

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	PowerPC 603e
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	300MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	352-LBGA
Supplier Device Package	352-TBGA (35x35)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8245lzu300d

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MPC8245 Integrated Processor Hardware Specifications, Rev. 10

Features

- Write buffering for PCI and processor accesses
- Normal parity, read-modify-write (RMW), or ECC
- Data-path buffering between memory interface and processor
- Low-voltage TTL logic (LVTTL) interfaces
- 272 Mbytes of base and extended ROM/Flash/PortX space
- Base ROM space for 8-bit data path or same size as the SDRAM data path (32- or 64-bit)
- Extended ROM space for 8-, 16-, 32-bit gathering data path, 32- or 64-bit (wide) data path
- PortX: 8-, 16-, 32-, or 64-bit general-purpose I/O port using ROM controller interface with programmable address strobe timing, data ready input signal (DRDY), and 4 chip selects
- 32-bit PCI interface
 - Operates up to 66 MHz
 - PCI 2.2-compatible
 - PCI 5.0-V tolerance
 - Dual address cycle (DAC) for 64-bit PCI addressing (master only)
 - Accesses to PCI memory, I/O, and configuration spaces
 - Selectable big- or little-endian operation
 - Store gathering of processor-to-PCI write and PCI-to-memory write accesses
 - Memory prefetching of PCI read accesses
 - Selectable hardware-enforced coherency
 - PCI bus arbitration unit (five request/grant pairs)
 - PCI agent mode capability
 - Address translation with two inbound and outbound units (ATU)
 - Internal configuration registers accessible from PCI
- Two-channel integrated DMA controller (writes to ROM/PortX not supported)
 - Direct mode or chaining mode (automatic linking of DMA transfers)
 - Scatter gathering-Read or write discontinuous memory
 - 64-byte transfer queue per channel
 - Interrupt on completed segment, chain, and error
 - Local-to-local memory
 - PCI-to-PCI memory
 - Local-to-PCI memory
 - PCI memory-to-local memory
- Message unit
 - Two doorbell registers
 - Two inbound and two outbound messaging registers
 - I₂O message interface
- I²C controller with full master/slave support that accepts broadcast messages

- Programmable interrupt controller (PIC)
 - Five hardware interrupts (IRQs) or 16 serial interrupts
 - Four programmable timers with cascade
- Two (dual) universal asynchronous receiver/transmitters (UARTs)
- Integrated PCI bus and SDRAM clock generation
- Programmable PCI bus and memory interface output drivers
- System-level performance monitor facility
- Debug features
 - Memory attribute and PCI attribute signals
 - Debug address signals
 - MIV signal—Marks valid address and data bus cycles on the memory bus
 - Programmable input and output signals with watchpoint capability
 - Error injection/capture on data path
 - IEEE Std 1149.1® (JTAG)/test interface

3 General Parameters

The following list summarizes the general parameters of the MPC8245:

Technology	0.25-µm CMOS, five-layer metal
Die size	49.2 mm ²
Transistor count	4.5 million
Logic design	Fully-static
Packages	Surface-mount 352 tape ball grid array (TBGA)
Core power supply	1.7 V to 2.1 V DC for 266 and 300 MHz with the condition that the usage is "nominal" \pm 100 mV where "nominal" is 1.8/1.9/2.0 volts.
	1.9 V to 2.2 V DC for 333 and 350 MHz with the condition that the usage is "nominal" \pm 100 mV where "nominal" is 2.0/2.1 volts.
	See Table 2 for details of recommended operating conditions)
I/O power supply	3.0- to 3.6-V DC

4 Electrical and Thermal Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8245.

4.1 DC Electrical Characteristics

This section covers ratings, conditions, and other DC electrical characteristics.

4.1.1 Absolute Maximum Ratings

The tables in this section describe the MPC8245 DC electrical characteristics. Table 1 provides the absolute maximum ratings.

Characteristic ¹	Symbol	Range	Unit
Supply voltage—CPU core and peripheral logic	V _{DD}	-0.3 to 2.25	V
Supply voltage—memory bus drivers	GV _{DD}	-0.3 to 3.6	V
Supply voltage—PCI and standard I/O buffers	OV _{DD}	-0.3 to 3.6	V
Supply voltage—PLLs	AV _{DD} /AV _{DD} 2	-0.3 to 2.25	V
Supply voltage—PCI reference	LV _{DD}	-0.3 to 5.4	V
Input voltage ²	V _{in}	-0.3 to 3.6	V
Operational die-junction temperature range	Тj	0 to 105 ³	°C
Storage temperature range	T _{stg}	-55 to 150	°C

Table 1. Absolute Maximum Ratings

Notes:

1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

- 2. PCI inputs with $LV_{DD} = 5 V \pm 5\% V DC$ may be correspondingly stressed at voltages exceeding $LV_{DD} + 0.5 V DC$.
- 3. Note that this temperature range does not apply to the 400 MHz parts. For details, refer to the hardware specifications addendum MPC8245ECSO2AD.

