

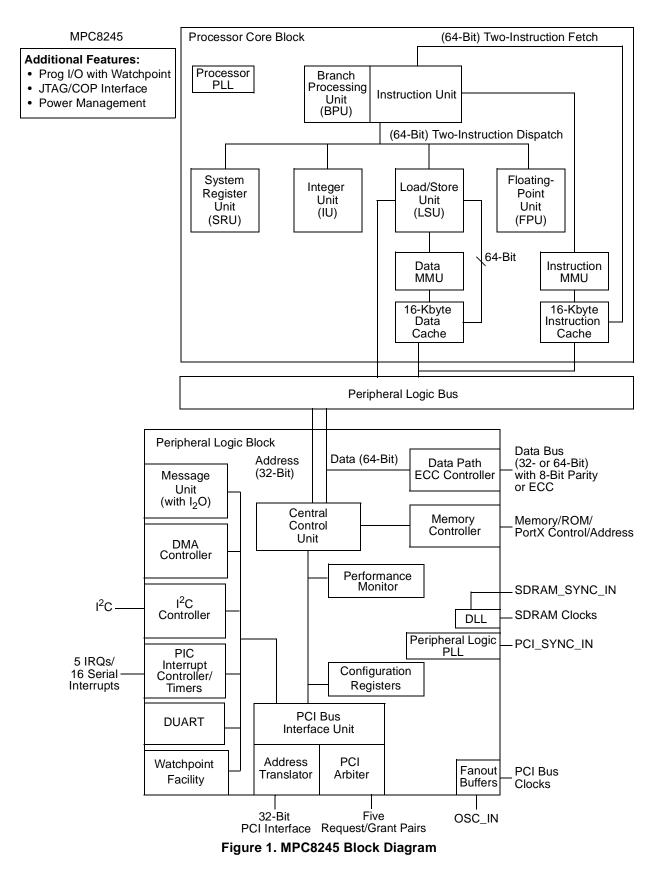
Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in


Details

Product Status	Obsolete
Core Processor	PowerPC 603e
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	300MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	·
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	· .
Package / Case	352-LBGA
Supplier Device Package	352-TBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8245lvv300d

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical and Thermal Characteristics

4.1.1 Absolute Maximum Ratings

The tables in this section describe the MPC8245 DC electrical characteristics. Table 1 provides the absolute maximum ratings.

Characteristic ¹	Symbol	Range	Unit
Supply voltage—CPU core and peripheral logic	V _{DD}	-0.3 to 2.25	V
Supply voltage—memory bus drivers	GV _{DD}	-0.3 to 3.6	V
Supply voltage—PCI and standard I/O buffers	OV _{DD}	-0.3 to 3.6	V
Supply voltage—PLLs	AV _{DD} /AV _{DD} 2	-0.3 to 2.25	V
Supply voltage—PCI reference	LV _{DD}	-0.3 to 5.4	V
Input voltage ²	V _{in}	-0.3 to 3.6	V
Operational die-junction temperature range	Тj	0 to 105 ³	°C
Storage temperature range	T _{stg}	-55 to 150	°C

Table 1. Absolute Maximum Ratings

Notes:

1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

- 2. PCI inputs with $LV_{DD} = 5 V \pm 5\% V DC$ may be correspondingly stressed at voltages exceeding $LV_{DD} + 0.5 V DC$.
- 3. Note that this temperature range does not apply to the 400 MHz parts. For details, refer to the hardware specifications addendum MPC8245ECSO2AD.

4.1.2 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for the MPC8245. Some voltage values do not apply to the 400-MHz parts. For details, refer to the hardware specifications addendum MPC8245ECSO2AD.

Characteristic	Symbol	Recommended Value	Unit	Notes
Supply voltage	V _{DD}	1.8/1.9/2.0 V ± 100 mV	V	4, 7
		2.0/2.1 V ± 100 mV	V	5, 7
I/O buffer supply for PCI and standard	OV _{DD}	3.3 ± 0.3	V	7
Supply voltages for memory bus drivers	GV _{DD}	3.3 ± 5%	V	9
CPU PLL supply voltage	AV _{DD}	1.8/1.9/2.0 V ±	V	4, 7, 12
		2.0/2.1 V ±	V	5, 7, 12

Table 2. Recommended Operating Conditions¹

Characteristic		Symbol	Recommended Value	Unit	Notes
PLL supply voltage—peripheral logic	AV _{DD} 2	1.8/1.9/2.0 V ±	V	4, 7, 12	
			2.0/2.1 V ±	V	5, 7, 12
PCI reference	LV _{DD}	5.0 ± 5%	V	2, 10, 11	
			3.3 ± 0.3	V	3, 10, 11
Input voltage	PCI inputs	V _{in}	0 to 3.6 or 5.75	V	2, 3
	All other inputs		0 to 3.6	V	6
Die-junction temperature		Тj	0 to 105	°C	

Table 2. Recommended Operating Conditions¹ (continued)

Notes:

- 1. These are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.
- 2. PCI pins are designed to withstand LV_{DD} + 5% V DC when LV_{DD} is connected to a 5.0-V DC power supply.
- 3. PCI pins are designed to withstand LV_{DD} + 0.5 V DC when LV_{DD} is connected to a 3.3-V DC power supply.
- The voltage supply value of 1.8/1.9/2.0 V ± 100 mV applies to parts marked as having a maximum CPU speed of 266 and 300 MHz. See Table 7. For each chosen nominal value (1.8/1.9/2.0 V) the supply voltage should not exceed ± 100 mV of the nominal value.
- The voltage supply value of 2.0/2.1 V ± 100 m V applies to parts marked as having a maximum CPU speed of 333 and 350 MHz. See Table 7. For each chosen nominal value (2.0/2.1 V) the supply voltage should not exceed ± 100 mV of the nominal value.

