

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	SH-2
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	EBI/EMI, FIFO, I ² C, SCI, SSU
Peripherals	DMA, POR, PWM, WDT
Number of I/O	65
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df70835an80ftv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

23.3	Input/Out	tput Pins	
23.4	Register 1	Descriptions	
	23.4.1	Registers	
	23.4.2	Programming/Erasing Interface Registers	
	23.4.3	Programming/Erasing Interface Parameters	
	23.4.4	RAM Emulation Register (RAMER)	
23.5	On-Board	1 Programming Mode	
	23.5.1	Boot Mode	
	23.5.2	User Program Mode	
	23.5.3	User Boot Mode	
23.6	Protection	n	1298
	23.6.1	Hardware Protection	
	23.6.2	Software Protection	
	23.6.3	Error Protection	1299
23.7	Flash Me	mory Emulation in RAM	
23.8	Usage No	otes	
	23.8.1	Switching between User MAT and User Boot MAT	
	23.8.2	Interrupts during Programming/Erasing	
	23.8.3	Other Notes	
23.9	Suppleme	entary Information	
	23.9.1	Specifications of the Standard Serial Communications Interface in	
		Boot Mode	
	23.9.2	Areas for Storage of the Procedural Program and Data for Programm	ing 1339
23.10	Program	ner Mode	
Sectio	n 24 M	Iask ROM	13/7
24.1		btes	
24.1	24.1.1	Module Standby Mode Setting	
	24.1.1	Wodule Standoy Mode Setting	
Sectio	on 25 R	AM	
25.1		otes	
	25.1.1	Module Standby Mode Setting	
	25.1.2	Address Error	
	25.1.3	Initial Values in RAM	
	20.110		
Sectio	on 26 P	ower-Down Modes	1351
26.1	Features.		
	26.1.1	Types of Power-Down Modes	
26.2	Input/Out	tput Pins	
26.3	Register 1	Descriptions	

Classification	Symbol	I/O	Name	Function				
A/D converter	AN15 to AN0	Ι	Analog input pins	Analog input pins.				
(ADC)				AN7 to AN0 are available in the SH7083/SH7084/SH7085.				
	ADTRG	I	A/D conversion trigger input	External trigger input pin for starting A/D conversion.				
	AVref	I	Analog reference power supply	Reference voltage pin for the A/D converter.				
	_			Available only in the SH7083/SH7085/SH7086. (In the SH7084, this pin is connected to AVcc inside this LSI.)				
	AVcc	I	Analog power supply	Power supply pin for the A/D converter.				
				Connect all AVcc pins to the system power supply (Vcc) when the A/D converter is not used. The A/D converter does not work if any pin is open.				
	AVss	I	Analog ground	Ground pin for the A/D converter. Connect it to the system ground (0 V).				
				Connect all AVss pins to the system ground (0 V) correctly. The A/D converter does not work if any pin is open.				
I/O ports	PA29 to PA0	I/O	General port	30-bit general input/output port pins. PA15 to PA12, PA10 to PA7, and PA5 to PA3 are available in the SH7083. PA17 to PA0 are available in the SH7084. PA25 to PA0 are available in the SH7085.				
	PB9 to PB0	I/O	General port	10-bit general input/output port pins. PB9 to PB4 and PB2 to PB0 are available in the SH7083.				
	PC25 to PC18, PC15 to PC0	I/O	General port	24-bit general input/output port pins. PC15 to PC0 are available in the SH7083/SH7084/SH7085.				

2.5 Instruction Set

2.5.1 Instruction Set by Type

Table 2.10 lists the instructions classified by type.

