mode, Recovery in Normal Mode

- 1. After a reset, MTU2 output is low and ports are in the high-impedance state.
- 2. After a reset, the TMDR setting is for normal mode.
- 3. For channels 3 and 4, enable output with TOER before initializing the pins with TIOR.
- 4. Initialize the pins with TIOR. (The example shows initial high output, with low output on compare-match occurrence.)
- 5. Set MTU2 output with the PFC.
- 6. The count operation is started by TSTR.
- 7. Output goes low on compare-match occurrence.
- 8. An error occurs.
- 9. Set port output with the PFC and output the inverse of the active level.
- 10. The count operation is stopped by TSTR.
- 11. Not necessary when restarting in normal mode.
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Table 16.3 SCSMR Settings

		SCSMR Settings						
n	Clock Source	CKS1	CKS0					
0	Ρφ	0	0					
1	Ρφ/4	0	1					
2	Ρφ/16	1	0					
3	Ρφ/64	1	1					

Note: The bit rate error in asynchronous is given by the following formula:

$$\text{Error (\%)} = \left\{ \frac{P\phi \times 10^{6}}{(N+1) \times B \times 64 \times 2^{2n-1}} - 1 \right\} \times 100$$

18.4.7 Noise Filter

The logic levels at the SCL and SDA pins are routed through noise filters before being latched internally. Figure 18.18 shows a block diagram of the noise filter circuit.

The noise filter consists of three cascaded latches and a match detector. The SCL (or SDA) input signal is sampled on the peripheral clock. When NF2CYC is set to 0, this signal is not passed forward to the next circuit unless the outputs of both latches agree. When NF2CYC is set to 1, this signal is not passed forward to the next circuit unless the outputs of three latches agree. If they do not agree, the previous value is held.

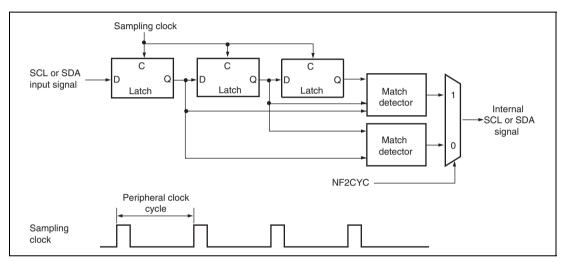


Figure 18.18 Block Diagram of Noise Filter

20.2 Register Descriptions

The CMT has the following registers. For the states of these registers in each processing status, refer to section 27, List of Registers.

Table 20.1 Register Configuration

Channel	Register Name	Abbreviation	R/W	Initial Value	Address	Access Size
Common	Compare match timer start register	CMSTR	R/W	H'0000	H'FFFFCE00	8, 16, 32
0	Compare match timer control/ status register_0	CMCSR_0	R/W	H'0000	H'FFFFCE02	8, 16
	Compare match counter_0	CMCNT_0	R/W	H'0000	H'FFFFCE04	8, 16, 32
	Compare match constant register_0	CMCOR_0	R/W	H'FFFF	H'FFFFCE06	8, 16
1	Compare match timer control/ status register_1	CMCSR_1	R/W	H'0000	H'FFFFCE08	8, 16, 32
	Compare match counter_1	CMCNT_1	R/W	H'0000	H'FFFFCE0A	8, 16
	Compare match constant register_1	CMCOR_1	R/W	H'FFFF	H'FFFFCE0C	8, 16, 32