Cautions:

- Input voltage (V_{in}) must not be greater than the supply voltage (V_{DD}/AV_{DD}/AV_{DD}2) by more than 2.5 V at all times, including during power-on reset. Input voltage (V_{in}) must not be greater than GV_{DD}/OV_{DD} by more than 0.6 V at all times, including during power-on reset.
- OV_{DD} must not exceed V_{DD}/AV_{DD}/AV_{DD}2 by more than 1.8 V at any time, including during power-on reset. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 8. V_{DD}/AV_{DD}/AV_{DD}2 must not exceed OV_{DD} by more than 0.6 V at any time, including during power-on reset. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- GV_{DD} must not exceed V_{DD}/AV_{DD}/AV_{DD}2 by more than 1.8 V at any time, including during power-on reset. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 10.LV_{DD} must not exceed V_{DD}/AV_{DD}/AV_{DD}2 by more than 5.4 V at any time, including during power-on reset. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 11. LV_{DD} must not exceed OV_{DD} by more than 3.0 V at any time, including during power-on reset. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 12. This voltage is the input to the filter discussed in Section 7.1, "PLL Power Supply Filtering," and not necessarily the voltage at the AV_{DD} pin, which may be reduced from V_{DD} by the filter.

4.4 Thermal Characteristics

Table 6 provides the package thermal characteristics for the MPC8245. For details, see Section 7.8, "Thermal Management."

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient natural convection (Single-layer board—1s)	R _{θJA}	16.1	°C/W	1, 2
Junction-to-ambient natural convection (Four-layer board—2s2p)	R _{θJMA}	12.0	°C/W	1, 3
Junction-to-ambient (@200 ft/min) (Single-layer board—1s)	R _{θJMA}	11.6	°C/W	1, 3
Junction-to-ambient (@200 ft/min) (Four layer board—2s2p)	R _{θJMA}	9.0	°C/W	1, 3
Junction-to-board	$R_{ heta JB}$	4.8	°C/W	4
Junction-to-case	R _{θJC}	1.8	°C/W	5
Junction-to-package top (natural convection)	Ψ_{JT}	1.0	°C/W	6

Table 6. Thermal Characteristics

Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate used for case temperature.
- 6. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

4.5 AC Electrical Characteristics

After fabrication, functional parts are sorted by maximum processor core frequency as shown in Table 7 and tested for conformance to the AC specifications for that frequency. The processor core frequency is determined by the bus (PCI_SYNC_IN) clock frequency and the settings of the PLL_CFG[0:4] signals. Parts are sold by maximum processor core frequency. See Section 9, "Ordering Information," for details on ordering parts.

Electrical and Thermal Characteristics

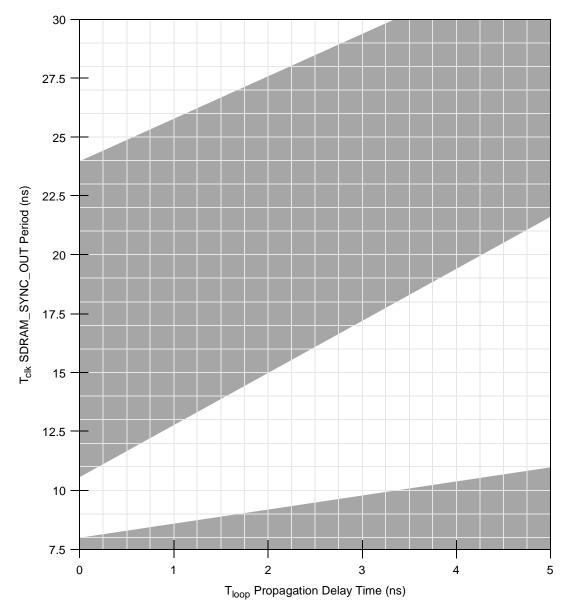


Figure 8. DLL Locking Range Loop Delay Versus Frequency of Operation for DLL_Extend=1 and Normal Tap Delay