Table 2.10Instruction Types

Туре	Kinds of Instruction	Op Code	Function	Number of Instructions						
Data transfer	5	MOV	Data transfer	39						
instructions			Immediate data transfer							
			Peripheral module data transfer							
			Structure data transfer							
		MOVA	Effective address transfer							
		MOVT	T bit transfer	-						
		SWAP	Upper/lower swap	-						
		XTRCT	Extraction of middle of linked registers	-						
Arithmetic	21	ADD	Binary addition	33						
operation instructions		ADDC	Binary addition with carry	-						
		ADDV	Binary addition with overflow	-						
		CMP/cond	Comparison	-						
		DIV1	Division	-						
		DIV0S	Signed division initialization	-						
		DIV0U	Unsigned division initialization	-						
		DMULS	Signed double-precision multiplication	-						
		DMULU	Unsigned double-precision multiplication	-						
		DT	Decrement and test	-						
		EXTS	Sign extension	-						
		EXTU	Zero extension	-						
		MAC	Multiply-and-accumulate, double- precision multiply-and-accumulate	-						
		MUL	Double-precision multiplication	-						

2.5.6 Branch Instructions

Table 2.15Branch Instructions

Instru	ction	Operation	Code	Execution Cycles	T Bit
BF	label	If T = 0, disp \times 2 + PC \rightarrow PC; if T = 1, nop	10001011ddddddd	3/1*	_
BF/S	label	Delayed branch, if T = 0, disp \times 2 + PC \rightarrow PC; if T = 1, nop	10001111dddddddd	2/1*	_
BT	label	If T = 1, disp \times 2 + PC \rightarrow PC; if T = 0, nop	10001001ddddddd	3/1*	_
BT/S	label	Delayed branch, if T = 1, disp \times 2 + PC \rightarrow PC; if T = 0, nop	10001101ddddddd	2/1*	_
BRA	label	Delayed branch, disp \times 2 + PC \rightarrow PC	1010ddddddddddd	2	_
BRAF	Rm	Delayed branch, Rm + PC \rightarrow PC	0000mmmm00100011	2	_
BSR	label	Delayed branch, PC \rightarrow PR, disp \times 2 + PC \rightarrow PC	1011ddddddddddd	2	_
BSRF	Rm	Delayed branch, PC \rightarrow PR, Rm + PC \rightarrow PC	0000mmmm00000011	2	_
JMP	@Rm	Delayed branch, $\text{Rm} \rightarrow \text{PC}$	0100mmmm00101011	2	
JSR	@Rm	Delayed branch, PC \rightarrow PR, Rm \rightarrow PC	0100mmmm00001011	2	_
RTS		Delayed branch, $PR \rightarrow PC$	000000000001011	2	_
Note:	* One cycle whe	en the branch is not execute	ed.		

Note: * One cycle when the branch is not executed.

3. When data access (address only) is specified as a break condition:

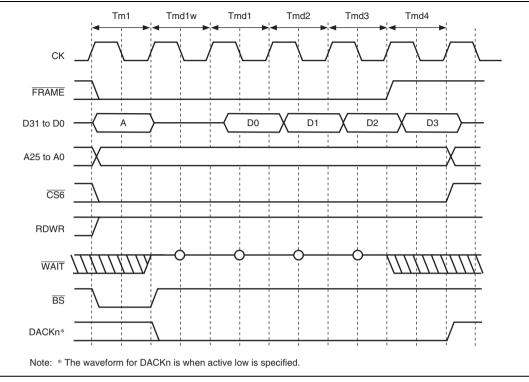
The address of the instruction immediately after the instruction that matched the break condition is saved in the stack. The instruction that matches the condition is executed, and the user break occurs before the next instruction is executed. However when a delay slot instruction matches the condition, the branch destination address is saved in the stack.

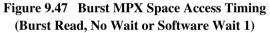
4. When data access (address + data) is specified as a break condition:

When a data value is added to the break conditions, the address of an instruction that is within two instructions of the instruction that matched the break condition is saved in the stack. At which instruction the user break occurs cannot be determined accurately.

When a delay slot instruction matches the condition, the branch destination address is saved in the stack. If the instruction following the instruction that matches the break condition is a branch instruction, the user break may occur after the branch instruction or delay slot has finished. In this case, the branch destination address is saved in the stack.