4.1.2 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for the MPC8245. Some voltage values do not apply to the 400-MHz parts. For details, refer to the hardware specifications addendum MPC8245ECSO2AD.

Characteristic	Symbol	Recommended Value	Unit	Notes
Supply voltage	V _{DD}	1.8/1.9/2.0 V ± 100 mV	V	4, 7
		2.0/2.1 V ± 100 mV	V	5, 7
I/O buffer supply for PCI and standard	OV _{DD}	3.3 ± 0.3	V	7
Supply voltages for memory bus drivers	GV _{DD}	3.3 ± 5%	V	9
CPU PLL supply voltage	AV _{DD}	1.8/1.9/2.0 V ±	V	4, 7, 12
		2.0/2.1 V ±	V	5, 7, 12

Table 2. Recommended Operating Conditions¹

4.3 **Power Characteristics**

Table 5 provides power consumption data for the MPC8245.

Mada	PCI Bus Clock/Memory Bus Clock/CPU Clock Frequency (MHz)								Netes
WODE	66/66/266	66/133/266	66/66/300	66/100/300	33/83/333	66/133/333	66/100/350	Unit	Notes
Typical	1.7 (1.5)	2.0 (1.8)	1.8 (1.7)	2.0 (1.8)	2.0	2.3	2.2	W	1, 5
Max—FP	2.2 (1.9)	2.4 (2.1)	2.3 (2.0)	2.5 (2.2)	2.6	2.8	2.8	W	1, 2
Max—INT	1.8 (1.6)	2.1 (1.8)	2.0 (1.8)	2.1 (1.8)	2.2	2.4	2.4	W	1, 3
Doze	1.1 (1.0)	1.4 (1.3)	1.2 (1.1)	1.4 (1.3)	1.4	1.6	1.5	W	1, 4, 6
Nap	0.4 (0.4)	0.7 (0.7)	0.4 (0.4)	0.6 (0.6)	0.5	0.7	0.6	W	1, 4, 6
Sleep	0.2 (0.2)	0.4 (0.4)	0.2 (0.4)	0.3 (0.3)	0.3	0.4	0.3	W	1, 4, 6
			I/C	D Power Supp	olies ¹⁰	•			
м	ode		Min			Max		Unit	Notes
Typ—OV _{DE})		134 (121)			334 (301)		mW	7, 8
Typ—GV _{DE})		324 (292)			800 (720)		mW	7, 9

Table 5. Power Consumption

Notes:

- 1. The values include V_{DD} , AV_{DD} , and AV_{DD}^2 but do not include I/O supply power. Information on OV_{DD} and GV_{DD} supply power is captured in the I/O power supplies section of this table. Values shown in parenthesis () indicate power consumption at $V_{DD}/AV_{DD}/AV_{DD}^2 = 1.8$ V.
- Maximum—FP power is measured at V_{DD} = 2.1 V with dynamic power management enabled while running an entirely cache-resident, looping, floating-point multiplication instruction.
- Maximum—INT power is measured at V_{DD} = 2.1 V with dynamic power management enabled while running entirely cache-resident, looping, integer instructions.
- 4. Power saving mode maximums are measured at V_{DD} = 2.1 V while the device is in doze, nap, or sleep mode.
- Typical power is measured at V_{DD} = AV_{DD} = 2.0 V, OV_{DD} = 3.3 V where a nominal FP value, a nominal INT value, and a value where there is a continuous flush of cache lines with alternating ones and zeros on 64-bit boundaries to local memory are averaged.
- 6. Power saving mode data measured with only two PCI_CLKs and two SDRAM_CLKs enabled.
- The typical minimum I/O power values were results of the MPC8245 performing cache resident integer operations at the slowest frequency combination of 33:66:200 (PCI:Mem:CPU) MHz.
- 8. The typical maximum OV_{DD} value resulted from the MPC8245 operating at the fastest frequency combination of 66:100:350 (PCI:Mem:CPU) MHz and performing continuous flushes of cache lines with alternating ones and zeros to PCI memory.
- The typical maximum GV_{DD} value resulted from the MPC8245 operating at the fastest frequency combination of 66:100:350 (PCI:Mem:CPU) MHz and performing continuous flushes of cache lines with alternating ones and zeros on 64-bit boundaries to local memory.
- 10. Power consumption of PLL supply pins (AV_{DD} and AV_{DD}2) < 15 mW. Guaranteed by design and not tested.