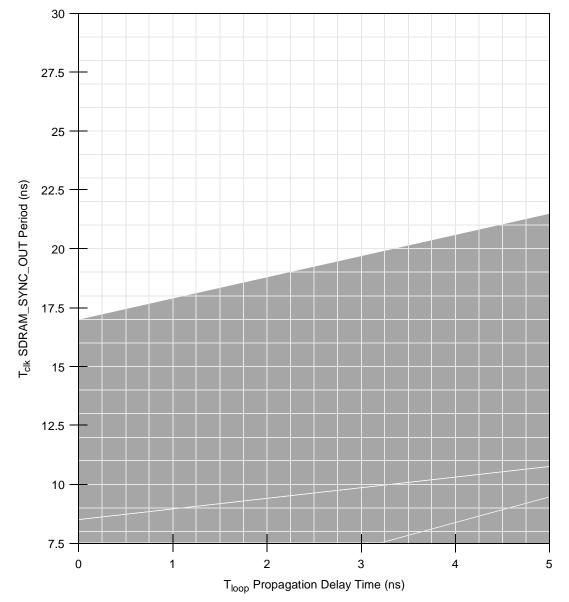
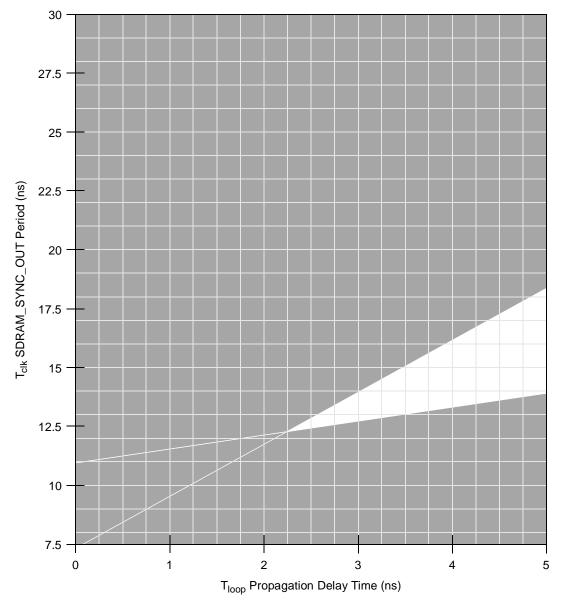
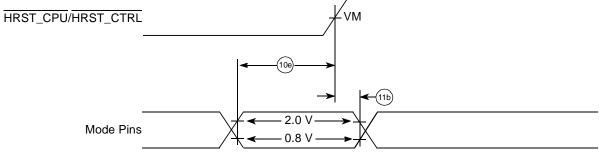


Figure 9. DLL Locking Range Loop Delay Versus Frequency of Operation for DLL_Extend=0 and Max Tap Delay

Electrical and Thermal Characteristics




Figure 10. DLL Locking Range Loop Delay Versus Frequency of Operation for DLL_Extend=1 and Max Tap Delay

4.5.2 Input AC Timing Specifications

Table 10 provides the input AC timing specifications at recommended operating conditions (see Table 2) with $LV_{DD} = 3.3 V \pm 0.3 V$.

Figure 13 shows the input timing diagram for mode select signals.

VM = Midpoint Voltage (1.4 V)

Figure 13. Input Timing Diagram for Mode Select Signals

4.5.3 Output AC Timing Specification

Table 11 provides the processor bus AC timing specifications for the MPC8245 at recommended operating conditions (see Table 2) with $LV_{DD} = 3.3 V \pm 0.3 V$. See Figure 11 for the input/output timing diagram referenced to *sys_logic_clk*. All output timings assume a purely resistive 50- Ω load (see Figure 14 for the AC test load for the MPC8245). Output timings are measured at the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system. These specifications are for the default driver strengths indicated in Table 4.

Num	Characteristic	Min	Max	Unit	Notes		
12a	PCI_SYNC_IN to output valid, see Figure 15						
12a0	Tap 0, PCI_HOLD_DEL=00, [MCP,CKE] = 11, 66 MHz PCI (default)	—	6.0	ns	1, 3		
12a1	Tap 1, PCI_HOLD_DEL=01, [MCP,CKE] = 10	—	6.5				
12a2	Tap 2, PCI_HOLD_DEL=10, [MCP,CKE] = 01, 33 MHz PCI	—	7.0				
12a3	Tap 3, PCI_HOLD_DEL=11, [MCP,CKE] = 00	—	7.5				
12b	sys_logic_clk to output valid (memory control, address, and data signals)	—	4.0	ns	2		
12c	<i>sys_logic_clk</i> to output valid (for all others)	_	7.0	ns	2		
12d	sys_logic_clk to output valid (for I ² C)	_	5.0	ns	2		
12e	sys_logic_clk to output valid (ROM/Flash/PortX)	_	6.0	ns	2		
13a	Output hold (PCI), see Figure 15						
13a0	Tap 0, PCI_HOLD_DEL=00, [MCP,CKE] = 11, 66-MHz PCI (default)	2.0	—	ns	1, 3, 4		
13a1	Tap 1, PCI_HOLD_DEL=01, [MCP,CKE] = 10	2.5	—				
13a2	Tap 2, PCI_HOLD_DEL=10, [MCP,CKE] = 01, 33-MHz PCI	3.0	—				
13a3	Tap 3, PCI_HOLD_DEL=11, [MCP,CKE] = 00	3.5	—				
13b	Output hold (all others)	1.0	—	ns	2		
14a	PCI_SYNC_IN to output high impedance (for PCI)	—	14.0	ns	1, 3		