7.4.6 PC Trace


- 1. Setting PCTE in BRCR to 1 enables PC traces. When branch (branch instruction, and interrupt exception) is generated, the branch source address and branch destination address are stored in BRSR and BRDR, respectively.
- 2. The values stored in BRSR and BRDR are as given below due to the kind of branch.
 - If a branch occurs due to a branch instruction, the address of the branch instruction is saved in BRSR and the address of the branch destination instruction is saved in BRDR.
 - If a branch occurs due to an interrupt or exception, the value saved in stack due to exception occurrence is saved in BRSR and the start address of the exception handling routine is saved in BRDR.
- 3. BRSR and BRDR have four pairs of queue structures (eight pairs for the F-ZTAT version supporting full functions of E10A). The top of queues is read first when the address stored in the PC trace register is read. BRSR and BRDR share the read pointer. Read BRSR and BRDR in order, the queue only shifts after BRDR is read. After switching the PCTE bit (in BRCR) off and on, the values in the queues are invalid.
- 4. Since four pairs (eight pairs for the F-ZTAT version supporting full functions of E10A) of queue are shared with the AUD, set the PCTE bit in BRCR to 1 after setting the MSTP25 bit in STBCR5 to 0 and the AUDSRST bit in STBCR6 to 1. Although the AUD is only available in the F-ZTAT version supporting full functions of the E10A, this setting should also be made in the normal F-ZTAT version.


There is no access size specification when reading. The correct access start address is output in the least significant bit of the address, but since there is no access size specification, 32 bits are always read in a 32-bit device or 16 bits are always read in a 16-bit device. When writing, only the \overline{WRxx} signal for the byte to be written is asserted.

It is necessary to control of outputing the data that has been read using \overline{RD} when a buffer is established in the data bus. The RDWR signal is in a read state (high output) when no access has been carried out. Therefore, care must be taken when controlling the external data buffer using RDWR, to avoid collision.

Figures 9.3 and 9.4 show the basic timings of continuous accesses to normal space. If the WM bit in CSnWCR is cleared to 0, a Tnop cycle is inserted to evaluate the external wait (figure 9.3). If the WM bit in CSnWCR is set to 1, external waits are ignored and no Tnop cycle is inserted (figure 9.4).

(i) Initial Output in Complementary PWM Mode

In complementary PWM mode, the initial output is determined by the setting of bits OLSN and OLSP in timer output control register 1 (TOCR1) or bits OLS1N to OLS3N and OLS1P to OLS3P in timer output control register 2 (TOCR2).

This initial output is the PWM pulse non-active level, and is output from when complementary PWM mode is set with the timer mode register (TMDR) until TCNT_4 exceeds the value set in the dead time register (TDDR). Figure 11.44 shows an example of the initial output in complementary PWM mode.

An example of the waveform when the initial PWM duty value is smaller than the TDDR value is shown in figure 11.45.

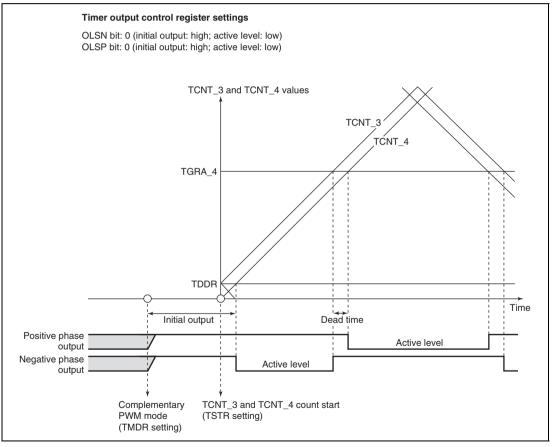


Figure 11.44 Example of Initial Output in Complementary PWM Mode (1)

Operation when Error Occurs during PWM Mode 2 Operation, and Operation is Restarted in PWM Mode 2: Figure 11.155 shows an explanatory diagram of the case where an error occurs in PWM mode 2 and operation is restarted in PWM mode 2 after re-setting.

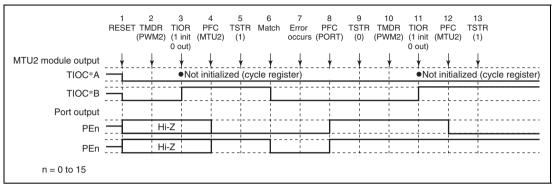


Figure 11.155 Error Occurrence in PWM Mode 2, Recovery in PWM Mode 2

1 to 9 are the same as in figure 11.153.

