

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC 603e
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	352-LBGA
Supplier Device Package	352-TBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8245lvv266d

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- Write buffering for PCI and processor accesses
- Normal parity, read-modify-write (RMW), or ECC
- Data-path buffering between memory interface and processor
- Low-voltage TTL logic (LVTTL) interfaces
- 272 Mbytes of base and extended ROM/Flash/PortX space
- Base ROM space for 8-bit data path or same size as the SDRAM data path (32- or 64-bit)
- Extended ROM space for 8-, 16-, 32-bit gathering data path, 32- or 64-bit (wide) data path
- PortX: 8-, 16-, 32-, or 64-bit general-purpose I/O port using ROM controller interface with programmable address strobe timing, data ready input signal (DRDY), and 4 chip selects
- 32-bit PCI interface
 - Operates up to 66 MHz
 - PCI 2.2-compatible
 - PCI 5.0-V tolerance
 - Dual address cycle (DAC) for 64-bit PCI addressing (master only)
 - Accesses to PCI memory, I/O, and configuration spaces
 - Selectable big- or little-endian operation
 - Store gathering of processor-to-PCI write and PCI-to-memory write accesses
 - Memory prefetching of PCI read accesses
 - Selectable hardware-enforced coherency
 - PCI bus arbitration unit (five request/grant pairs)
 - PCI agent mode capability
 - Address translation with two inbound and outbound units (ATU)
 - Internal configuration registers accessible from PCI
- Two-channel integrated DMA controller (writes to ROM/PortX not supported)
 - Direct mode or chaining mode (automatic linking of DMA transfers)
 - Scatter gathering-Read or write discontinuous memory
 - 64-byte transfer queue per channel
 - Interrupt on completed segment, chain, and error
 - Local-to-local memory
 - PCI-to-PCI memory
 - Local-to-PCI memory
 - PCI memory-to-local memory
- Message unit
 - Two doorbell registers
 - Two inbound and two outbound messaging registers
 - I₂O message interface
- I²C controller with full master/slave support that accepts broadcast messages

Notes:

- 1. Numbers associated with waveform separations correspond to caution numbers listed in Table 2.
- 2. See the Cautions section of Table 2 for details on this topic.
- 3. See Table 8 for details on PLL relock and reset signal assertion timing requirements.
- 4. Refer to Table 10 for additional information on reset configuration pin setup timing requirements.
- 5. HRST_CPU/HRST_CTRL must transition from a logic 0 to a logic 1 in less than one SDRAM_SYNC_IN clock cycle for the device to be in the nonreset state.
- 6. PLL_CFG signals must be driven on reset and must be held for at least 25 clock cycles after the negation of HRST_CTRL and HRST_CPU in order to be latched.

Figure 2. Supply Voltage Sequencing and Separation Cautions

Figure 3 shows the undershoot and overshoot voltage of the memory interface.

Figure 3. Overshoot/Undershoot Voltage

Figure 4 and Figure 5 show the undershoot and overshoot voltage of the PCI interface for the 3.3- and 5-V signals, respectively.

Figure 4. Maximum AC Waveforms for 3.3-V Signaling

Electrical and Thermal Characteristics

Figure 5. Maximum AC Waveforms for 5-V Signaling

4.2 DC Electrical Characteristics

Table 3 provides the DC electrical characteristics for the MPC8245 at recommended operating conditions.

Table 3.	DC	Electrical	Specifications
----------	----	------------	-----------------------

At recommended operating conditions (see Table 2)

Characteristic	Condition ³	Symbol	Min	Max	Unit	Notes
Input high voltage	PCI only, except PCI_SYNC_IN	V _{IH}	$0.65 \times \text{OV}_{\text{DD}}$	LV _{DD}	V	1
Input low voltage	PCI only, except PCI_SYNC_IN	V _{IL}	—	$0.3 \times \text{OV}_{\text{DD}}$	V	
Input high voltage	All other pins, including PCI_SYNC_IN (GV _{DD} = 3.3 V)	V _{IH}	2.0	3.3	V	
Input low voltage	All inputs, including PCI_SYNC_IN	V _{IL}	GND	0.8	V	
Input leakage current for pins using DRV_PCI driver	$0.5 V \le V_{in} \le 2.7 V$ @ LV _{DD} = 4.75 V	Ι _L	_	±70	μA	4
Input leakage current for all others	LV _{DD} = 3.6 V GV _{DD} ≤ 3.465 V	ΙL	_	±10	μΑ	4
Output high voltage	I_{OH} = driver-dependent (GV _{DD} = 3.3 V)	V _{OH}	2.4	—	V	2
Output low voltage	$I_{OL} = driver-dependent$ (GV _{DD} = 3.3 V)	V _{OL}	_	0.4	V	2

4.4 Thermal Characteristics

Table 6 provides the package thermal characteristics for the MPC8245. For details, see Section 7.8, "Thermal Management."