Table 11.	Output	AC	Timina	Specifications
14010 111	e aipai			opeenieanene

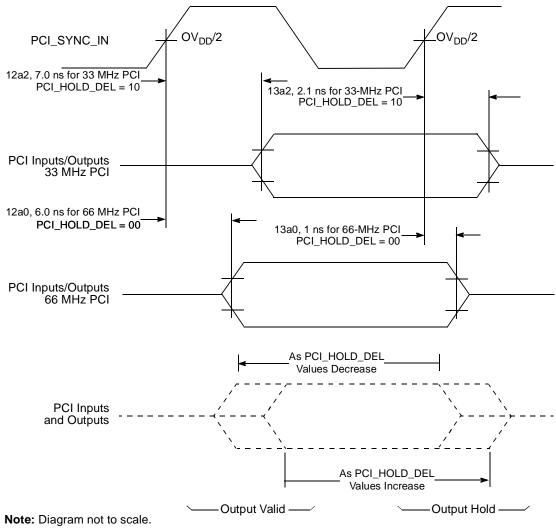


Figure 15. PCI_HOLD_DEL Effect on Output Valid and Hold Times

4.6 l²C

This section describes the DC and AC electrical characteristics for the I²C interfaces of the MPC8245.

4.6.1 I²C DC Electrical Characteristics

Table 12 provides the DC electrical characteristics for the I^2C interfaces.

Table 12. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	
Input low voltage level	V _{IL}	-0.3	$0.3 imes OV_{DD}$	V	
Low-level output voltage	V _{OL}	0	$0.2 \times \text{OV}_{\text{DD}}$	V	1

MPC8245 Integrated Processor Hardware Specifications, Rev. 10

Freescale Semiconductor

Table 13. I²C AC Electrical Specifications (continued)

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 12).

Parameter	Symbol ¹	Min	Max	Unit
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times \text{OV}_{\text{DD}}$	_	V

Note:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{I2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. Also, t_{I2SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 2. As a transmitter, the MPC8245 provides a delay time of at least 300 ns for the SDA signal (referred to as the Vihmin of the SCL signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of Start or Stop condition. When the MPC8245acts as the I²C bus master while transmitting, it drives both SCL and SDA. As long as the load on SCL and SDA is balanced, the MPC8245 does not cause the unintended generation of a Start or Stop condition. Therefore, the 300 ns SDA output delay time is not a concern. If, under some rare condition, the 300 ns SDA output delay time is required for the MPC8245 as transmitter, the following setting is recommended for the FDR bit field of the I2CFDR register to ensure both the desired I²C SCL clock frequency and SDA output delay time are achieved. It is assumed that the desired I²C SCL clock frequency is 400 KHz and the digital filter sampling rate register (DFFSR bits in I2CFDR) is programmed with its default setting of 0x10 (decimal 16):

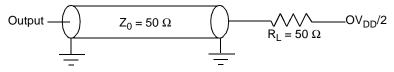
SDRAM Clock Frequency	100 MHz	133 MHz
FDR Bit Setting	0x00	0x2A
Actual FDR Divider Selected	384	896
	000 4 1/11-	4 40 4 1/11

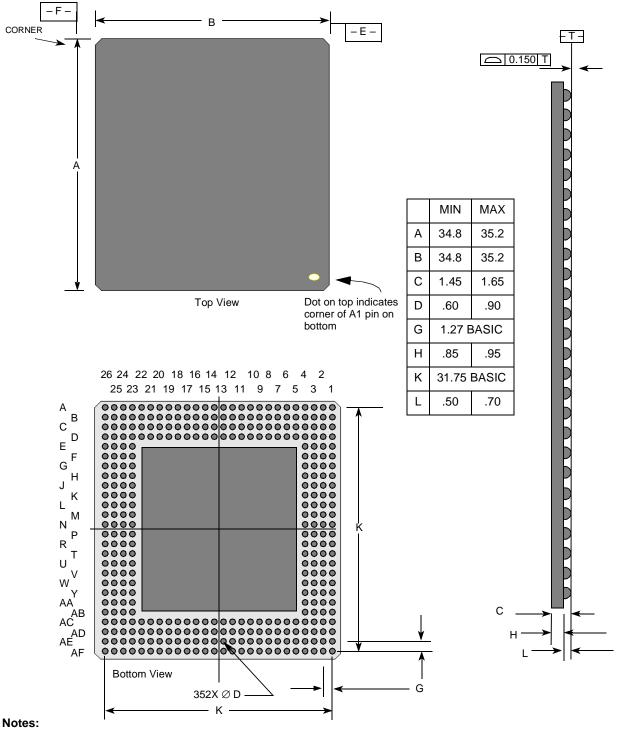
Actual I²C SCL Frequency Generated 260.4 KHz 148.4 KHz

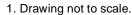
For details on I²C frequency calculation, refer to the application note AN2919 "Determining the I²C Frequency Divider Ratio for SCL".

