

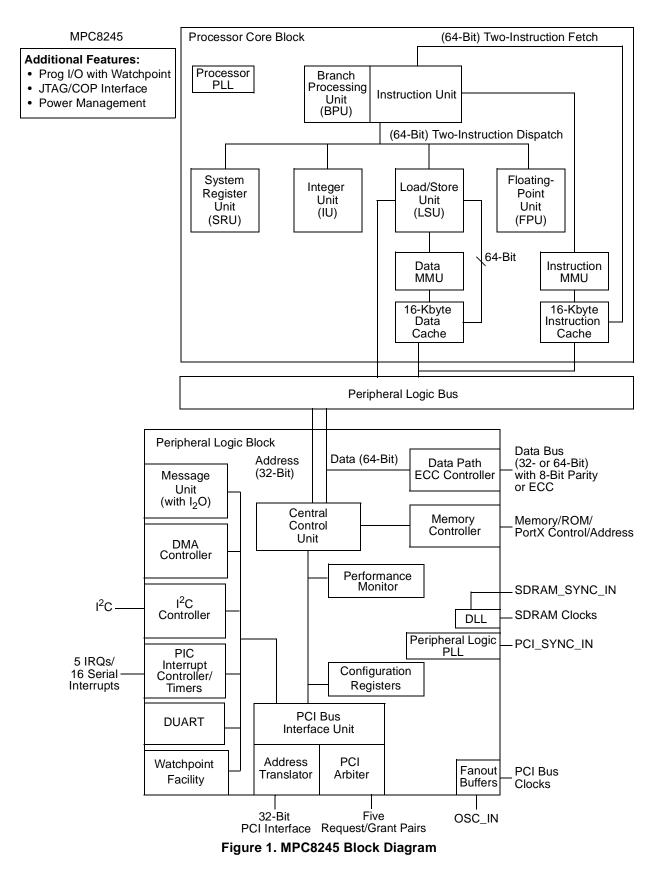
Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in


Details

Product Status	Obsolete
Core Processor	PowerPC 603e
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	300MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	352-LBGA
Supplier Device Package	352-TBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8245lzu300d

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical and Thermal Characteristics

4.1.1 Absolute Maximum Ratings

The tables in this section describe the MPC8245 DC electrical characteristics. Table 1 provides the absolute maximum ratings.

Characteristic ¹	Symbol	Range	Unit
Supply voltage—CPU core and peripheral logic	V _{DD}	-0.3 to 2.25	V
Supply voltage—memory bus drivers	GV _{DD}	-0.3 to 3.6	V
Supply voltage—PCI and standard I/O buffers	OV _{DD}	-0.3 to 3.6	V
Supply voltage—PLLs	AV _{DD} /AV _{DD} 2	-0.3 to 2.25	V
Supply voltage—PCI reference	LV _{DD}	-0.3 to 5.4	V
Input voltage ²	V _{in}	-0.3 to 3.6	V
Operational die-junction temperature range	Тj	0 to 105 ³	°C
Storage temperature range	T _{stg}	-55 to 150	°C

Table 1. Absolute Maximum Ratings

Notes:

1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

- 2. PCI inputs with $LV_{DD} = 5 V \pm 5\% V DC$ may be correspondingly stressed at voltages exceeding $LV_{DD} + 0.5 V DC$.
- 3. Note that this temperature range does not apply to the 400 MHz parts. For details, refer to the hardware specifications addendum MPC8245ECSO2AD.

4.1.2 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for the MPC8245. Some voltage values do not apply to the 400-MHz parts. For details, refer to the hardware specifications addendum MPC8245ECSO2AD.

Characteristic	Symbol	Recommended Value	Unit	Notes
Supply voltage	V _{DD}	1.8/1.9/2.0 V ± 100 mV	V	4, 7
		2.0/2.1 V ± 100 mV	V	5, 7
I/O buffer supply for PCI and standard	OV _{DD}	3.3 ± 0.3	V	7
Supply voltages for memory bus drivers	GV _{DD}	3.3 ± 5%	V	9
CPU PLL supply voltage	AV _{DD}	1.8/1.9/2.0 V ±	V	4, 7, 12
		2.0/2.1 V ±	V	5, 7, 12

Table 2. Recommended Operating Conditions¹

Figure 3 shows the undershoot and overshoot voltage of the memory interface.