- 10. Not necessary when restarting in PWM mode 2.
- 11. Initialize the pins with TIOR. (In PWM mode 2, the cycle register pins are not initialized.)
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

Section 12 Multi-Function Timer Pulse Unit 2S (MTU2S)

This LSI has an on-chip multi-function timer pulse unit 2S (MTU2S) that comprises three 16-bit timer channels. The MTU2S includes channels 3 to 5 of the MTU2. For details, refer to section 11, Multi-Function Timer Pulse Unit 2 (MTU2). To distinguish from the MTU2, "S" is added to the end of the MTU2S input/output pin and register names. For example, TIOC3A is called TIOC3AS and TGRA_3 is called TGRA_3S in this section.

The MTU2S can operate at 80 MHz max. for complementary PWM output functions or at 40 MHz max. for the other functions.

15.3.8 Serial Port Register (SCSPTR)

SCSPTR is an 8-bit register that controls input/output and data for the ports multiplexed with the SCI function pins. It controls break signals during serial transmission and reception when writing of output data to the TXD pin is enabled by the settings of bits SPB0IO and SPB0DT. Also, bits SPB1IO and SPB1DT can be used to write output data to the SCK pin. The EIO bit enables or disables RXI interrupts. The CPU can always read and write to SCSPTR. When reading the value on the SCI pins, use the respective port register. For details, refer to section 22, I/O Ports.

Bit:	7	6	5	4	3	2	1	0
	EIO	-	-	-	SPB1IO	SPB1DT	SPB0IO	SPB0DT
Initial value:	0	0	0	0	0	-	0	1
R/W:	R/W	-	-	-	R/W	W	R/W	W

Bit	Bit Name	Initial value	R/W	Description
7	EIO	0	R/W	Error Interrupt Only
				Enables or disables RXI interrupts. While the EIO bit is set to 1, the SCI does not request an RXI interrupt to the CPU even if the RIE bit is set to 1.
				While the RIE bit is 1, RXI and ERI interrupts are sent to the INTC.
				1: While the RIE bit is 1, only the ERI interrupt is sent to the INTC.
6 to 4	_	All 0	_	Reserved
				These bits are always read as 0. The write value should always be 0.
3	SPB1IO	0	R/W	Clock Port Input/Output in Serial Port
				Controls the SCK pin in combination with the SPB1DT bit, the C/ \overline{A} bit in SCSMR, and the CKE[1:0] bits in SCSCR.

Table 19.4 A/D Conversion Time (Single Mode)

			STC = 0													
			CKSL1 = 0							CKSL1 = 1						
		С	CKSL0 = 0			CKSL0 = 1			CKSL0 = 0			CKSL0 = 1				
Item	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.			
A/D conversion start delay time	t _D	2	_	6	2	_	5	2	_	4	2	_	3			
Input sampling time	t _{spl}		24		_	18		_	12			6	_			
A/D conversion time	t _{conv}	202	—	206	152	_	155	102	—	104	52	—	53			

			STC = 1												
			CKSL1 = 0							CKSL1 = 1					
		С	CKSL0 = 0 CKSL0 =					CKSL0 = 0				CKSL0 = 1			
Item	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.		
A/D conversion start delay time	t _D	2	_	6	2	_	5	2	_	4	2	_	3		
Input sampling time	t _{spl}	—	36		—	27		—	18		—	9	—		
A/D conversion time	t _{conv}	258	—	262	194	—	197	130	—	132	66	—	67		

Note: All values represent the number of states for $P\phi$.