- 3. The maximum t_{I2DXKL} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. Guaranteed by design.

Figure 16 provides the AC test load for the I^2C .




Figure 16. I²C AC Test Load



Package Description

5.2 Pin Assignments and Package Dimensions

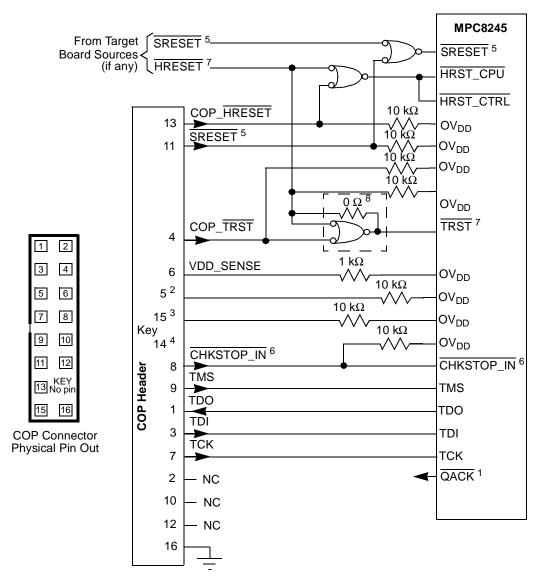
Figure 24 shows the top surface, side profile, and pinout of the MPC8245, 352 TBGA package.

2. All measurements are in millimeters (mm).

5.3 **Pinout Listings**

Table 16 provides the pinout listing for the MPC8245, 352 TBGA package.

Table 16. MPC8245 Pinout Listing


Name	Pin Numbers	Туре	Power Supply	Output Driver Type	Notes
	PCI Int	erface Signals			
C/BE[3:0]	P25 K23 F23 A25	I/O	OV _{DD}	DRV_PCI	6, 15
DEVSEL	H26	I/O	OV _{DD}	DRV_PCI	8, 15
FRAME	J24	I/O	OV _{DD}	DRV_PCI	8, 15
IRDY	K25	I/O	OV _{DD}	DRV_PCI	8, 15
LOCK	J26	Input	OV _{DD}	_	8
AD[31:0]	V25 U25 U26 U24 U23 T25 T26 R25 R26 N26 N25 N23 M26 M25 L25 L26 F24 E26 E25 E23 D26 D25 C26 A26 B26 A24 B24 D19 B23 B22 D22 C22	I/O	OV _{DD}	DRV_PCI	6, 15
PAR	G25	I/O	OV _{DD}	DRV_PCI	15
GNT[3:0]	W25 W24 W23 V26	Output	OV _{DD}	DRV_PCI	6, 15
GNT4/DA5	W26	Output	OV _{DD}	DRV_PCI	7, 15, 14
REQ[3:0]	Y25 AA26 AA25 AB26	Input	OV _{DD}		6, 12
REQ4/DA4	Y26	I/O	OV _{DD}		12, 14
PERR	G26	I/O	OV _{DD}	DRV_PCI	8, 15, 18
SERR	F26	I/O	OV _{DD}	DRV_PCI	8, 15, 16
STOP	H25	I/O	OV _{DD}	DRV_PCI	8, 15
TRDY	K26	I/O	OV _{DD}	DRV_PCI	8, 15
INTA	AC26	Output	OV _{DD}	DRV_PCI	10, 15, 16
IDSEL	P26	Input	OV _{DD}	_	
	Memory I	nterface Signal	s		-
MDL[0:31]	AD17 AE17 AE15 AF15 AC14 AE13 AF13 AF12 AF11 AF10 AF9 AD8 AF8 AF7 AF6 AE5 B1 A1 A3 A4 A5 A6 A7 D7 A8 B8 A10 D10 A12 B11 B12 A14	I/O	GV _{DD}	DRV_STD_MEM	5, 6
MDH[0:31]	AC17 AF16 AE16 AE14 AF14 AC13 AE12 AE11 AE10 AE9 AE8 AC7 AE7 AE6 AF5 AC5 E4 A2 B3 D4 B4 B5 D6 C6 B7 C9 A9 B10 A11 A13 B13 A15	I/O	GV _{DD}	DRV_STD_MEM	6