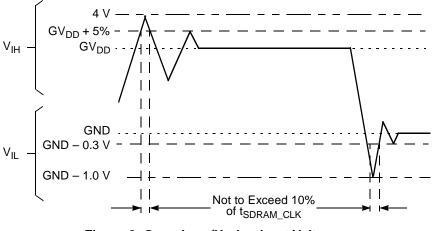


Figure 3. Overshoot/Undershoot Voltage

Figure 4 and Figure 5 show the undershoot and overshoot voltage of the PCI interface for the 3.3- and 5-V signals, respectively.

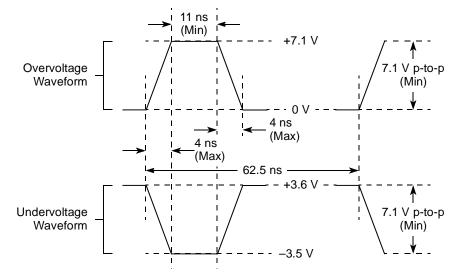


Figure 4. Maximum AC Waveforms for 3.3-V Signaling

Electrical and Thermal Characteristics

4.3 **Power Characteristics**

Table 5 provides power consumption data for the MPC8245.

Maria	PCI Bus Clock/Memory Bus Clock/CPU Clock Frequency (MHz)								
Mode	66/66/266	66/133/266	66/66/300	66/100/300	33/83/333	66/133/333	66/100/350	Unit	Notes
Typical	1.7 (1.5)	2.0 (1.8)	1.8 (1.7)	2.0 (1.8)	2.0	2.3	2.2	W	1, 5
Max—FP	2.2 (1.9)	2.4 (2.1)	2.3 (2.0)	2.5 (2.2)	2.6	2.8	2.8	W	1, 2
Max—INT	1.8 (1.6)	2.1 (1.8)	2.0 (1.8)	2.1 (1.8)	2.2	2.4	2.4	W	1, 3
Doze	1.1 (1.0)	1.4 (1.3)	1.2 (1.1)	1.4 (1.3)	1.4	1.6	1.5	W	1, 4, 6
Nap	0.4 (0.4)	0.7 (0.7)	0.4 (0.4)	0.6 (0.6)	0.5	0.7	0.6	W	1, 4, 6
Sleep	0.2 (0.2)	0.4 (0.4)	0.2 (0.4)	0.3 (0.3)	0.3	0.4	0.3	W	1, 4, 6
•••••			1/0	D Power Supp	olies ¹⁰				
M	ode		Min			Max		Unit	Notes
Typ—OV _{DD})		134 (121)			334 (301)		mW	7, 8
Typ—GV _{DD})		324 (292)			800 (720)		mW	7, 9

Table 5. Power Consumption

Notes:

- 1. The values include V_{DD} , AV_{DD} , and AV_{DD}^2 but do not include I/O supply power. Information on OV_{DD} and GV_{DD} supply power is captured in the I/O power supplies section of this table. Values shown in parenthesis () indicate power consumption at $V_{DD}/AV_{DD}/AV_{DD}^2 = 1.8$ V.
- Maximum—FP power is measured at V_{DD} = 2.1 V with dynamic power management enabled while running an entirely cache-resident, looping, floating-point multiplication instruction.
- Maximum—INT power is measured at V_{DD} = 2.1 V with dynamic power management enabled while running entirely cache-resident, looping, integer instructions.
- 4. Power saving mode maximums are measured at V_{DD} = 2.1 V while the device is in doze, nap, or sleep mode.
- Typical power is measured at V_{DD} = AV_{DD} = 2.0 V, OV_{DD} = 3.3 V where a nominal FP value, a nominal INT value, and a value where there is a continuous flush of cache lines with alternating ones and zeros on 64-bit boundaries to local memory are averaged.
- 6. Power saving mode data measured with only two PCI_CLKs and two SDRAM_CLKs enabled.
- The typical minimum I/O power values were results of the MPC8245 performing cache resident integer operations at the slowest frequency combination of 33:66:200 (PCI:Mem:CPU) MHz.
- 8. The typical maximum OV_{DD} value resulted from the MPC8245 operating at the fastest frequency combination of 66:100:350 (PCI:Mem:CPU) MHz and performing continuous flushes of cache lines with alternating ones and zeros to PCI memory.
- The typical maximum GV_{DD} value resulted from the MPC8245 operating at the fastest frequency combination of 66:100:350 (PCI:Mem:CPU) MHz and performing continuous flushes of cache lines with alternating ones and zeros on 64-bit boundaries to local memory.
- 10. Power consumption of PLL supply pins (AV_{DD} and AV_{DD}2) < 15 mW. Guaranteed by design and not tested.