Table 7 provides the operating frequency information for the MPC8245 at recommended operating conditions (see Table 2) with $LV_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$.

	266 MHz	300 MHz	333 MHz	350 MHz	
Characteristic ^{2, 3}	V _{DD} /AV _{DD} /AV _{DD} 2 = 1.8/1.9/2.0 V ± 100 mV		V _{DD} /AV _{DD} /AV _I ± 10	Unit	
Processor frequency (CPU)	100–266	100–300	100–333	100–350	MHz
Memory bus frequency	50–133	50-100 ⁴	50–133	50–100 ⁴	MHz
PCI input frequency		25-	-66		MHz

Table	7.	Opera	atina	Fred	uencv	1
Tubic	•••	opere	aung	1109	activy	

Notes:

1. For details, refer to the hardware specifications addendum MPC8245ECSO2AD.

- 2. **Caution:** The PCI_SYNC_IN frequency and PLL_CFG[0:4] settings must be chosen such that the resulting peripheral logic/memory bus frequency and CPU (core) frequencies do not exceed their respective maximum or minimum operating frequencies. Refer to the PLL_CFG[0:4] signal description in Section 6, "PLL Configurations," for valid PLL_CFG[0:4] settings and PCI_SYNC_IN frequencies.
- 3. See Table 17 and Table 18 for details on VCO limitations for memory and CPU VCO frequencies of various PLL configurations.
- 4. No available PLL_CFG[0:4] settings support 133-MHz memory interface operation at 300- and 350-MHz CPU operation, since the multipliers do not allow a 300:133 and 350:133 ratio relation. However, running these parts at slower processor speeds may produce ratios that run above 100 MHz. See Table 17 for the PLL settings.

4.5.1 Clock AC Specifications

Table 8 provides the clock AC timing specifications at recommended operating conditions, as defined in Section 4.5.2, "Input AC Timing Specifications." These specifications are for the default driver strengths indicated in Table 4.

|--|

At recommended operating conditions (see Table 2) with $LV_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$

Num	Characteristics and Conditions	Min	Мах	Unit	Notes
1	Frequency of operation (PCI_SYNC_IN)	25	66	MHz	
2, 3	PCI_SYNC_IN rise and fall times	—	2.0	ns	1
4	PCI_SYNC_IN duty cycle measured at 1.4 V	40	60	%	
5a	PCI_SYNC_IN pulse width high measured at 1.4 V	6	9	ns	2
5b	PCI_SYNC_IN pulse width low measured at 1.4 V	6	9	ns	2
7	PCI_SYNC_IN jitter	—	200	ps	
8a	PCI_CLK[0:4] skew (pin-to-pin)	—	250	ps	
8b	SDRAM_CLK[0:3] skew (pin-to-pin)	—	190	ps	3
10	Internal PLL relock time	—	100	μs	2, 4, 5
15	DLL lock range with DLL_EXTEND = 0 (disabled) See Figure 7 and normal tap delay; (default DLL mode) See Figure 7		ns	6	

Register settings that define each DLL mode are shown in Table 9.

DLL Mode	Bit 2 of Configuration Register at 0x76	Bit 7 of Configuration Register at 0x72
Normal tap delay, No DLL extend	0	0
Normal tap delay, DLL extend	0	1
Max tap delay, No DLL extend	1	0
Max tap delay, DLL extend	1	1

Table 9. DLL Mode Definition

The DLL_MAX_DELAY bit can lengthen the amount of time through the delay line by increasing the time between each of the 128 tap points in the delay line. Although this increased time makes it easier to guarantee that the reference clock is within the DLL lock range, there may be slightly more jitter in the output clock of the DLL; that is, the phase comparator shifts the clock between adjacent tap points. Refer to the Freescale application note AN2164, *MPC8245/MPC8241 Memory Clock Design Guidelines: Part 1*, for details on DLL modes and memory design.

The value of the current tap point after the DLL locks can be determined by reading bits 6–0 (DLL_TAP_COUNT) of the DLL tap count register (DTCR, located at offset 0xE3). These bits store the value (binary 0 through 127) of the current tap point and can indicate whether the DLL advances or decrements as it maintains the DLL lock. Therefore, for evaluation purposes, DTCR can be read for all DLL modes that support the T_{loop} value used for the trace length of SDRAM_SYNC_OUT to SDRAM_SYNC_IN. The DLL mode with the smallest tap point value in the DTCR should be used because the bigger the tap point value, the more jitter that can be expected for clock signals. Note that keeping a DLL mode that is locked below tap point decimal 12 is not recommended.