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient natural convection (Single-layer board—1s)	$R_{ extsf{ heta}JA}$	16.1	°C/W	1, 2
Junction-to-ambient natural convection (Four-layer board—2s2p)	R _{θJMA}	12.0	°C/W	1, 3
Junction-to-ambient (@200 ft/min) (Single-layer board—1s)	R _{θJMA}	11.6	°C/W	1, 3
Junction-to-ambient (@200 ft/min) (Four layer board—2s2p)	R _{θJMA}	9.0	°C/W	1, 3
Junction-to-board	$R_{ hetaJB}$	4.8	°C/W	4
Junction-to-case	R _{θJC}	1.8	°C/W	5
Junction-to-package top (natural convection)	Ψ_{JT}	1.0	°C/W	6

Table 6. Thermal Characteristics

Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate used for case temperature.
- 6. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

4.5 AC Electrical Characteristics

After fabrication, functional parts are sorted by maximum processor core frequency as shown in Table 7 and tested for conformance to the AC specifications for that frequency. The processor core frequency is determined by the bus (PCI_SYNC_IN) clock frequency and the settings of the PLL_CFG[0:4] signals. Parts are sold by maximum processor core frequency. See Section 9, "Ordering Information," for details on ordering parts.

Table 8. Clock AC Timing Specifications (continued)

At recommended operating conditions (see Table 2) with LV_{DD} = 3.3 V ± 0.3 V

Num	Characteristics and Conditions	Min	Мах	Unit	Notes
16	DLL lock range for other modes	See Figure 8 th	rough Figure 10	ns	6
17	Frequency of operation (OSC_IN)	25	66	MHz	
19	OSC_IN rise and fall times	_	5	ns	7
20	OSC_IN duty cycle measured at 1.4 V	40	60	%	
21	OSC_IN frequency stability	—	100	ppm	

Notes:

- 1. Rise and fall times for the PCI_SYNC_IN input are measured from 0.4 to 2.4 V.
- 2. Specification value at maximum frequency of operation.
- 3. Pin-to-pin skew includes quantifying the additional amount of clock skew (or jitter) from the DLL besides any intentional skew added to the clocking signals from the variable length DLL synchronization feedback loop, that is, the amount of variance between the internal *sys_logic_clk* and the SDRAM_SYNC_IN signal after the DLL is locked. While pin-to-pin skew between SDRAM_CLKs can be measured, the relationship between the internal *sys_logic_clk* and the external SDRAM_SYNC_IN cannot be measured and is guaranteed by design.
- 4. Relock time is guaranteed by design and characterization. Relock time is not tested.
- 5. Relock timing is guaranteed by design. PLL-relock time is the maximum amount of time required for PLL lock after a stable V_{DD} and PCI_SYNC_IN are reached during the reset sequence. This specification also applies when the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRST_CPU/HRST_CTRL must be held asserted for a minimum of 255 bus clocks after the PLL-relock time during the reset sequence.
- 6. DLL_EXTEND is bit 7 of the PMC2 register <72>. N is a non-zero integer (see Figure 7 through Figure 10). T_{clk} is the period of one SDRAM_SYNC_OUT clock cycle in ns. T_{loop} is the propagation delay of the DLL synchronization feedback loop (PC board runner) from SDRAM_SYNC_OUT to SDRAM_SYNC_IN in ns; 6.25 inches of loop length (unloaded PC board runner) corresponds to approximately 1 ns of delay. For details about how Figure 7 through Figure 10 may be used refer to the Freescale application note AN2164, MPC8245/MPC8241 Memory Clock Design Guidelines, for details on MPC8245 memory clock design.
- 7. Rise and fall times for the OSC_IN input is guaranteed by design and characterization. OSC_IN input rise and fall times are not tested.

Figure 6 shows the PCI_SYNC_IN input clock timing diagram with the labeled number items listed in Table 8.