Electrical and Thermal Characteristics

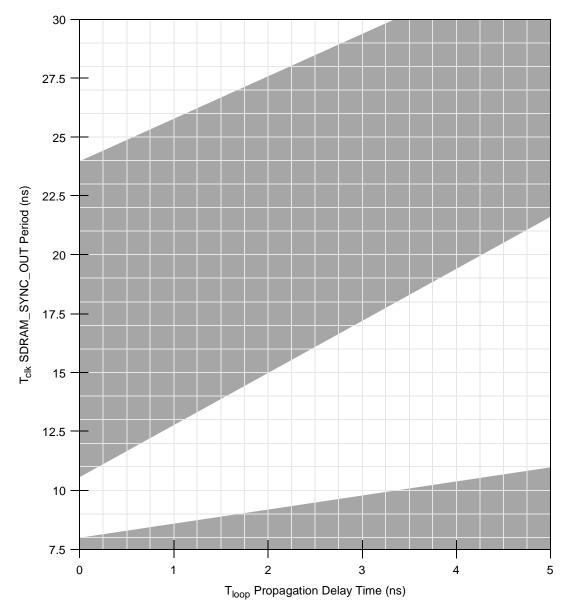


Figure 8. DLL Locking Range Loop Delay Versus Frequency of Operation for DLL_Extend=1 and Normal Tap Delay

Table 13. I²C AC Electrical Specifications (continued)

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 12).

Parameter	Symbol ¹	Min	Max	Unit
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times \text{OV}_{\text{DD}}$	_	V

Note:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{I2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. Also, t_{I2SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 2. As a transmitter, the MPC8245 provides a delay time of at least 300 ns for the SDA signal (referred to as the Vihmin of the SCL signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of Start or Stop condition. When the MPC8245acts as the I²C bus master while transmitting, it drives both SCL and SDA. As long as the load on SCL and SDA is balanced, the MPC8245 does not cause the unintended generation of a Start or Stop condition. Therefore, the 300 ns SDA output delay time is not a concern. If, under some rare condition, the 300 ns SDA output delay time is required for the MPC8245 as transmitter, the following setting is recommended for the FDR bit field of the I2CFDR register to ensure both the desired I²C SCL clock frequency and SDA output delay time are achieved. It is assumed that the desired I²C SCL clock frequency is 400 KHz and the digital filter sampling rate register (DFFSR bits in I2CFDR) is programmed with its default setting of 0x10 (decimal 16):

SDRAM Clock Frequency	100 MHz	133 MHz
FDR Bit Setting	0x00	0x2A
Actual FDR Divider Selected	384	896
	000 4 1/11-	4 40 4 1/11

Actual I²C SCL Frequency Generated 260.4 KHz 148.4 KHz

For details on I²C frequency calculation, refer to the application note AN2919 "Determining the I²C Frequency Divider Ratio for SCL".

- 3. The maximum t_{I2DXKL} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. Guaranteed by design.

Figure 16 provides the AC test load for the I^2C .

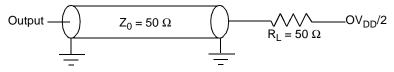
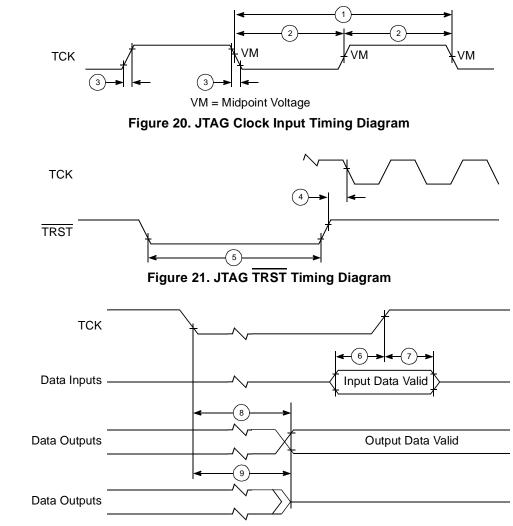