Figure 7. DLL Locking Range Loop Delay Versus Frequency of Operation for DLL_Extend=0 and Normal Tap Delay

Table 11. Output	AC Timing	Specifications	(continued)
------------------	-----------	----------------	-------------

Num	Characteristic	Min	Max	Unit	Notes
14b	sys_logic_clk to output high impedance (for all others)		4.0	ns	2

Notes:

- 1. All PCI signals are measured from GV_{DD}/2 of the rising edge of PCI_SYNC_IN to 0.285 × OV_{DD} or 0.615 × OV_{DD} of the signal in question for 3.3 V PCI signaling levels. See Figure 12.
- All memory and related interface output signal specifications are specified from the VM = 1.4 V of the rising edge of the memory bus clock, sys_logic_clk to the TTL level (0.8 or 2.0 V) of the signal in question. sys_logic_clk is the same as PCI_SYNC_IN in 1:1 mode, but is twice the frequency in 2:1 mode (processor/memory bus clock rising edges occur on every rising and falling edge of PCI_SYNC_IN). See Figure 11.
- 3. PCI bused signals are composed of the following signals: LOCK, IRDY, C/BE[3:0], PAR, TRDY, FRAME, STOP, DEVSEL, PERR, SERR, AD[31:0], REQ[4:0], GNT[4:0], IDSEL, and INTA.
- 4. To meet minimum output hold specifications relative to PCI_SYNC_IN for both 33- and 66-MHz PCI systems, the MPC8245 has a programmable output hold delay for PCI signals (the PCI_SYNC_IN to output valid timing is also affected). The initial value of the output hold delay is determined by the values on the MCP and CKE reset configuration signals; the values on these two signals are inverted and stored as the initial settings of PCI_HOLD_DEL = PMCR2[5, 4] (power management configuration register 2 <0x72>), respectively. Since MCP and CKE have internal pull-up resistors, the default value of PCI_HOLD_DEL after reset is 0b00. Further output hold delay values are available by programming the PCI_HOLD_DEL value of the PMCR2 configuration register. Figure 15 shows the PCI_HOLD_DEL effect on output valid and hold times.

Figure 14 provides the AC test load for the MPC8245.

Figure 14. AC Test Load for the MPC8245

Figure 17 shows the AC timing diagram for the I^2C bus.

Figure 17. I²C Bus AC Timing Diagram

4.7 PIC Serial Interrupt Mode AC Timing Specifications

Table 14 provides the PIC serial interrupt mode AC timing specifications for the MPC8245 at recommended operating conditions (see Table 2) with $GV_{DD} = 3.3 \text{ V} \pm 5\%$ and $LV_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$.

Num	Characteristic	Min	Мах	Unit	Notes
1	S_CLK frequency	1/14 SDRAM_SYNC_IN	1/2 SDRAM_SYNC_IN	MHz	1
2	S_CLK duty cycle	40	60	%	—
3	S_CLK output valid time	—	6	ns	—
4	Output hold time	0	—	ns	—
5	S_FRAME, S_RST output valid time	—	1 sys_logic_clk period + 6	ns	2
6	S_INT input setup time to S_CLK	1 sys_logic_clk period + 2	—	ns	2
7	S_INT inputs invalid (hold time) to S_CLK	—	0	ns	2

Table 14. PIC Serial Interrupt Mode AC Timing Specifications

Notes:

1. See the *MPC8245 Integrated Processor Reference Manual* for a description of the PIC interrupt control register (ICR) and S_CLK frequency programming.

- S_RST, S_FRAME, and S_INT shown in Figure 18 and Figure 19, depict timing relationships to sys_logic_clk and S_CLK and do not describe functional relationships between S_RST, S_FRAME, and S_INT. The MPC8245 Integrated Processor Reference Manual describes the functional relationships between these signals.
- 3. The sys_logic_clk waveform is the clocking signal of the internal peripheral logic from the output of the peripheral logic PLL; sys_logic_clk is the same as SDRAM_SYNC_IN when the SDRAM_SYNC_OUT to SDRAM_SYNC_IN feedback loop is implemented and the DLL is locked. See the MPC8245 Integrated Processor Reference Manual for a complete clocking description.

Figure 23. Test Access Port Timing Diagram

5 Package Description

This section details package parameters, pin assignments, and dimensions.

5.1 Package Parameters

The MPC8245 uses a 35 mm \times 35 mm, cavity-up, 352-pin tape ball grid array (TBGA) package. The package parameters are as follows.