		33	333 MHz Part ⁹ 350 MHz Part			350 MHz Part ⁹			liers
Ref	PLL_ CFG[0:4] ^{10,13}	PCI Clock Input (PCI_ SYNC_IN) Range ¹ (MHz)	Periph Logic/Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI Clock Input (PCI_ SYNC_IN) Range ¹ (MHz)	Periph Logic/Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI-to- Mem (Mem VCO)	Mem-to- CPU (CPU VCO)
2	00010 ¹¹	50 ¹⁸ –66 ¹	50–66	225–297	50 ¹⁸ –66 ¹	50–66	225–297	1 (4)	4.5 (2)
3	00011 ^{11,14}	50 ¹⁷ –66 ¹	50–66	100–133	50 ¹⁷ –66 ¹	50–66	100–133	1 (Bypass)	2 (4)
4	00100 ¹²	25–46 ⁴	50–92	100–184	25–46 ⁴	50–92	100–184	2 (4)	2 (4)
6	00110 ¹⁵		Bypass			Bypass		Вура	ass
7 Rev B	00111 ¹⁴	60 ⁶ –66 ¹	60–66	180–198	60 ⁶ –66 ¹	60–66	180–198	1 (Bypass)	3 (2)
7 Rev D	00111 ¹⁴	1	Not available		25	100	350	4(2)	3.5(2)
8	01000 ¹²	60 ⁶ –66 ¹	60–66	180–198	60 ⁶ –66 ¹	60–66	180–198	1 (4)	3 (2)
9	01001 ¹²	45 ⁶ –66 ¹	90–132	180–264	45 ⁶ –66 ¹	90–132	180–264	2 (2)	2 (2)
А	01010 ¹²	25–37 ^{5,7}	50–74	225–333	25–38 ⁵	50–76	225–342	2 (4)	4.5 (2)
В	01011 ¹²	45 ³ –66 ¹	68–99	204–297	45 ³ –66 ¹	68–99	204–297	1.5 (2)	3 (2)
С	01100 ¹²	36 ⁶ –46 ⁴	72–92	180–230	36 ⁶ -46 ⁴	72–92	180–230	2 (4)	2.5 (2)
D	01101 ¹²	45 ³ –63 ^{5,7}	68–95	238–333	45 ³ –66 ¹	68–99	238–347	1.5 (2)	3.5 (2)
E	01110 ¹²	30 ⁶ -46 ⁴	60–92	180–276	30 ⁶ -46 ⁴	60–92	180–276	2 (4)	3 (2)
F	01111 ¹²	25–31 ⁵	75–93	263–326	25–33 ⁵	75–99	263–347	3 (2)	3.5 (2)
10	10000 ¹²	30 ⁶ -44 ²	90–132	180–264	30 ⁶ –44 ²	90–132	180–264	3 (2)	2 (2)
11	10001 ¹²	25–33 ^{2,16}	100–132	250–330	25–33 ^{2,16}	100–132	250–330	4 (2)	2.5 (2)
12	10010 ¹²	60 ⁶ –66 ¹	90–99	180–198	60 ⁶ –66 ¹	90–99	180–198	1.5 (2)	2 (2)
13	10011 ¹²	25–27 ⁵	100–108	300–324	25–29 ⁵	100–116	300–348	4 (2)	3 (2)
14	10100 ¹²	26 ⁶ -47 ⁴	52–94	182–329	26 ⁶ –47 ⁴	52–94	182–329	2 (4)	3.5 (2)
15	10101 ¹²	27 ³ –33 ⁵	68–83	272–332	27 ³ –34 ⁵	68–85	272–340	2.5 (2)	4 (2)
16	10110 ¹²	25–41 ⁵	50-82	200–328	25–43 ⁵	50–86	200–344	2 (4)	4 (2)
17	10111 ¹²	25–33 ²	100–132	200–264	25–33 ²	100–132	200–264	4 (2)	2 (2)
18	11000 ¹²	27 ³ –44 ⁵	68–110	204–330	27 ³ –46 ⁵	68–115	204–345	2.5 (2)	3 (2)
19	11001 ¹²	36 ⁶ –66 ¹	72–132	180–330	36 ⁶ –66 ¹	72–132	180–330	2 (2)	2.5 (2)
1A	11010 ¹²	50 ¹⁸ –66 ¹	50–66	200–264	50 ¹⁸ –66 ¹	50–66	200–264	1 (4)	4 (2)
1B	11011 ¹²	34 ³ –55 ⁵	68–110	204–330	34 ³ –58 ⁵	68–116	204–348	2 (2)	3 (2)
1C	11100 ¹²	44 ³ –66 ¹	66–99	198–297	44 ³ –66 ¹	66–99	198–297	1.5 (2)	3 (2)
1D	11101 ¹²	48 ⁶ –66 ¹	72–99	180–248	48 ⁶ –66 ¹	72–99	180–248	1.5 (2)	2.5(2)

Table 18. PLL Configurations (333- and 350-MHz Parts) (continued)

Note:

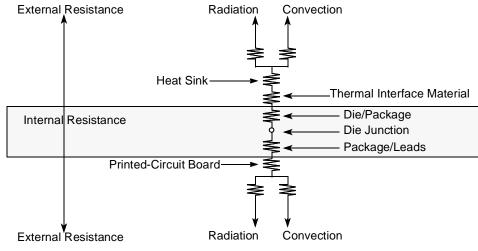
- ¹ QACK is an output and is not required at the COP header for emulation.
- ² RUN/STOP normally found on pin 5 of the COP header is not implemented on the MPC8245. Connect pin 5 of the COP header to OV_{DD} with a 1-kΩ pull-up resistor.
- ³ CKSTP_OUT normally on pin 15 of the COP header is not implemented on the MPC8245. Connect pin 15 of the COP header to OV_{DD} with a 10-kΩ pull-up resistor.
- ⁴ Pin 14 is not physically present on the COP header.
- ⁵ SRESET functions as output SDMA12 in extended ROM mode.
- ⁶ CHKSTOP_IN functions as output SDMA14 in extended ROM mode.
- ⁷ The COP port and target board should be able to independently assert HRESET and TRST to the processor to control the processor as shown.
- ⁸ If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP header through an AND gate to TRST of the part. If the JTAG interface is not implemented, connect HRESET from the target source to TRST of the part through a 0-Ω isolation resistor.