Figure 16. I²C AC Test Load

Electrical and Thermal Characteristics

Num	Characteristic	Min	Мах	Unit	Notes
11	TMS, TDI data hold time	15	-	ns	
12	TCK to TDO data valid	0	15	ns	
13	TCK to TDO high impedance	0	15	ns	

Table 15. JTAG AC Timing Specification (Independent of PCI_SYNC_IN) (continued)


Notes:

1. TRST is an asynchronous signal. The setup time is for test purposes only.

2. Nontest (other than TDI and TMS) signal input timing with respect to TCK.

3. Nontest (other than TDO) signal output timing with respect to TCK.

Figure 20 through Figure 23 show the different timing diagrams.

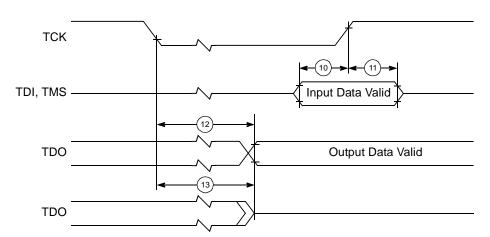


Figure 23. Test Access Port Timing Diagram

5 Package Description

This section details package parameters, pin assignments, and dimensions.

5.1 Package Parameters

The MPC8245 uses a 35 mm \times 35 mm, cavity-up, 352-pin tape ball grid array (TBGA) package. The package parameters are as follows.

Package Outline	$35 \text{ mm} \times 35 \text{ mm}$
Interconnects	352
Pitch	1.27 mm
Solder Balls	ZU (TBGA package)—62 Sn/36 Pb/2 Ag VV (Lead-free version of package)—95.5 Sn/4.0 Ag/0.5 Cu
Solder Ball Diameter	0.75 mm
Maximum Module Height	1.65 mm
Co-Planarity Specification	0.15 mm
Maximum Force	6.0 lbs. total, uniformly distributed over package (8 grams/ball)

Name	Pin Numbers	Туре	Power Supply	Output Driver Type	Notes
V _{DD}	AA24 AC16 AC19 AD12 AD6 AD9 C15 C18 C21 D11 D8 F3 H23 J3 L23 M3 R24 T4 V24 W4	Power for core 1.8/2.0 V	V _{DD}	_	22
No Connect	D17	—	_	_	23
AV _{DD}	C17	C17 Power for PLL (CPU core logic) 1.8/2.0 V		_	22
AV _{DD} 2	AF24	Power for PLL (peripheral logic) 1.8/2.0 V	AV _{DD} 2		22
	Debug/M	anufacturing Pins	6		
DA0/QACK	F2	Output	OV_{DD}	DRV_STD_MEM	4, 10, 25
DA1/CKO	B15	Output	OV _{DD}	DRV_STD_MEM	14
DA2	C25	Output	OV_{DD}	DRV_PCI	2
DA3/PCI_CLK4	AF26	Output	${\rm GV}_{\rm DD}$	DRV_PCI_CLK	14
DA4/REQ4	Y26	I/O	OV_{DD}	_	12, 14
DA5/GNT4	W26	Output	OV_{DD}	DRV_PCI	7, 15, 14
DA[10:6]/ PLL_CFG[0:4]	A22 B19 A21 B18 B17	I/O	OV _{DD}	DRV_STD_MEM	6, 14, 20
DA[11]	AD26	Output	OV_{DD}	DRV_PCI	2
DA[12:13]	AF17 AF19	Output	OV _{DD}	DRV_STD_MEM	2, 6

Table 16.	MPC8245	Pinout	Listing ((continued)
-----------	---------	--------	-----------	-------------

Package Description

Table 16. MPC8245 Pinout Listing (continued)

Name	Pin Numbers	Туре	Power Supply	Output Driver Type	Notes
DA[14:15]	F1 J2	Output	GV _{DD}	DRV_MEM_CTRL	2, 6

Notes:

- 1. Place a pull-up resistor of 120 Ω or less on the TEST0 pin.
- 2. Treat these pins as no connects (NC) unless debug address functionality is used.
- 3. This pin has an internal pull-up resistor that is enabled only in the reset state. The value of the internal pull-up resistor is not guaranteed but is sufficient to ensure that a logic 1 is read into configuration bits during reset if the signal is left unterminated.
- 4. This pin is a reset configuration pin.
- 5. DL[0] is a reset configuration pin with an internal pull-up resistor that is enabled only in the reset state. The value of the internal pull-up resistor is not guaranteed but is sufficient to ensure that a logic 1 is read into configuration bits during reset.
- 6. Multi-pin signals such as AD[31:0] and MDL[0:31] have their physical package pin numbers listed in an order corresponding to the signal names. Example: AD0 is on pin C22, AD1 is on pin D22, ..., AD31 is on pin V25.
- 7. GNT4 is a reset configuration pin with an internal pull-up resistor that is enabled only in the reset state.
- 8. A weak pull-up resistor (2–10 k Ω) should be placed on this PCI control pin to LV_{DD}.
- 9. V_{IH} and V_{IL} for these signals are the same as the PCI V_{IH} and V_{IL} entries in Table 3.
- 10. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to OV_{DD}.
- 11. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to GV_{DD}.
- 12. This pin has an internal pull-up resistor that is enabled at all times. The value of the internal pull-up resistor is not guaranteed but is sufficient to prevent unused inputs from floating.
- 13. An external PCI clocking source or fan-out buffer may be required for the MPC8245 DUART functionality since PCI_CLK[0:3] are not available in DUART mode. Only PCI_CLK4 is available in DUART mode.
- 14. This pin is a multiplexed signal and appears more than once in this table.
- 15. This pin is affected by the programmable PCI_HOLD_DEL parameter.
- 16. This pin is an open-drain signal.
- 17. This pin can be programmed as driven (default) or as open-drain (in MIOCR 1).
- 18. This pin is a sustained three-state pin as defined by the PCI Local Bus Specification.
- 19. OSC_IN uses the 3.3-V PCI interface driver, which is 5-V tolerant. See Table 2 for details.
- 20. PLL_CFG signals must be driven on reset and must be held for at least 25 clock cycles after the negation of HRST_CTRL and HRST_CPU in order to be latched.
- 21. SDRAM_CLK[0:3] and SDRAM_SYNC_OUT signals use DRV_MEM_CTRL for chip Rev 1.1 (A). These signals use DRV_MEM_CLK for chip Rev 1.2 (B).
- 22. The 266- and 300-MHz part offerings can run at a source voltage of 1.8 ± 100 mV or 2.0 ± 100 mV. Source voltage should be 2.0 ± 100 mV for 333- and 350-MHz parts.
- 23. This pin is LAVDD on the MPC8240. It is an NC on the MPC8245, which should not pose a problem when an MPC8240 is replaced with an MPC8245.
- 24. The driver capability of this pin is hardwired to 40 Ω and cannot be changed.
- 25. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to OV_{DD} so that a 1 can be detected at reset if an external memory clock is not used and PLL[0:4] does not select a half-clock frequency ratio.
- 26. Typically, the serial port has sufficient drivers in the RS232 transceiver to drive the CTS pin actively as an input. No pullups are needed in this case.
- 27. HRST_CPU/HRST_CTRL must transition from a logic 0 to a logic 1 in less than one SDRAM_SYNC_IN clock cycle for the device to be in the nonreset state

		333 MHz Part ⁹		350 MHz Part ⁹			Multipliers		
Ref	PLL_ CFG[0:4] ^{10,13}	PCI Clock Input (PCI_ SYNC_IN) Range ¹ (MHz)	Periph Logic/Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI Clock Input (PCI_ SYNC_IN) Range ¹ (MHz)	Periph Logic/Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI-to- Mem (Mem VCO)	Mem-to- CPU (CPU VCO)
1E Rev B	11110 ⁸		Not usable		Not usable			Off	Off
1E Rev D	11110	33 ³ –47 ⁵	66–94	231–329	33 ³ -50 ^{2,5,7}	66–100	231–350	2(2)	3.5(2)
1F	11111 ⁸		Not usable			Not usable		Off	Off

Table 18. PLL Configurations (333- and 350-MHz Parts) (continued)