VM = Midpoint Voltage (1.4 V)

Figure 6. PCI_SYNC_IN Input Clock Timing Diagram

Figure 7 through Figure 10 show the DLL locking range loop delay vs. frequency of operation. These graphs define the areas of DLL locking for various modes. The gray areas show where the DLL locks.

Electrical and Thermal Characteristics

Figure 8. DLL Locking Range Loop Delay Versus Frequency of Operation for DLL_Extend=1 and Normal Tap Delay

Num	Characteristic	Min	Мах	Unit	Notes
10a	PCI input signals valid to PCI_SYNC_IN (input setup)	3.0	_	ns	1, 3
10b	Memory input signals valid to sys_logic_clk (input setup)				
10b0	Tap 0, register offset <0x77>, bits $5-4 = 0b00$	2.6	—	ns	2, 3, 6
10b1	Tap 1, register offset <0x77>, bits 5–4 = 0b01	1.9			
10b2	Tap 2, register offset <0x77>, bits 5–4 = 0b10 (default)	1.2	_		
10b3	Tap 3, register offset <0x77>, bits 5–4 = 0b11	0.5	_		
10c	PIC, misc. debug input signals valid to sys_logic_clk	3.0	_	ns	2, 3
	(input setup)				
10d	I ² C input signals valid to sys_logic_clk (input setup)	3.0		ns	2, 3
10e	Mode select inputs valid to HRST_CPU/HRST_CTRL (input setup)	$9 imes t_{CLK}$	_	ns	2, 3–5
11	T _{os} —SDRAM_SYNC_IN to sys_logic_clk offset time	0.4	1.0	ns	7
11a	sys_logic_clk to memory signal inputs invalid (input hold)				
11a0	Tap 0, register offset <0x77>, bits $5-4 = 0b00$	0	—	ns	2, 3, 6
11a1	Tap 1, register offset <0x77>, bits 5–4 = 0b01	0.7			
11a2	Tap 2, register offset <0x77>, bits 5-4 = 0b10 (default)	1.4	_		
11a3	Tap 3, register offset <0x77>, bits 5–4 = 0b11	2.1	_		
11b	HRST_CPU/HRST_CTRL to mode select inputs invalid (input hold)	0	—	ns	2, 3, 5
11c	PCI_SYNC_IN to Inputs invalid (input hold)	1.0	—	ns	1, 2, 3

Table 10. Input AC Timing Specifications

Notes:

- 1. All PCI signals are measured from OV_{DD}/2 of the rising edge of PCI_SYNC_IN to 0.4 × OV_{DD} of the signal in question for 3.3-V PCI signaling levels. See Figure 12.
- 2. All memory and related interface input signal specifications are measured from the TTL level (0.8 or 2.0 V) of the signal in question to the VM = 1.4 V of the rising edge of the memory bus clock, *sys_logic_clk*. *sys_logic_clk* is the same as PCI_SYNC_IN in 1:1 mode but is twice the frequency in 2:1 mode (processor/memory bus clock rising edges occur on every rising and falling edge of PCI_SYNC_IN). See Figure 11.
- 3. Input timings are measured at the pin.
- 4. t_{CLK} is the time of one SDRAM_SYNC_IN clock cycle.
- 5. All mode select input signals specifications are measured from the TTL level (0.8 or 2.0 V) of the signal in question to the VM = 1.4 V of the rising edge of the HRST_CPU/HRST_CTRL signal. See Figure 13.
- 6. The memory interface input setup and hold times are programmable to four possible combinations by programming bits 5–4 of register offset <0x77> to select the desired input setup and hold times.
- 7. T_{os} represents a timing adjustment for SDRAM_SYNC_IN with respect to sys_logic_clk. Due to the internal delay present on the SDRAM_SYNC_IN signal with respect to the sys_logic_clk inputs to the DLL, the resulting SDRAM clocks become offset by the delay amount. To maintain phase-alignment of the memory clocks with respect to sys_logic_clk, the feedback trace length of SDRAM_SYNC_OUT to SDRAM_SYNC_IN must be shortened to accommodate this range. The feedback trace length is relative to the SDRAM clock output trace lengths. We recommend that the length of SDRAM_SYNC_OUT to SDRAM_SYNC_IN be shortened by 0.7 ns because that is the midpoint of the range of T_{os} and allows the impact from the range of T_{os} to be reduced. Additional analyses of trace lengths and SDRAM loading must be performed to optimize timing. For details on trace measurements and the problem of T_{os}, refer to the Freescale application note AN2164, MPC8245/MPC8241 Memory Clock Design Guidelines.