Figure 26. COP Connector Diagram

System Design

Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com

Selection of an appropriate heat sink depends on thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. Other heat sinks offered by Aavid Thermalloy, Alpha Novatech, IERC, Chip Coolers, and Wakefield Engineering offer different heat sink-to-ambient thermal resistances and may or may not need airflow.


603-635-5102

7.8.1 Internal Package Conduction Resistance

The intrinsic conduction thermal resistance paths for the TBGA cavity-down packaging technology shown in Figure 29 are as follows:

- Die junction-to-case thermal resistance
- Die junction-to-ball thermal resistance

Figure 29 depicts the primary heat transfer path for a package with an attached heat sink mounted on a printed-circuit board.

(Note the internal versus external package resistance)

Figure 29. TBGA Package with Heat Sink Mounted to a Printed-Circuit Board

In a TBGA package, the active side of the die faces the printed-circuit board. Most of the heat travels through the die, across the die attach layer, and into the copper spreader. Some of the heat is removed from the top surface of the spreader through convection and radiation. Another percentage of the heat enters the printed-circuit board through the solder balls. The heat is then removed from the exposed surfaces of the board through convection and radiation. If a heat sink is used, a larger percentage of heat leaves through the top side of the spreader.

VP.

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the airflow around the device, the interface material, the mounting arrangement on the printed-circuit board, or the thermal dissipation on the printed-circuit board surrounding the device.

To determine the junction temperature of the device in the application without a heat sink, the thermal characterization parameter (Ψ_{JT}) measures the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_T = thermocouple temperature atop the package (°C) Ψ_{JT} = thermal characterization parameter (°C/W) P_D = power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance minimizes the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

In many cases, it is appropriate to simulate the system environment using a computational fluid dynamics thermal simulation tool. In such a tool, the simplest thermal model of a package that has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case covers the situation where a heat sink is used or a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed-circuit board.

7.9 References

Semiconductor Equipment and Materials International 805 East Middlefield Rd. Mountain View, CA 94043 (415) 964-5111

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the web at http://www.jedec.org.

Document Revision History

8 Document Revision History

Table 19 provides a revision history for this hardware specification.

Table	19. Re	vision	History	Table
IUNIO		101011		Iabio

Revision	Date	Substantive Change(s)		
10	8/07	Section 3, Table 3, and Table 7—Changed format of recommended voltage supply values so that delta to the chosen nominal does not exceed \pm 100 mV. Completely replaced Section 4.6 with compliant I ² C specifications as with other related integrated processor devices.		
9	12/27/05	Document—Added Power Architecture information. Section 4.1—Changed increased absolute maximum range for V _{DD} in Table 1. Updated format of nominal voltage listings in Table 2. Section 9.2—Removed Note 3 from Table 21. Updated back page information.		
8	11/15/2005	Document—Imported new template and made minor editorial changes. Removed references to a 466 MHz part since it is not available for new orders. Section 4.3.2—Added paragraph for using DLL mode that provides lowest locked tap point read in 0xE3. Section 5.3—Updated the driver and I/O assignment information for the multiplexed PCI clock and DUART signals. Added note for HRST_CPU and HRST_CTRL, which had been mentioned only in Figure 2. Section 9.2—Updated the part ordering specifications for the extended temperature parts. Also updated the section to reflect what we offer for new orders. Section 9.3—Added new section, "Part Marking." Updated Figure 33 to match with current part marking format.		
7	10/07/2004	Section 4.1.2—Table 2: Corrected range of AV _{DD} and AVDD ₂ . Section 9.1—Table 21: Corrected voltage range under Process Descriptor column. Minor reformatting.		
6.1	05/24/2004	Section 4.5.3—Table 11: Spec 12b was improved from 4.5 ns to 4.0 ns. This improvement is guaranteed on devices marked after work week (WW) 28 of 2004. A device's work week may be determined from the "YYWW" portion of the devices trace ability code which is marked on the top of the device. So for WW28 in 2004, the device's YYWW is marked as 0428. For more information refer to Figure 33		
6	05/11/2004	Section 4.1.2—Table 2: Corrected range of GV_{DD} to 3.3 ± 5%. Section 4.2.1—Table 4: Changed the default for drive strength of DRV_STD_MEM. Section 4.5.1—Table 8: Changed the wording description for item 15. Section 4.5.2—Table 10: Changed T _{os} range and wording in note; Figure 11:changed wording for SDRAM_SYNC_IN description relative to T _{OS} . Section 4.5.3—Table 11: Changed timing specification for <i>sys_logic_clk</i> to output valid (memory control, address, and data signals).		
5.1	_	Section 4.3.1—Table 9: Corrected last row to state the correct description for the bit setting. Max tap delay, DLL extend. Figure 8: Corrected the label name for the DLL graph to state "DLL Locking Range Loop Delay vs. Frequency of Operation for DLL_Extend=1 and Normal Tap Delay"		