Notes:

- 1. Limited by the maximum PCI input frequency (66 MHz).
- 2. Limited by the maximum system memory interface operating frequency (100 MHz @ 350 MHz CPU).
- 3. Limited by the minimum memory VCO frequency (132 MHz).
- 4. Limited due to the maximum memory VCO frequency (372 MHz).
- 5. Limited by the maximum CPU operating frequency.
- 6. Limited by the minimum CPU VCO frequency (360 MHz).
- 7. Limited by the maximum CPU VCO frequency (Maximum marked CPU speed X 2).
- 8. In clock-off mode, no clocking occurs inside the MPC8245, regardless of the PCI_SYNC_IN input.
- 9. Range values are rounded down to the nearest whole number (decimal place accuracy removed).
- PLL_CFG[0:4] settings not listed are reserved.
- 11. Multiplier ratios for this PLL_CFG[0:4] setting differ from or do not exist on the MPC8240 and are not backward-compatible.
- 12. PCI_SYNC_IN range for this PLL_CFG[0:4] setting differs from the MPC8240 and may not be fully backward-compatible.
- 13. Bits 7-4 of register offset <0xE2> contain the PLL_CFG[0:4] setting value.
- 14. In PLL bypass mode, the PCI_SYNC_IN input signal clocks the internal processor directly, the peripheral logic PLL is disabled, and the bus mode is set for 1:1 (PCI:Mem) mode operation. This mode is for hardware modeling. The AC timing specifications in this document do not apply in PLL bypass mode.
- 15. In dual PLL bypass mode, the PCI_SYNC_IN input signal clocks the internal peripheral logic directly, the peripheral logic PLL is disabled, and the bus mode is set for 1:1 (PCI_SYNC_IN:Mem) mode operation. In this mode, the OSC_IN input signal clocks the internal processor directly in 1:1 (OSC_IN:CPU) mode operation, and the processor PLL is disabled. The PCI_SYNC_IN and OSC_IN input clocks must be externally synchronized. This mode is for hardware modeling. The AC timing specifications in this document do not apply in dual PLL bypass mode.
- 16. Limited by the maximum system memory interface operating frequency (133 MHz @ 333 MHz CPU).
- 17. Limited by the minimum CPU operating frequency (100 MHz).
- 18. Limited by the minimum memory bus frequency (50 MHz).

System Design

reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 26 allows the COP port to independently assert HRESET or TRST, while ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not be used, TRST should be tied to HRESET through a 0- Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during power-on. Although Freescale recommends that the COP header be designed into the system as shown in Figure 26, if this is not possible, the isolation resistor will allow future access to TRST in the case where a JTAG interface may need to be wired onto the system in debug situations.

The COP interface has a standard header for connection to the target system based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). Typically, pin 14 is removed as a connector key.

There is no standardized way to number the COP header shown in Figure 26. Consequently, different emulator vendors number the pins differently. Some pins are numbered top-to-bottom and left-to-right while others use left-to-right then top-to-bottom and still others number the pins counter clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 26 is common to all known emulators.

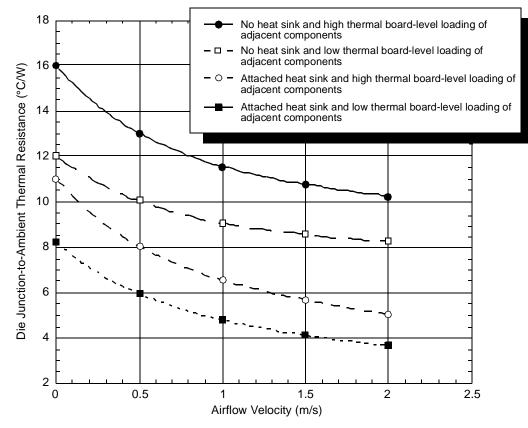


Figure 28. Die Junction-to-Ambient Resistance

The board designer can choose between several types of heat sinks to place on the MPC8245. Several commercially-available heat sinks for the MPC8245 are provided by the following vendors:

Aavid Thermalloy 603-224-9988 80 Commercial St. Concord, NH 03301 Internet: www.aavidthermalloy.com Alpha Novatech 408-749-7601 473 Sapena Ct. #15 Santa Clara, CA 95054 Internet: www.alphanovatech.com International Electronic Research Corporation (IERC) 818-842-7277 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com Tyco Electronics 800-522-6752 Chip CoolersTM P.O. Box 3668 Harrisburg, PA 17105-3668 Internet: www.chipcoolers.com

7.8.2 Adhesives and Thermal Interface Materials

A thermal interface material placed between the top of the package and the bottom of the heat sink minimizes thermal contact resistance. For applications that attach the heat sink by a spring clip mechanism, Figure 30 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. Thermal grease significantly reduces the interface thermal resistance. That is, the bare joint offers a thermal resistance approximately seven times greater than the thermal grease joint.

A spring clip attaches heat sinks to holes in the printed-circuit board (see Figure 30). Therefore, synthetic grease offers the best thermal performance, considering the low interface pressure. The selection of any thermal interface material depends on factors such as thermal performance requirements, manufacturability, service temperature, dielectric properties, and cost.

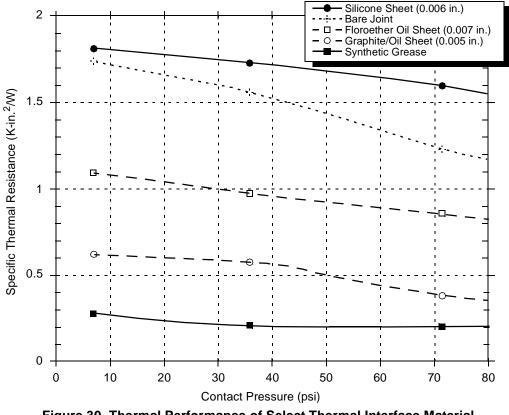


Figure 30. Thermal Performance of Select Thermal Interface Material

The board designer can choose between several types of thermal interfaces. Heat sink adhesive materials are selected on the basis of high conductivity and adequate mechanical strength to meet equipment shock/vibration requirements. Several commercially-available thermal interfaces and adhesive materials are provided by the following vendors:

Chomerics, Inc. 77 Dragon Ct. Woburn, MA 01888-4014 Internet: www.chomerics.com

781-935-4850

System Design

Dow-Corning Corporation Dow-Corning Electronic Materials 2200 W. Salzburg Rd. Midland, MI 48686-0997 Internet: www.dow.com	800-248-2481
Shin-Etsu MicroSi, Inc. 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com	888-642-7674
The Bergquist Company 18930 West 78 th St. Chanhassen, MN 55317 Internet: www.bergquistcompany.com	800-347-4572
Thermagon Inc. 4707 Detroit Ave. Cleveland, OH 44102 Internet: www.thermagon.com	888-246-9050

7.8.3 Heat Sink Usage

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$

where

 T_A = ambient temperature for the package (°C) $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W) P_D = power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Unfortunately, two values are in common usage: the value determined on a single-layer board and the value obtained on a board with two planes. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single-layer board is appropriate for the tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where

$$\begin{split} R_{\theta JA} &= \text{junction-to-ambient thermal resistance (°C/W)} \\ R_{\theta JC} &= \text{junction-to-case thermal resistance (°C/W)} \\ R_{\theta CA} &= \text{case-to-ambient thermal resistance (°C/W)} \end{split}$$

Document Revision History

8 Document Revision History

Table 19 provides a revision history for this hardware specification.