Electrical and Thermal Characteristics

Table 12. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%.

Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	2
Input current each I/O pin (input voltage is between $0.1 \times OV_{DD}$ and $0.9 \times OV_{DD}$ (max)	I	-10	10	μA	3
Capacitance for each I/O pin	Cl	_	10	pF	

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. Refer to the MPC8245 Integrated Processor Reference Manual for information on the digital filter used.

3. I/O pins obstruct the SDA and SCL lines if the OV_{DD} is switched off.

4.6.2 I²C AC Electrical Specifications

Table 13 provides the AC timing parameters for the I^2C interfaces.

Table 13. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 12).

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL} 4	1.3	—	μs
High period of the SCL clock	t _{I2CH} 4	0.6	—	μs
Setup time for a repeated START condition	t _{I2SVKH} 4	0.6	—	μs
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL} 4	0.6	—	μs
Data setup time	t _{I2DVKH} 4	100	—	ns
Data input hold time: CBUS compatible masters I ² C bus devices	t _{i2DXKL}	0 ²	—	μs
Data output delay time:	t _{I2OVKL}	—	0.9 ³	
Set-up time for STOP condition	t _{I2PVKH}	0.6	—	μs
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	—	μs
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	—	V

Table 13. I²C AC Electrical Specifications (continued)

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 12).

Parameter	Symbol ¹	Min	Мах	Unit
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times \text{OV}_{\text{DD}}$	—	V

Note:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{I2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. Also, t_{I2SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 2. As a transmitter, the MPC8245 provides a delay time of at least 300 ns for the SDA signal (referred to as the Vihmin of the SCL signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of Start or Stop condition. When the MPC8245acts as the I²C bus master while transmitting, it drives both SCL and SDA. As long as the load on SCL and SDA is balanced, the MPC8245 does not cause the unintended generation of a Start or Stop condition. Therefore, the 300 ns SDA output delay time is not a concern. If, under some rare condition, the 300 ns SDA output delay time is required for the MPC8245 as transmitter, the following setting is recommended for the FDR bit field of the I2CFDR register to ensure both the desired I²C SCL clock frequency and SDA output delay time are achieved. It is assumed that the desired I²C SCL clock frequency is 400 KHz and the digital filter sampling rate register (DFFSR bits in I2CFDR) is programmed with its default setting of 0x10 (decimal 16):

SDRAM Clock Frequency	100 MHz	133 MHz
FDR Bit Setting	0x00	0x2A
Actual FDR Divider Selected	384	896

Actual I²C SCL Frequency Generated 260.4 KHz 148.4 KHz

For details on I²C frequency calculation, refer to the application note AN2919 "Determining the I²C Frequency Divider Ratio for SCL".

- 3. The maximum t_{I2DXKL} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. Guaranteed by design.

Figure 16 provides the AC test load for the I^2C .

Figure 16. I²C AC Test Load

Electrical and Thermal Characteristics

Num	Characteristic	Min	Мах	Unit	Notes
11	TMS, TDI data hold time	15	—	ns	
12	TCK to TDO data valid	0	15	ns	
13	TCK to TDO high impedance	0	15	ns	

Table 15. JTAG AC Timing Specification (Independent of PCI_SYNC_IN) (continued)

Notes:

1. TRST is an asynchronous signal. The setup time is for test purposes only.

2. Nontest (other than TDI and TMS) signal input timing with respect to TCK.

3. Nontest (other than TDO) signal output timing with respect to TCK.

Figure 20 through Figure 23 show the different timing diagrams.