Table 19.5 A/D Conversion Time (Scan Mode)

	0 1		Conversion Time	Conversion Time Calculation Example						
STC	CKSL1	CKSL0	(State)	Pφ = 25 MHz	Pφ = 40 MHz					
0	0	0	200 (Fixed)	8 μs	5 μs					
		1	150 (Fixed)	6 μs	3.8 μs					
	1	0	100 (Fixed)	4 μs	2.5 μs					
		1	50 (Fixed)	2 μs	Setting prohibited					
1	0	0	256 (Fixed)	10.2 μs	6.4 μs					
		1	192 (Fixed)	7.7 μs	4.8 μs					
	1	0	128 (Fixed)	5.1 μs	3.2 μs					
		1	64 (Fixed)	2.6 μs	Setting prohibited					

	Pin Name												
	On-Chip ROM	I Enabled (MCU Mode 2)	Single-Chi	p Mode (MCU Mode 3)									
Pin No.	Initial Function	PFC Selected Function Possibilities	Initial Function	PFC Selected Function Possibilities									
16	PC12	PC12/A12	PC12	PC12									
17	PC13	PC13/A13	PC13	PC13									
18	PC14	PC14/A14	PC14	PC14									
19	PC15	PC15/A15	PC15	PC15									
70	PD0	PD0/D0	PD0	PD0									
69	PD1	PD1/D1	PD1	PD1									
68	PD2	PD2/D2/TIC5U	PD2	PD2/TIC5U									
67	PD3	PD3/D3/TIC5V	PD3	PD3/TIC5V									
66	PD4	PD4/D4/TIC5W	PD4	PD4/TIC5W									
64	PD5	PD5/D5/TIC5US	PD5	PD5/TIC5US									
63	PD6	PD6/D6/TIC5VS	PD6	PD6/TIC5VS									
62	PD7	PD7/D7/TIC5WS	PD7	PD7/TIC5WS									
60	PD8/(AUDATA0* ²)	PD8/D8/TIOC3AS	D8/(AUDATA0*2)	PD8/TIOC3AS									
59	PD9/(AUDATA1* ²)	PD9/D9/TIOC3BS	D9/(AUDATA1* ²)	PD9/TIOC3BS									
58	PD10 /(AUDATA2* ²)	PD10/D10/TIOC3CS	D10/(AUDATA2*2)	PD10/TIOC3CS									
57	PD11 /(AUDATA3* ²)	PD11/D11/TIOC3DS	D11/(AUDATA3* ²)	PD11/TIOC3DS									
56	PD12	PD12/D12/TIOC4AS	D12	PD12/TIOC4AS									
54	PD13	PD13/D13/TIOC4BS	D13	PD13/TIOC4BS									
53	PD14/(AUDCK* ²)	PD14/D14/TIOC4CS	D14/(AUDCK*2)	PD14/TIOC4CS									
52	PD15 /(AUDSYNC*²)	PD15/D15/TIOC4DS	D15/(AUDSYNC*2)	PD15/TIOC4DS									
85	PE0/(TMS*1)	PE0/DREQ0/TIOC0A	PE0/(TMS*1)	PE0/DREQ0/TIOC0A									
86	PE1/(TRST*1)	PE1/TEND0/TIOC0B	PE1/(TRST*1)	PE1/TIOC0B									
87	PE2/(TDI*1)	PE2/DREQ1/TIOC0C	PE2/(TDI*1)	PE2/DREQ1/TIOC0C									
88	PE3/(TDO*1)	PE3/TEND1/TIOC0D	PE3/(TDO*1)	PE3/TIOC0D									
89	PE4/(TCK*1)	PE4/TIOC1A/RXD3	PE4/(TCK*1)	PE4/TIOC1A/RXD3									
102	PE5/(ASEBRKAK /ASEBRK*1)	PE5/CS6/TIOC1B/TXD3	PE5/(ASEBRKAK /ASEBRK*')	PE5/TIOC1B/TXD3									

21.1.3 Port B I/O Register L (PBIORL)

PBIORL is a 16-bit readable/writable register that is used to set the pins on port B as inputs or outputs. Bits PB9IOR to PB0IOR correspond to pins PB9 to PB0 (names of multiplexed pins are here given as port names and pin numbers alone). PBIORL is enabled when the port B pins are functioning as general-purpose inputs/outputs (PB9 to PB0). In other states, PBIORL is disabled.

A given pin on port B will be an output pin if the corresponding bit in PBIORL is set to 1, and an input pin if the bit is cleared to 0. However, bit 3 of PBIORL is disabled in SH7083.