Package Outline	$35 \text{ mm} \times 35 \text{ mm}$
Interconnects	352
Pitch	1.27 mm
Solder Balls	ZU (TBGA package)—62 Sn/36 Pb/2 Ag VV (Lead-free version of package)—95.5 Sn/4.0 Ag/0.5 Cu
Solder Ball Diameter	0.75 mm
Maximum Module Height	1.65 mm
Co-Planarity Specification	0.15 mm
Maximum Force	6.0 lbs. total, uniformly distributed over package (8 grams/ball)

Package Description

Table 16. MPC8245 Pinout Listing (continued)

Name	Pin Numbers	Туре	Power Supply	Output Driver Type	Notes
QACK/DA0	F2	Output	OV _{DD}	DRV_STD_MEM	4, 14, 25
CHKSTOP_IN/ SDMA14	D14	I/O	GV _{DD}	DRV_MEM_CTRL	10, 14
TRIG_IN/RCS2	AF20	I/O	OV _{DD}	_	10, 14
TRIG_OUT/RCS3	AC18	Output	GV _{DD}	DRV_MEM_CTRL	14
MAA[0:2]	AF2 AF1 AE1	Output	GV _{DD}	DRV_STD_MEM	3, 4, 6
MIV	A16	Output	OV _{DD}	—	24
PMAA[0:1]	AD18 AF18	Output	OV _{DD}	DRV_STD_MEM	3, 4, 6, 15
PMAA[2]	AE19	Output	OV _{DD}	DRV_STD_MEM	4, 6, 15
	Test/Con	figuration Signals	S		
PLL_CFG[0:4]/ DA[10:6]	A22 B19 A21 B18 B17	I/O	OV _{DD}	DRV_STD_MEM	6, 14, 20
TESTO	AD22	Input	OV _{DD}	_	1, 9
RTC	Y2	Input	GV _{DD}	_	11
тск	AF22	Input	OV _{DD}	_	9, 12
TDI	AF23	Input	OV _{DD}	—	9, 12
TDO	AC21	Output	OV _{DD}	—	24
TMS	AE22	Input	OV _{DD}	_	9, 12
TRST	AE23	Input	OV _{DD}	_	9, 12
	Power an	d Ground Signal	S		
GND	AA2 AA23 AC12 AC15 AC24 AC3 AC6 AC9 AD11 AD14 AD16 AD19 AD23 AD4 AE18 AE2 AE21 AE25 B2 B25 B6 B9 C11 C13 C16 C23 C4 C8 D12 D15 D18 D21 D24 D3 F25 F4 H24 J25 J4 L24 L3 M23 M4 N24 P3 R23 R4 T24 T3 V2 V23 W3	Ground	_		
LV _{DD}	AC20 AC23 D20 D23 G23 P23 Y23	Reference voltage 3.3 V, 5.0 V	LV _{DD}	_	
GV _{DD}	AB3 AB4 AC10 AC11 AC8 AD10 AD13 AD15 AD3 AD5 AD7 C10 C12 C3 C5 C7 D13 D5 D9 E3 G3 H4 K4 L4 N3 P4 R3 U3 V4 Y3	Power for memory drivers 3.3 V	GV _{DD}	_	
OV _{DD}	AB24 AD20 AD24 C14 C20 C24 E24 G24 J23 K24 M24 P24 T23 Y24	PCI/Stnd 3.3 V	OV _{DD}	—	

	- 1	i		1	1
Name	Pin Numbers	Туре	Power Supply	Output Driver Type	Notes
V _{DD}	AA24 AC16 AC19 AD12 AD6 AD9 C15 C18 C21 D11 D8 F3 H23 J3 L23 M3 R24 T4 V24 W4	Power for core 1.8/2.0 V	V _{DD}	_	22
No Connect	D17	—	_	—	23
AV _{DD}	C17	Power for PLL (CPU core logic) 1.8/2.0 V	AV _{DD}	_	22
AV _{DD} 2 AF24		Power for PLL (peripheral logic) 1.8/2.0 V	AV _{DD} 2	_	22
	Debug/M	anufacturing Pins	6		
DA0/QACK	F2	Output	OV _{DD}	DRV_STD_MEM	4, 10, 25
DA1/CKO	B15	Output	OV _{DD}	DRV_STD_MEM	14
DA2	C25	Output	OV _{DD}	DRV_PCI	2
DA3/PCI_CLK4	AF26	Output	GV _{DD}	DRV_PCI_CLK	14
DA4/REQ4	Y26	I/O	OV _{DD}	—	12, 14
DA5/GNT4	W26	Output	OV _{DD}	DRV_PCI	7, 15, 14
DA[10:6]/ PLL_CFG[0:4]	A22 B19 A21 B18 B17	I/O	OV _{DD}	DRV_STD_MEM	6, 14, 20
DA[11]	AD26	Output	OV _{DD}	DRV_PCI	2
DA[12:13]	AF17 AF19	Output	OV _{DD}	DRV_STD_MEM	2, 6