Package Description

Name	Pin Numbers	Туре	Power Supply	Output Driver Type	Notes
DQM[0:7]	AB1 AB2 K3 K2 AC1 AC2 K1 J1	Output	GV _{DD}	DRV_MEM_CTRL	6
CS[0:7]	Y4 AA3 AA4 AC4 M2 L2 M1 L1	Output	GV _{DD}	DRV_MEM_CTRL	6
FOE	H1	I/O	GV _{DD}	DRV_MEM_CTRL	3, 4
RCS0	N4	Output	GV _{DD}	DRV_MEM_CTRL	3, 4
RCS1	N2	Output	GV _{DD}	DRV_MEM_CTRL	
RCS2/TRIG_IN	AF20	I/O	OV _{DD}	6 ohms	10, 14
RCS3/TRIG_OUT	AC18	Output	GV _{DD}	DRV_MEM_CTRL	14
SDMA[1:0]	W1 W2	I/O	GV _{DD}	DRV_MEM_CTRL	3, 4, 6
SDMA[11:2]	N1 R1 R2 T1 T2 U4 U2 U1 V1 V3	Output	GV _{DD}	DRV_MEM_CTRL	6
DRDY	B20	Input	OV _{DD}	—	9, 10
SDMA12/SRESET	B16	I/O	GV _{DD}	DRV_MEM_CTRL	10, 14
SDMA13/TBEN	B14	I/O	GV _{DD}	DRV_MEM_CTRL	10, 14
SDMA14/ CHKSTOP_IN	D14	I/O	GV _{DD}	DRV_MEM_CTRL	10, 14
SDBA1	P1	Output	GV _{DD}	DRV_MEM_CTRL	
SDBA0	P2	Output	GV _{DD}	DRV_MEM_CTRL	
PAR[0:7]	AF3 AE3 G4 E2 AE4 AF4 D2 C2	I/O	GV _{DD}	DRV_STD_MEM	6
SDRAS	AD1	Output	GV _{DD}	DRV_MEM_CTRL	3
SDCAS	AD2	Output	GV _{DD}	DRV_MEM_CTRL	3
СКЕ	H2	Output	GV _{DD}	DRV_MEM_CTRL	3, 4
WE	AA1	Output	GV _{DD}	DRV_MEM_CTRL	
ĀS	Y1	Output	GV _{DD}	DRV_MEM_CTRL	3, 4
	PIC Co	ontrol Signals			
IRQ0/S_INT	C19	Input	OV _{DD}	_	
IRQ1/S_CLK	B21	I/O	OV _{DD}	DRV_PCI	
IRQ2/S_RST	AC22	I/O	OV _{DD}	DRV_PCI	
IRQ3/S_FRAME	AE24	I/O	OV _{DD}	DRV_PCI	
IRQ4/L_INT	A23	I/O	OV _{DD}	DRV_PCI	
	l ² C Co	ontrol Signals	1	L	<u>ı</u>
SDA	AE20	I/O	OV _{DD}	DRV_STD_MEM	10, 16
SCL	AF21	I/O	OV _{DD}	DRV_STD_MEM	10, 16

Table 16. MPC8245 Pinout Listing (continued)

6 PLL Configurations

The internal PLLs are configured by the PLL_CFG[0:4] signals. For a given PCI_SYNC_IN (PCI bus) frequency, the PLL configuration signals set both the peripheral logic/memory bus PLL (VCO) frequency of operation for the PCI-to-memory frequency multiplying and the MPC603e CPU PLL (VCO) frequency of operation for memory-to-CPU frequency multiplying. The PLL configurations are shown in Table 17 and Table 18.