	Pin Name										
	On-Chip RO	M Enabled (MCU Mode 2)	Single-Chip Mode (MCU Mode 3)								
Pin No.	Initial Function	PFC Selected Function Possibilities	Initial Function	PFC Selected Function Possibilities							
21, 37, 65, 80, 103	Vcc	Vcc	Vcc	Vcc							
3, 27, 39, 55, 61, 71, 90, 101	Vss	Vss	Vss	Vss							
23, 81, 109	VcL	Vcl	VcL	VcL							
100	AVcc	AVcc	AVcc	AVcc							
97	AVss	AVss	AVss	AVss							
82	PLLVss	PLLVss	PLLVss	PLLVss							
74	EXTAL	EXTAL	EXTAL	EXTAL							
72	XTAL	XTAL	XTAL	XTAL							
75	MD0	MD0	MD0	MD0							
73	MD1	MD1	MD1	MD1							
77	FWE	FWE	FWE	FWE							
84	RES	RES	RES	RES							
35	WDTOVF	WDTOVF	WDTOVF	WDTOVF							
76	NMI	NMI	NMI	NMI							
33	ASEMD0	ASEMD0	ASEMD0	ASEMDO							
51	PA0	PA0/CS4/RXD0	PA0	PA0/RXD0							
50	PA1	PA1/CS5/TXD0	PA1	PA1/TXD0							
49	PA2	PA2/A25/DREQ0/IRQ0/SCK0	PA2	PA2/DREQ0/IRQ0/SCK0							
48	PA3	PA3/A24/RXD1	PA3	PA3/RXD1							
47	PA4	PA4/A23/TXD1	PA4	PA4/TXD1							
46	PA5	PA5/A22/DREQ1/IRQ1/SCK1	PA5	PA5/IRQ1/SCK1							
45	PA6	PA6/CS2/TCLKA	PA6	PA6/TCLKA							
14	PA7	PA7/CS3/TCLKB	PA7	PA7/TCLKB							
43	PA8	PA8/RDWR/IRQ2/TCLKC	PA8	PA8/IRQ2/TCLKC							
42	PA9	PA9/CKE/IRQ3/TCLKD	PA9	PA9/IRQ3/TCLKD							
41	PA10	PA10/CS0/POE4	PA10	PA10/POE4							

Table 21.18 SH7084 Pin Functions in Each Operating Mode (2)

Bit	Bit Name	Initial Value	R/W	Description
6	PE5MD2	0	R/W	PE5 Mode
5	PE5MD1	0	R/W	Select the function of the
4	PE5MD0	0	R/W	PE5/CS6/CE1B/TIOC1B/TXD3/AUDATA1 pin. Fixed to AUDATA1 output when using the AUD function of the E10A.
				000: PE5 I/O (port)
				001: TIOC1B I/O (MTU2)
				010: TXD3 output (SCIF)
				101: CS6/CE1B output (BSC)*
				Other than above: Setting prohibited
3	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
2	PE4MD2	0	R/W	PE4 Mode
1	PE4MD1	0	R/W	Select the function of the
0	PE4MD0	0	R/W	PE4/IOIS16/TIOC1A/RXD3/AUDATA2 pin. Fixed to AUDATA2 output when using the AUD function of the E10A.
				000: PE4 I/O (port)
				001: TIOC1A I/O (MTU2)
				010: RXD3 input (SCIF)
				101: IOIS16 input (BSC)*
				Other than above: Setting prohibited
Note: *	This functio	n is enable	ed only in	the on-chip ROM enabled/disabled external-extension

Note: * This function is enabled only in the on-chip ROM enabled/disabled external-extension mode. Do not set 1 in single-chip mode.

		32-bit Space									
Pin Name		Most Significant Byte	Second Byte	Third Byte	Least Significant Byte	Upper Word	Lower Word	Longword			
WE	R	Н	Н	Н	Н	Н	Н	Н			
	W	_	_	_	_	_	_	_			
ICIOWR	R	Н	Н	Н	Н	Н	Н	Н			
	W	_	_	_	_	_	_	_			
A29 to A0		Address	Address	Address	Address	Address	Address	Address			
D31 to D24		Data	Hi-Z	Hi-Z	Hi-Z	Data	Hi-Z	Data			
D23 to D16	i	Hi-Z	Data	Hi-Z	Hi-Z	Data	Hi-Z	Data			
D15 to D8		Hi-Z	Hi-Z	Data	Hi-Z	Hi-Z	Data	Data			
D7 to D0		Hi-Z	Hi-Z	Hi-Z	Data	Hi-Z	Data	Data			
[Legend]											
R:	Read										
W:	Write										

Enabled: Chip select signals corresponding to accessed areas = Low. The other chip select signals = High.