Table 16	. MPC8245	Pinout L	_isting ((continued))
----------	-----------	----------	-----------	-------------	---

Package Description

Table 16. MPC8245 Pinout Listing (continued)

Name	Pin Numbers	Туре	Power Supply	Output Driver Type	Notes
DA[14:15]	F1 J2	Output	GV _{DD}	DRV_MEM_CTRL	2, 6

Notes:

- 1. Place a pull-up resistor of 120 Ω or less on the TEST0 pin.
- 2. Treat these pins as no connects (NC) unless debug address functionality is used.
- 3. This pin has an internal pull-up resistor that is enabled only in the reset state. The value of the internal pull-up resistor is not guaranteed but is sufficient to ensure that a logic 1 is read into configuration bits during reset if the signal is left unterminated.
- 4. This pin is a reset configuration pin.
- 5. DL[0] is a reset configuration pin with an internal pull-up resistor that is enabled only in the reset state. The value of the internal pull-up resistor is not guaranteed but is sufficient to ensure that a logic 1 is read into configuration bits during reset.
- 6. Multi-pin signals such as AD[31:0] and MDL[0:31] have their physical package pin numbers listed in an order corresponding to the signal names. Example: AD0 is on pin C22, AD1 is on pin D22, ..., AD31 is on pin V25.
- 7. GNT4 is a reset configuration pin with an internal pull-up resistor that is enabled only in the reset state.
- 8. A weak pull-up resistor (2–10 k Ω) should be placed on this PCI control pin to LV_{DD}.
- 9. V_{IH} and V_{IL} for these signals are the same as the PCI V_{IH} and V_{IL} entries in Table 3.
- 10. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to OV_{DD}.
- 11. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to GV_{DD}.
- 12. This pin has an internal pull-up resistor that is enabled at all times. The value of the internal pull-up resistor is not guaranteed but is sufficient to prevent unused inputs from floating.
- 13. An external PCI clocking source or fan-out buffer may be required for the MPC8245 DUART functionality since PCI_CLK[0:3] are not available in DUART mode. Only PCI_CLK4 is available in DUART mode.
- 14. This pin is a multiplexed signal and appears more than once in this table.
- 15. This pin is affected by the programmable PCI_HOLD_DEL parameter.
- 16. This pin is an open-drain signal.
- 17. This pin can be programmed as driven (default) or as open-drain (in MIOCR 1).
- 18. This pin is a sustained three-state pin as defined by the PCI Local Bus Specification.
- 19. OSC_IN uses the 3.3-V PCI interface driver, which is 5-V tolerant. See Table 2 for details.
- 20. PLL_CFG signals must be driven on reset and must be held for at least 25 clock cycles after the negation of HRST_CTRL and HRST_CPU in order to be latched.
- 21. SDRAM_CLK[0:3] and SDRAM_SYNC_OUT signals use DRV_MEM_CTRL for chip Rev 1.1 (A). These signals use DRV_MEM_CLK for chip Rev 1.2 (B).
- 22. The 266- and 300-MHz part offerings can run at a source voltage of 1.8 ± 100 mV or 2.0 ± 100 mV. Source voltage should be 2.0 ± 100 mV for 333- and 350-MHz parts.
- 23. This pin is LAVDD on the MPC8240. It is an NC on the MPC8245, which should not pose a problem when an MPC8240 is replaced with an MPC8245.
- 24. The driver capability of this pin is hardwired to 40 Ω and cannot be changed.
- 25. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to OV_{DD} so that a 1 can be detected at reset if an external memory clock is not used and PLL[0:4] does not select a half-clock frequency ratio.
- 26. Typically, the serial port has sufficient drivers in the RS232 transceiver to drive the CTS pin actively as an input. No pullups are needed in this case.
- 27. HRST_CPU/HRST_CTRL must transition from a logic 0 to a logic 1 in less than one SDRAM_SYNC_IN clock cycle for the device to be in the nonreset state

System Design

The following pins are reset configuration pins: GNT4/DA5, MDL[0], FOE, RCS0, CKE, AS, MCP, QACK/DA0, MAA[0:2], PMAA[0:2], SDMA[1:0], MDH[16:31], and PLL_CFG[0:4]/DA[10:15]. These pins are sampled during reset to configure the device. The PLL_CFG[0:4] signals are sampled a few clocks after the negation of HRST_CPU and HRST_CTRL.

Reset configuration pins should be tied to GND via $1-k\Omega$ pull-down resistors to ensure a logic 0 level is read into the configuration bits during reset if the default logic 1 level is not desired.