	PLL_CFG [0:4] ^{10,13}	266-MHz Part ⁹		300-MHz Part ⁹			Multipliers		
Ref. No.		PCI Clock Input (PCI_ SYNC_IN) Range ¹ (MHz)	Periph Logic/ MemBus Clock Range (MHz)	CPU Clock Range (MHz)	PCI Clock Input (PCI_ SYNC_IN) Range ¹ (MHz)	Periph Logic/ MemBus Clock Range (MHz)	CPU Clock Range (MHz)	PCI-to- Mem (Mem VCO)	Mem-to- CPU (CPU VCO)
0	00000 ¹²	25–35 ⁵	75–105	188–263	25–40 ^{5,7}	75–120	188–300	3 (2)	2.5 (2)
1	00001 ¹²	25–29 ⁵	75–88	225–264	25–33 ⁵	75–99	225–297	3 (2)	3 (2)
2	00010 ¹¹	50 ¹⁸ –59 ^{5,7}	50–59	225–266	50 ¹⁸ –66 ¹	50–66	225–297	1 (4)	4.5 (2)
3	00011 ^{11,14}	50 ¹⁷ –66 ¹	50–66	100–133	50 ¹⁷ –66 ¹	50–66	100–133	1 (Bypass)	2 (4)
4	00100 ¹²	25–46 ⁴	50–92	100–184	25–46 ⁴	50–92	100–184	2 (4)	2 (4)
6	00110 ¹⁵	Bypass		Bypass			Bypass		
7 Rev B	00111 ¹⁴	60 ⁶ –66 ¹	60–66	180–198	60 ⁶ –66 ¹	60–66	180–198	1 (Bypass)	3 (2)
7 Rev D	00111 ¹⁴	Not available							
8	01000 ¹²	60 ⁶ –66 ¹	60–66	180–198	60 ⁶ –66 ¹	60–66	180–198	1 (4)	3 (2)
9	01001 ¹²	45 ⁶ –66 ¹	90–132	180–264	45 ⁶ –66 ¹	90–132	180–264	2 (2)	2 (2)
Α	01010 ¹²	25–29 ⁵	50–58	225–261	25–33 ⁵	50–66	225–297	2 (4)	4.5 (2)
В	01011 ¹²	45 ³ –59 ⁵	68–88	204–264	45 ³ –66 ¹	68–99	204–297	1.5 (2)	3 (2)
С	01100 ¹²	36 ⁶ –46 ⁴	72–92	180–230	36 ⁶ –46 ⁴	72–92	180–230	2 (4)	2.5 (2)
D	01101 ¹²	45 ³ –50 ⁵	68–75	238–263	45 ³ –57 ⁵	68–85	238–298	1.5 (2)	3.5 (2)
E	01110 ¹²	30 ⁶ –44 ⁵	60–88	180–264	30 ⁶ –46 ⁴	60–92	180–276	2 (4)	3 (2)
F	01111 ¹²	25 ⁵	75	263	25–28 ⁵	75–85	263–298	3 (2)	3.5 (2)
10	10000 ¹²	30 ⁶ -44 ^{2,5}	90–132	180–264	30 ⁶ -44 ²	90–132	180–264	3 (2)	2 (2)
11	10001 ¹²	25–26 ^{5,7}	100–106	250–266	25–29 ²	100–116	250–290	4 (2)	2.5 (2)
12	10010 ¹²	60 ⁶ –66 ¹	90–99	180–198	60 ⁶ –66 ¹	90–99	180–198	1.5 (2)	2 (2)

F.I.I. 47 DII	O	000	000 BALL	D (-)
Iable 17. PLL	Configurations	266- and	300-MHZ	Parts)

System Design

7 System Design

This section provides electrical and thermal design recommendations for successful application of the MPC8245.

7.1 PLL Power Supply Filtering

The AV_{DD} and AV_{DD}2 power signals on the MPC8245 provide power to the peripheral logic/memory bus PLL and the MPC603e processor PLL. To ensure stability of the internal clocks, the power supplied to the AV_{DD} and AV_{DD}2 input signals should be filtered of any noise in the 500-kHz to 10-MHz resonant frequency range of the PLLs. Two separate circuits similar to the one shown in Figure 25 using surface mount capacitors with minimum effective series inductance (ESL) is recommended for AV_{DD} and AV_{DD}2 power signal pins. Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), using multiple small capacitors of equal value is recommended over using multiple values.

Place the circuits as closely as possible to the respective input signal pins to minimize noise coupled from nearby circuits. Routing from the capacitors to the input signal pins should be as direct as possible with minimal inductance of vias.

Figure 25. PLL Power Supply Filter Circuit

7.2 Decoupling Recommendations

Due to its dynamic power management feature, large address and data buses, and high operating frequencies, the MPC8245 can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8245 system, and the MPC8245 itself requires a clean, tightly regulated source of power. Therefore, place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pin. These decoupling capacitors should receive their power from dedicated power planes in the PCB, with short traces to minimize inductance. These capacitors should have a value of 0.1 µF. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0508 or 0603, oriented such that connections are made along the length of the part.

In addition, several bulk storage capacitors should be distributed around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors: 100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

Note:

- ¹ QACK is an output and is not required at the COP header for emulation.
- ² RUN/STOP normally found on pin 5 of the COP header is not implemented on the MPC8245. Connect pin 5 of the COP header to OV_{DD} with a 1-kΩ pull-up resistor.
- ³ CKSTP_OUT normally on pin 15 of the COP header is not implemented on the MPC8245. Connect pin 15 of the COP header to OV_{DD} with a 10-kΩ pull-up resistor.
- ⁴ Pin 14 is not physically present on the COP header.
- ⁵ SRESET functions as output SDMA12 in extended ROM mode.
- ⁶ CHKSTOP_IN functions as output SDMA14 in extended ROM mode.
- ⁷ The COP port and target board should be able to independently assert HRESET and TRST to the processor to control the processor as shown.
- ⁸ If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP header through an AND gate to TRST of the part. If the JTAG interface is not implemented, connect HRESET from the target source to TRST of the part through a 0-Ω isolation resistor.