Bits 15 to 10 of PBIORL are reserved. These bits are always read as 0. The write value should always be 0.

The initial value of PBIORL is H'0000.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[-	-	-	-	-	-	PB9 IOR	PB8 IOR	PB7 IOR	PB6 IOR	PB5 IOR	PB4 IOR	PB3 IOR	PB2 IOR	PB1 IOR	PB0 IOR
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R/W									

21.1.4 Port B Control Registers L1 to L3 (PBCRL1 to PBCRL3)

PBCRL1 to PBCRL3 are 16-bit readable/writable registers that are used to select the function of the multiplexed pins on port B.

SH7083:

• Port B Control Register L3 (PBCRL3)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	-	-	PB9 MD2	PB9 MD1	PB9 MD0	-	PB8 MD2	PB8 MD1	PB8 MD0
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
15 to 7	—	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.

21.1.6 Port C Control Registers L1 to L4, H1 to H3 (PCCRL1 to PCCRL4, PCCRH1 to PCCRH3)

PCCRL1 to PCCRL4 and PCCRH1 to PCCRH3 are 16-bit readable/writable registers that are used to select the functions of the multiplexed pins on port C.

SH7083/SH7084/SH7085:

• Port C Control Registers H3 to H1 (PCCRH3 to PCCRH1)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit	Bit Name	Initial Value	R/W	Description
15 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.

• Port C Control Register L4 (PCCRL4)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	PC15 MD0	-	-	-	PC14 MD0	-	-	-	PC13 MD0	-	-	-	PC12 MD0
Initial value:	0	0	0	0*	0	0	0	0*	0	0	0	0*	0	0	0	0*
R/W:	R	R	R	R/W	R	R	R	R/W	R	R	R	R/W	R	R	R	R/W

Note: * The initial value is 1 in the on-chip ROM disabled external-extension mode.

Bit	Bit Name	Initial Value	R/W	Description
15 to 13	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
12	PC15MD0	0 * ¹	R/W	PC15 Mode
				Select the function of the PC15/A15 pin.
				0: PC15 I/O (port)
				1: A15 output (BSC)* ²

Bit	Bit Name	Initial Value	R/W	Description
8	PC2MD0	0*1	R/W	PC2 Mode
				Select the function of the PC2/A2 pin.
				0: PC2 I/O (port)
				1: A2 output (BSC)* ²
7 to 5	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
4	PC1MD0	0* ¹	R/W	PC1 Mode
				Select the function of the PC1/A1 pin.
				0: PC1 I/O (port)
				1: A1 output (BSC)* ²
3 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
0	PC0MD0	0 * ¹	R/W	PC0 Mode
				Select the function of the PC0/A0 pin.
				0: PC0 I/O (port)
				1: A0 output (BSC)* ²

Notes: 1. The initial value is 1 in the on-chip ROM disabled external-extension mode.

2. This function is enabled only in the on-chip ROM enabled/disabled external-extension mode. Do not set 1 in single-chip mode.

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	MOA31 to	Undefined	R/W	MOA31 to MOA0
	MOA0			Store the start address of the programming destination on the user MAT. The consecutive 128-byte programming is executed starting from the specified start address of the user MAT. The MOA6 to MOA0 bits are always 0 because the start address of the programming destination is at the 128-byte boundary.

(3.2) Flash multipurpose data destination area parameter (FMPDR: general register R4 of CPU)

This parameter indicates the start address in the area which stores the data to be programmed in the user MAT. When the storage destination of the program data is in flash memory, an error occurs. The error occurrence is indicated by the WD bit (bit 2) in FPFR.

	Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		MOD31	MOD30	MOD29	MOD28	MOD27	MOD26	MOD25	MOD24	MOD23	MOD22	MOD21	MOD20	MOD19	MOD18	MOD17	MOD16
Initial v			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R/W:	R/W															
	Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		MOD15	MOD14	MOD13	MOD12	MOD11	MOD10	MOD9	MOD8	MOD7	MOD6	MOD5	MOD4	MOD3	MOD2	MOD1	MOD0
Initial v	/alue:	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	R/W:	R/W															

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	MOD31 to	Undefined	R/W	MOD31 to MOD0
	MOD0			Store the start address of the area which stores the program data for the user MAT. The consecutive 128- byte data is programmed to the user MAT starting from the specified start address.