Any other unused active low input pins should be tied to a logic-one level through weak pull-up resistors $(2-10 \text{ k}\Omega)$ to the appropriate power supply listed in Table 16. Unused active high input pins should be tied to GND through weak pull-down resistors $(2-10 \text{ k}\Omega)$.

7.5 PCI Reference Voltage—LV_{DD}

The MPC8245 PCI reference voltage (LV_{DD}) pins should be connected to a 3.3 ± 0.3 V power supply if interfacing the MPC8245 into a 3.3-V PCI bus system. Similarly, the LV_{DD} pins should be connected to a $5.0 \text{ V} \pm 5\%$ power supply if interfacing the MPC8245 into a 5-V PCI bus system. For either reference voltage, the MPC8245 always performs 3.3-V signaling as described in the *PCI Local Bus Specification* (Rev. 2.2). The MPC8245 tolerates 5-V signals when interfaced into a 5-V PCI bus system.

7.6 MPC8245 Compatibility with MPC8240

The MPC8245 AC timing specifications are backward-compatible with those of the MPC8240, except for the requirements of item 11 in Table 10. Timing adjustments are needed as specified for T_{os} (SDRAM_SYNC_IN to *sys_logic_clk* offset) time requirements.

The MPC8245 does not support the SDRAM flow-through memory interface.

The nominal core V_{DD} power supply changes from 2.5 V on the MPC8240 to 1.8/2.0 V on the MPC8245. See Table 2.

For example, the MPC8245 PLL_CFG[0:4] setting 0x02 (0b00010) has a different PCI-to-Mem and Mem-to-CPU multiplier ratio than the same setting on the MPC8240, so it is not backward-compatible. See Table 17.

Most of the MPC8240 PLL_CFG[0:4] settings are subsets of the PCI_SYNC_IN input frequency range accepted by the MPC8245. However, the parts are not fully backward-compatible since the ranges of the two parts do not always match. Modes 0x8 and 0x18 of the MPC8245 are not compatible with settings 0x8 and 0x18 on the MPC8240. See Table 17 and Table 18.

Two reset configuration signals on the MPC8245 are not used as reset configuration signals on the MPC8240: SDMA0 and SDMA1.

The SDMA0 reset configuration pin selects between the MPC8245 DUART and the MPC8240 backward-compatible mode PCI_CLK[0:4] functionality on these multiplexed signals. The default state (logic 1) of SDMA0 selects the MPC8240 backward-compatible mode of PCI_CLK[0:4] functionality while a logic 0 state on the SDMA0 signal selects DUART functionality. In DUART mode, four of the five PCI clocks, PCI_CLK[0:3], are not available.

The SDMA1 reset configuration pin selects between MPC8245 extended ROM functionality and MPC8240 backward-compatible functionality on the multiplexed signals: TBEN, CHKSTOP_IN,

MPC8245 Integrated Processor Hardware Specifications, Rev. 10

VP.

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the airflow around the device, the interface material, the mounting arrangement on the printed-circuit board, or the thermal dissipation on the printed-circuit board surrounding the device.

To determine the junction temperature of the device in the application without a heat sink, the thermal characterization parameter (Ψ_{JT}) measures the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_T = thermocouple temperature atop the package (°C) Ψ_{JT} = thermal characterization parameter (°C/W) P_D = power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance minimizes the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

In many cases, it is appropriate to simulate the system environment using a computational fluid dynamics thermal simulation tool. In such a tool, the simplest thermal model of a package that has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case covers the situation where a heat sink is used or a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed-circuit board.

7.9 References

Semiconductor Equipment and Materials International 805 East Middlefield Rd. Mountain View, CA 94043 (415) 964-5111

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the web at http://www.jedec.org.

Document Revision History

8 Document Revision History

Table 19 provides a revision history for this hardware specification.