Figure 26. COP Connector Diagram

System Design

7.8 Thermal Management

This section provides thermal management information for the tape ball grid array (TBGA) package for air-cooled applications. Depending on the application environment and the operating frequency, heat sinks may be required to maintain junction temperature within specifications. Proper thermal control design primarily depends on the system-level design: the heat sink, airflow, and thermal interface material. To reduce the die-junction temperature, heat sinks can be attached to the package by several methods: adhesive, spring clip to holes in the printed-circuit board or package, or mounting clip and screw assembly. Figure 27 displays a package-exploded cross-sectional view of a TBGA package with several heat sink options.

Figure 27. Package-Exploded Cross-Sectional View with Several Heat Sink Options

Figure 28 depicts the die junction-to-ambient thermal resistance for four typical cases:

- A heat sink is not attached to the TBGA package, and there exists high board-level thermal loading from adjacent components.
- A heat sink is not attached to the TBGA package, and there is low board-level thermal loading from adjacent components.
- A heat sink (for example, ChipCoolers) is attached to the TBGA package, and there is high board-level thermal loading from adjacent components.
- A heat sink (for example, ChipCoolers) is attached to the TBGA package, and there is low board-level thermal loading from adjacent components.

VP.

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the airflow around the device, the interface material, the mounting arrangement on the printed-circuit board, or the thermal dissipation on the printed-circuit board surrounding the device.

To determine the junction temperature of the device in the application without a heat sink, the thermal characterization parameter (Ψ_{JT}) measures the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_T = thermocouple temperature atop the package (°C) Ψ_{JT} = thermal characterization parameter (°C/W) P_D = power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance minimizes the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

In many cases, it is appropriate to simulate the system environment using a computational fluid dynamics thermal simulation tool. In such a tool, the simplest thermal model of a package that has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case covers the situation where a heat sink is used or a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed-circuit board.

7.9 References

Semiconductor Equipment and Materials International 805 East Middlefield Rd. Mountain View, CA 94043 (415) 964-5111

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the web at http://www.jedec.org.

Document Revision History

Revision	Date	Substantive Change(s)
2		Globally changed EPIC to PIC.
	I	Section 1.4.1.4—Note 5: Changed register reference from 0x72 to 0x73.
	I	Section 1.4.1.5—Table 5: Updated power dissipation numbers based on latest characterization data.
	I	Section 1.4.2—Table 6: Updated table to show more thermal specifications.
	I	Section 1.4.3—Table 7: Updated minimum memory bus value to 50 MHz.
		Section 1.4.3.1—Changed equations for DLL locking range based on characterization data. Added updates and reference to AN2164 for note 6. Added table defining Tdp parameters. Labeled N value in Figures 5 through 8.
	l	Section 1.4.3.2—Table 10: Changed bit definitions for tap points. Updated note on Tos and added reference to AN2164 for note 7. Updated Figure 9 to show significance of Tos.
	I	Section 1.4.3.4—Added column for SDRAM_OLK @ 133 MHZ
	I	Sections 1.5.1 and 1.5.2—Corrected packaging information to state TBGA packaging.
	I	release of the document.
	I	Section 1.6—Updated Note 10 of Tables 18 and 19.
	I	Section 1.7.3—Changed sentence recommendation regarding decoupling capacitors.
	I	Section 1.9—Updated format of tables in Ordering Information section.
1		Updated document template.
		Section 1.4.1.4—Changed the driver type names in Table 6 to match with the names used in the MPC8245 Reference Manual.
		Section 1.5.3—Updated driver type names for signals in Table 16 to match with names used in the MPC8245 Integrated Processor Reference Manual.
	I	Section 1.4.1.2—Updated Table 7 to refer to new PLL Tables for VCO limits.
	I	Section 1.4.3.3—Added item 12e to Table 10 for SDRAM_SYNC_IN to Output Valid timing.
	I	Section 1.5.1—Updated solder balls information to 62Sn/36PB/2Ag.
		Section 1.6—Updated PLL Tables 17 and 18 and appropriate notes to reflect changes of VCO ranges for memory and CPU frequencies.
	I	Section 1.7—Updated voltage sequencing requirements in Table 2 and removed Section 1.7.2.
	I	Section 1.7.8—Updated TRST information and Figure 26.
		New Section 1.7.2—Updated the range of I/O power consumption numbers for OV_{DD} and GV_{DD} to correct values as in Table 5. Updated fastest frequency combination to 66:100:350 MHz.
	I	Section 1.7.9—Updated list for heat sink and thermal interface vendors.
		Section 1.9—Changed format of Ordering Information section. Added tables to reflect part number specifications also available.
	1	Added Sections 1.9.2 and 1.9.3.
0.5		Corrected labels for Figures 5 through 8.