		Stora	able/Exe	cutable Area	Selected MAT			
	Item	On- Chip RAM	User MAT	External Space	User MAT	Embedded Program Storage MAT		
	Selecting on-chip program to be downloaded	\checkmark	\checkmark		\checkmark			
	Writing H'A5 to key register		\checkmark					
	Writing 1 to SCO in FCCS (download)	\checkmark	Х	Х		\checkmark		
	Key register clearing		\checkmark					
	Judging download result		\checkmark		\checkmark			
	Download error processing	\checkmark	\checkmark		\checkmark			
	Setting initialization parameters	\checkmark	\checkmark		\checkmark			
V	Initialization	\checkmark	Х	Х	\checkmark			
Erasing	Judging initialization result	\checkmark	\checkmark		\checkmark			
proce- dure	Initialization error processing		\checkmark		\checkmark			
uure	Writing H'5A to key register		\checkmark		\checkmark			
	Setting erasure parameters	\checkmark	Х		\checkmark			
	Erasure		Х	Х	\checkmark			
	Judging erasure result		Х		\checkmark			
	Erasing error processing		Х		\checkmark			
	Key register clearing		Х	\checkmark	\checkmark			

Table 23.18 (2) Usable Area for Erasure in User Program Mode

		Storal	ble/Exec	utable Area		Selected MAT			
	Item	On- Chip RAM	User Boot MAT	External Space	User MAT	User Boot MAT	Embedded Program Storage Area		
	Program data storage area		X * ¹	\checkmark		—	_		
	Selecting on-chip program to be downloaded	V	\checkmark						
	Writing H'A5 to key register		\checkmark	\checkmark		\checkmark			
	Writing 1 to SCO in FCCS (download)		Х	Х			\checkmark		
	Key register clearing	\checkmark	\checkmark						
Pro- gram-	Judging download result		\checkmark	\checkmark		\checkmark			
ming proce- dure	Download error processing		\checkmark	\checkmark		\checkmark			
uule	Setting initialization parameters		\checkmark	\checkmark		\checkmark			
	Initialization	\checkmark	Х	Х					
	Judging initialization result		\checkmark			\checkmark			
	Initialization error processing		\checkmark	\checkmark		\checkmark			
	Switching MATs by FMATS		Х	Х					
	Writing H'5A to Key Register		Х	\checkmark					

Table 23.18 (3) Usable Area for Programming in User Boot Mode

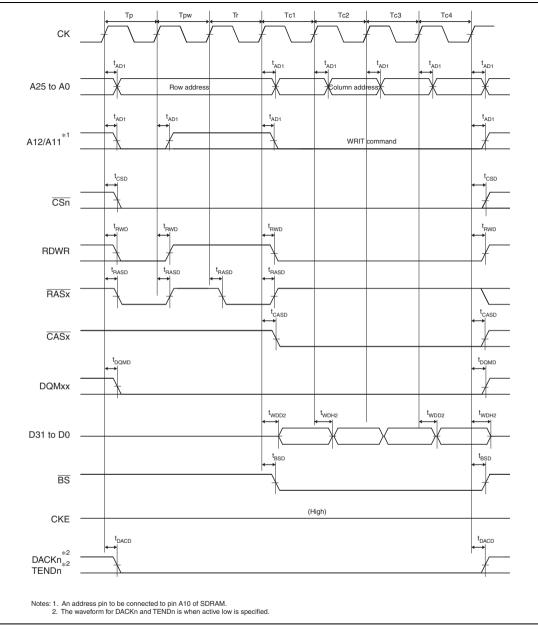


Figure 28.37 Synchronous DRAM Burst Write Bus Cycle (Four Write Cycles) (Bank Active Mode: PRE + ACT + WRITE Commands, Different Row Addresses, WTRCD = 0 Cycle, TRWL = 0 Cycle)