Table	19. Re	vision	History	Table
IUNIO		101011		Iabio

Revision	Date	Substantive Change(s)
10	8/07	Section 3, Table 3, and Table 7—Changed format of recommended voltage supply values so that delta to the chosen nominal does not exceed \pm 100 mV. Completely replaced Section 4.6 with compliant I ² C specifications as with other related integrated processor devices.
9	12/27/05	Document—Added Power Architecture information. Section 4.1—Changed increased absolute maximum range for V _{DD} in Table 1. Updated format of nominal voltage listings in Table 2. Section 9.2—Removed Note 3 from Table 21. Updated back page information.
8	11/15/2005	Document—Imported new template and made minor editorial changes. Removed references to a 466 MHz part since it is not available for new orders. Section 4.3.2—Added paragraph for using DLL mode that provides lowest locked tap point read in 0xE3. Section 5.3—Updated the driver and I/O assignment information for the multiplexed PCI clock and DUART signals. Added note for HRST_CPU and HRST_CTRL, which had been mentioned only in Figure 2. Section 9.2—Updated the part ordering specifications for the extended temperature parts. Also updated the section to reflect what we offer for new orders. Section 9.3—Added new section, "Part Marking." Updated Figure 33 to match with current part marking format.
7	10/07/2004	Section 4.1.2—Table 2: Corrected range of AV _{DD} and AVDD ₂ . Section 9.1—Table 21: Corrected voltage range under Process Descriptor column. Minor reformatting.
6.1	05/24/2004	Section 4.5.3—Table 11: Spec 12b was improved from 4.5 ns to 4.0 ns. This improvement is guaranteed on devices marked after work week (WW) 28 of 2004. A device's work week may be determined from the "YYWW" portion of the devices trace ability code which is marked on the top of the device. So for WW28 in 2004, the device's YYWW is marked as 0428. For more information refer to Figure 33
6	05/11/2004	Section 4.1.2—Table 2: Corrected range of GV_{DD} to 3.3 ± 5%. Section 4.2.1—Table 4: Changed the default for drive strength of DRV_STD_MEM. Section 4.5.1—Table 8: Changed the wording description for item 15. Section 4.5.2—Table 10: Changed T _{os} range and wording in note; Figure 11:changed wording for SDRAM_SYNC_IN description relative to T _{OS} . Section 4.5.3—Table 11: Changed timing specification for <i>sys_logic_clk</i> to output valid (memory control, address, and data signals).
5.1	_	Section 4.3.1—Table 9: Corrected last row to state the correct description for the bit setting. Max tap delay, DLL extend. Figure 8: Corrected the label name for the DLL graph to state "DLL Locking Range Loop Delay vs. Frequency of Operation for DLL_Extend=1 and Normal Tap Delay"

9.2 Part Numbers Not Fully Addressed by This Document

Parts with application modifiers or revision levels not fully addressed in this specification document are described in separate part number specifications that supplement and supersede this document. Table 21 shows the part numbers addressed by the MPC8245TXXnnnx series. The revision level can be determined by reading the Revision ID register at address offset 0x08.

Table 21. Part Numbers Addressed by MPC8245TXXnnnx Series Part Number Specification Markings (Document Order No. MPC8245ECS01AD)

MPC nnnn X		XX	nnn	X		
Product Code	Part Identifier	Process Descriptor	Package ¹	Processor Frequency ²	Revision Level	Processor Version Register Value
MPC	8245	T: -40° to 105°C	ZU = TBGA V V= Lead-free TBGA	266 MHz, 300 MHz: 1.7 V to 2.1 V 333 MHz, 350 MHz: 1.9 V to 2.2 V	D:1.4 Rev ID:0x14	0x80811014

Notes:

1. See Section 5, "Package Description," for more information on available package types.

2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by a hardware specifications addendum may support other maximum core frequencies.

Table 22 shows the part numbers addressed by the MPC8245ARZUnnnx series.

Table 22. Part Numbers Addressed by MPC8245ARZUnnnx Series Part Number Specification Markings (Document Order No. MPC8245ECS02AD)

MPC	nnnn	X	X	XX	nnn	X	
Product Code	Part Identifier	Process ³ Identifier	Process Descriptor	Package ¹	Processor Frequency ²	Revision Level	Processor Version Register Value
MPC	8245	A	R: 0° to 85°C	ZU = TBGA V V= Lead-free TBGA	400 MHz 2.1 V ± 100 mV	D:1.4 Rev ID:0x14	0x80811014

Notes:

1. See Section 5, "Package Description," for more information on available package types.

- Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by a hardware specifications addendum may support other maximum core frequencies.
- Process identifier 'A' represents parts that are manufactured under a 29-angstrom process verses the original 35-angstrom process.

Ordering Information

THIS PAGE INTENTIONALLY LEFT BLANK

Ordering Information

THIS PAGE INTENTIONALLY LEFT BLANK

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. IEEE 1149.1 is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. TUNDRA, the Tundra logo, Tsi107, and Silicon Behind the Network are all trademarks of Tundra Semiconductor Corporation. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2001–2007. All rights reserved.

Document Number: MPC8245EC Rev. 10 08/2007