Table 19. Revision History Table (continued)

Table 19	. Revision	History	Table	(continued)
----------	------------	---------	-------	-------------

Revision	Date	Substantive Change(s)			
0.4 —		Section 1.2—Changed Features list (format) to match with the features list of the MPC8245 Integrated Processor Reference Manual.			
		Section 1.4.1.2—Updated Table 2 to include 1.8 ± 100mV numbers.			
		Section 1.4.3—Changed Table 7 to include new part offerings of 333 and 350 MHz. Added rows to include VCO frequency ranges for all parts for both memory VCO and CPU VCO.			
		Section 1.4.1.5—Updated power consumption table to include 1.8 V (V_{DD}) and higher frequency numbers.			
		Section 1.4.3—Updated Table 7 to include higher frequency offerings and CPU VCO frequency range.			
		Section 1.4.3.1—Changed lettering to caps for DLL_EXTEND and DLL_MAX_DELAY in graph description section.			
		Section 1.4.3.2—Changed name of item 11 from T _{su} —SDRAM_SYNC_IN to PCI_SYNC_IN Time to T _{os} —SDRAM_SYNC_IN to <i>sys_logic_clk</i> Offset Time. Changed name to T _{os} in Note 7 as well.			
		Section 1.6—Updated notes in Table 17. Included minimum and maximum VCO numbers for memory VCO. Changed Note 13 for location of PLL_CFG[0:4] to correct bits location. Bits 7–4 of register offset <0xE2>. Added Table 18 to cover PLL configuration of higher frequency part offerings.			
		Section: 1.7—Changed frequency ranges for reference numbers 0, 9, 10, and 17, for the 300-MHz part to include the higher memory bus frequencies when operating at lower CPU bus frequencies. Added Table 18 to include PLL configurations for the 333 MHz and the 350 MHz CPU part offerings. Added VCO multipliers in Tables 17 and 18.			
		Section 1.7.8—Changed T _{su} —SDRAM_SYNC_IN to PCI_SYNC_IN Time to T _{os} —SDRAM_ SYNC_IN to <i>sys_logic_clk</i> Offset Time."			
		Section 1.7.10—Added vendor (Cool Innovations, Inc.) to list of heat sink vendors.			
0.3	—	Section 1.4.1.5—Changed Max-FP value for 33/133/266 of Table 5 from 2.3 to 2.1 watts to represent characterization data. Changed Note 4 to say V_{DD} = 2.1 for power measurements (for 2-V part). Changed numbers for maximum I/O power supplies for OV _{DD} and GV _{DD} to represent characterization data.			
		Section 1.4.3.1—Added four graphs (Figures 5–8) and description for DLL Locking Range vs. Frequency of Operation to replace Figure 5 of Rev 0.2 document.			
		Section 1.4.3.2—Added row (item 11: T _{su} —SDRAM_SYNC_IN to PCI_SYNC_IN timing) to Table 9 to include offset change requirement.			
		Section 1.5.3—Changed Note 4 of PLL_CFG pins in Table 16 to Note 20.			
		Section 1.7.2—Added diode (MUR420) to Figure 27, Voltage Sequencing Circuit, to compensate for voltage extremes in design.			
		Section 1.7.5—Added sentence with regards to SDRAM_SYNC_IN to PCI_SYNC_IN timing requirement (T _{su}) as a connection recommendation.			
		Section 1.7.8—Mention of T_{su} offset timing and driver capability differences between the MPC8240 and the MPC8245.			

Ordering Information

THIS PAGE INTENTIONALLY LEFT BLANK