Table 19. Revision History Table (continued)

Revision	Date	Substantive Change(s)		
5 —		Section 4.1.2 — Added note 6 and related label for latching of the PLL_CFG signals. Section 4.1.3 — Updated specifications for the input high and input low voltages of PCI_SYNC_IN. Section 4.3 — Table 7, updated specifications for the voltage range of V _{DD} for specific CPU frequencies.		
		Section 4.3.1 — Table 8: Corrected typo for first number 1a to 1; Updated characteristics for the DLL lock range for the default and remaining three DLL locking modes; Reworded note description for note 6. Replaced contents of Table 9 with bit descriptions for the four DLL locking modes. In Figures 7 through 10, updated the DLL locking mode graphs.		
		Section 4.3.2 — Table 10: Changed the name of references for timing parameters from SDRAM_SYNC_IN to <i>sys_logic_clk</i> to be consistent with Figure 11. Followed the same change for note 2.		
		Section 4.3.3— Table 11: Changed the name of references for timing parameters from SDRAM_SYNC_IN to <i>sys_logic_clk</i> to be consistent with Figure 11. Followed the same change for note 2.		
		Section 5.3 — Table 17: Removed extra listing of DRDY in Test/Configuration signal list and updated relevant notes for signal in Memory Interface signal listing. Updated note #20. Added note 26 for the signals of the UART interface.		
		Section 7.6 — Added reference to AN2128 application note that highlights the differences between the MPC8240 and the MPC8245. Section 7.7 — Added relevant notes to this section and updated Figure 29.		
4	_	Section 1.4.1.2—Updated notes for GV _{DD} , AV _{DD} , AV _{DD2} . Section 1.5.1—Updated solder ball information to include lead-free (V V) balls. Section 1.5.3—Updated Note 25 for QACK/DA0 signal. Added a sentence to Note 3. Section 1.6 —Incorporated Note 19 into Note 12 and modified Tables 18 and 19 accordingly. Section 1.9—Updated part marking nomenclature where appropriate to include the lead-free offering. Replaced reference to PNS document MPC8245RZUPNS with MPC8245ARZUPNS.		
3		Section 1.4.1.2—Figure 2: Updated Note 2 and removed 'voltage regulator delay' label since Section 1.7.2 is being deleted this revision. Added Figures 4 and 5 to show voltage overshoot and undershoot of the PCI interface on the MPC8245. Section 1.4.1.3—Table 3: Updated the maximum input capacitance from 7 to 16 pF based on characterization data. Section 1.4.3.1—Updated PCI_SYNC_IN jitter specifications to 200 ps. Section 1.4.3.3—Table 11, item 12b: added the word 'address' to help clarify which signals the spec applies to. Figure 15: edited timing for items 12a0 and 12a2 to correspond with Table 11. Section 1.5.3—Updated notes for the QACK/DA0 signal because this signal has been found to have no internal pull resistor. Section 1.6—Corrected note numbers for reference numbers 3,10,1B, and 1C of the PLL tables. Updated PLL specifications for modes 7 and 1E. Section 1.7.2—Removed this section since the information already exists in Section 1.4.1.5. Section 1.7.4—Added the words 'the clamping voltage' to describe LV _{DD} in the sixth paragraph. Changed the QACK/DA0 signal from the list of signals having an internal pull-up resistor to the list of signals needing a weak pull-up resistor to OV _{DD} . Section 1.9.1—Tables 21 thru 23: Added processor version register value.		

Ordering Information

9 Ordering Information

Ordering information for the parts fully covered by this specification document is provided in Section 9.1, "Part Numbers Fully Addressed by This Document." Section 9.2, "Part Numbers Not Fully Addressed by This Document," lists the part numbers that do not fully conform to the specifications of this document. These special part numbers require an additional document called a hardware specifications addendum.

9.1 Part Numbers Fully Addressed by This Document

Table 20 provides the Freescale part numbering nomenclature for the MPC8245. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact a local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier that may specify special application conditions. Each part number also contains a revision code that refers to the die mask revision number. The revision level can be determined by reading the Revision ID register at address offset 0x08.

MPC	nnnn	L	XX	nnn	X	
Product Code	Part Identifier	Process Descriptor	Package ¹	Processor Frequency ² (MHz)	Revision Level	Processor Version Register Value
MPC	8245	L: 0° to 105°C	ZU = TBGA V V = Lead-free TBGA	266, 300 1.7 V to 2.1 V	D:1.4 Rev ID:0x14	0x80811014
		L: 0° to 105°C	ZU = TBGA V V = Lead-free TBGA	333, 350 1.9 V to 2.2 V		

Table 20. Part Numberin	g Nomenclature
-------------------------	----------------

Notes:

1. See Section 5, "Package Description," for more information on available package types.

2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by a hardware specifications addendum may support other maximum core frequencies.

Ordering Information

THIS PAGE INTENTIONALLY LEFT BLANK