Table C.1Pin States of Bus Related Signals (10)

	External Space (SDRAM)					
	16-bit Space					
Pin Name	Upper Byte	Lower Byte	Word/Longword			
$\overline{\text{CS0}}$ to $\overline{\text{CS8}}$	Enabled*1	Enabled*1	Enabled*1			
CE1A, CE1B, CE2A, CE2B	Н	Н	Н			
BS	L	L	L			
RASU, RASL	Enabled* ²	Enabled* ²	Enabled* ²			
CASU, CASL	Enabled* ²	Enabled* ²	Enabled* ²			
DQMUU	Н	Н	Н			
DQMUL	Н	Н	Н			
DQMLU	L	Н	L			
DQMLL	Н	L	L			

Item	Page	Revision (See Manual for Details)					
11.3.10 Timer A/D	<u>ві</u> о Та	Table amended					
Converter Start Request Control Register		Bit	Bit Name	Initial Value	R/W	Description	
(TADCR)		0	ITB4VE	$0^{*^1*^2*^3}$	R/W	TCIV_4 Interrupt Skipping Link Enable Select whether to link A/D converter start requests (TRG4BN) with TCIV_4 interrupt skipping operation. 0: Does not link with TCIV_4 interrupt skipping operation	
						1: Links with TCIV_4 interrupt skipping operation	
		Tabl	Table note amended				
		Note	s 2. C d ti c (;	electec Clear th isablec mer int leared 3ACOF	I. is bit f (whe errup to 0 c { or 4	to 0 when interrupt skipping is en the T3AEN or T4VEN bit in the t skipping set register (TITCR) is or when the skipping count set bit VCOR) in TITCR is cleared to 0). errupt skipping is enabled while	
			ir	nterrupt	t skipp	bing is disabled, A/D converter start not be issued.	

Item	Page	Revision (See Manual for Details)			
15.4.3 Clock	790	Figure title and description amended			
Synchronous Mode		Description amended			
Figure 15.12 Sample Flowchart for Receiving Serial Data (Clock Synchronous Mode) (2)	_	2. Receive data is shifted into SCRSR in order from the LSB to the MSB (when LSB-first transfer is selected).			
Figure 15.13 Example of SCI Receive Operation (when LSB-First Transfer is Selected)	791	Figure title amended			
Figure 15.14 Sample	792	Figure and title amended			
Flowchart for		[4] Serial transmission/reception continuation procedure:			
Transmitting/Receiving Serial Data (Clock Synchronous Mode)		To continue serial transmission/reception, before the last bit of the current frame is received, finish reading the RDRF flag, reading SCRDR, and clearing the RDRF flag to 0. Also, before the last bit of the current frame is transmitted, read 1 from the TDRE flag to confirm that writing is possible. Then write data to SCTDR and clear the TDRE flag to 0.			
15.4.5 Multiprocessor	795	Description amended			
Serial Data Transmission		Figure 15.16 shows a sample flowchart for multiprocessor serial data transmission. For an ID transmission cycle, set the MPBT bit in SCSSR to 1 before transmission, and maintain the MPBT value at 1 until the ID transmission actually completes. For a data transmission cycle,			
Figure 15.16 Sample Multiprocessor Serial Transmission Flowchart	796	Figure replaced			
15.4.6 Multiprocessor Serial Data Reception	797	Figure title amended			
Figure 15.17 Example of SCI Operation in Reception (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit, LSB- first)					
Figure 15.18 Sample Multiprocessor Serial Reception Flowchart (1)	798	Figure replaced			