Table	19	Revision	History	v Table
abic	15.	1101131011	mator	y rabic

Revision	Date	Substantive Change(s)
10	8/07	Section 3, Table 3, and Table 7—Changed format of recommended voltage supply values so that delta to the chosen nominal does not exceed \pm 100 mV. Completely replaced Section 4.6 with compliant I ² C specifications as with other related integrated
		processor devices.
9	12/27/05	Document—Added Power Architecture information.
		Section 4.1—Changed increased absolute maximum range for V _{DD} in Table 1. Updated format of nominal voltage listings in Table 2.
		Section 9.2—Removed Note 3 from Table 21.
		Updated back page information.
8	11/15/2005	Document—Imported new template and made minor editorial changes.
		Removed references to a 466 MHz part since it is not available for new orders.
		Section 4.3.2—Added paragraph for using DLL mode that provides lowest locked tap point read in 0xE3.
		Section 5.3—Updated the driver and I/O assignment information for the multiplexed PCI clock and DUART signals. Added note for HRST_CPU and HRST_CTRL, which had been mentioned only in Figure 2.
		Section 9.2—Updated the part ordering specifications for the extended temperature parts. Also updated the section to reflect what we offer for new orders.
		Section 9.3—Added new section, "Part Marking." Updated Figure 33 to match with current part marking format.
7	10/07/2004	Section 4.1.2—Table 2: Corrected range of AV _{DD} and AVDD ₂ .
		Section 9.1—Table 21: Corrected voltage range under Process Descriptor column. Minor reformatting.
6.1	05/24/2004	Section 4.5.3—Table 11: Spec 12b was improved from 4.5 ns to 4.0 ns. This improvement is guaranteed on devices marked after work week (WW) 28 of 2004. A device's work week may be determined from the "YYWW" portion of the devices trace ability code which is marked on the top of the device. So for WW28 in 2004, the device's YYWW is marked as 0428. For more information refer to Figure 33
6	05/11/2004	Section 4.1.2—Table 2: Corrected range of GV_{DD} to 3.3 ± 5%.
		Section 4.2.1—Table 4: Changed the default for drive strength of DRV_STD_MEM.
		Section 4.5.1—Table 8: Changed the wording description for item 15.
		Section 4.5.2—Table 10: Changed T _{os} range and wording in note; Figure 11:changed wording for SDRAM_SYNC_IN description relative to T _{OS} .
		Section 4.5.3—Table 11: Changed timing specification for <i>sys_logic_clk</i> to output valid (memory control, address, and data signals).
5.1		Section 4.3.1—Table 9: Corrected last row to state the correct description for the bit setting. Max tap delay, DLL extend. Figure 8: Corrected the label name for the DLL graph to state "DLL Locking Range Loop Delay vs. Frequency of Operation for DLL_Extend=1 and Normal Tap Delay"

MPC8245 Integrated Processor Hardware Specifications, Rev. 10

NP

Table 19. Revision	History Tab	le (continued)
--------------------	-------------	----------------

Revision	Date	Substantive Change(s)		
0.1	—	Made $V_{DD}/AV_{DD}/AV_{DD}2 = 1.8 V \pm 100 mV$ information for 133-MHz memory interface operation to Section 1.3, Table 2, Table 5, Table 9, Table 17, and Section 1.7.2.		
		Pin D17, formerly LAV _{DD} (supply voltage for DLL), is a NC on the MPC8245 since the DLL voltage is supplied internally. Eliminated all references to LAV _{DD} ; updated Section 1.7.1.		
		Previous Note 4 of Table 2 did not apply to the MPC8245 (MPC8240 document legacy). New Note 4 added in reference to maximum CPU speed at reduced V _{DD} voltage.		
		Updated the Programmable Output Impedance of DEV_MEM_ADDR in Table 4 to 6 Ω to reflect characterization data.		
		Updated Table 5 to reflect reduced power consumption when operating $V_{DD}/AV_{DD}/AV_{DD}2 = 1.8 V \pm 100 mV$. Changed Notes 2, 3, and 4 to reflect V_{DD} at 1.9 V. Changed Note 5 to represent $V_{DD} = AV_{DD} = 1.8 V$.		
		Updated Table 7 to reflect V _{DD} /AV _{DD} /AV _{DD} 2 voltage level operating frequency dependencies; changed 250 MHz device column to 266 MHz; modified Note 1 eliminating VCO references; added Note 2. Changed 250 MHz processor frequency offering to 266 MHz.		
		Changed Spec 12b for memory output valid time in Table 11 from 5.5 ns to 4.5 ns; this is a key specification change to enable 133-MHz memory interface designs.		
		Updated Pinout Table 16 with the following changes:		
		 Pin types for RCS0, RCS3/TRIG_OUT and DA[11:15] were erroneously listed as I/O, changed Pin Types to Output. 		
		 Pin types for REQ4/DA4, RCS2/TRIG_IN, and PLL_CFG[0:4]/DA[10:6] were erroneously listed as Input, changed Pin Types to I/O. 		
		Changed Pin D17 from LAV _{DD} to No Connect; deleted Note 21 and references.		
		 Notes 3, 5, and 7 contained references to the MPC8240 (MPC8240 document legacy); changed these references to MPC8245. 		
		• Previous Notes 13 and 14 did not apply to the MPC8245 (MPC8240 document legacy), these notes were deleted; moved Note 19 to become new Note 13; moved Note 20 to become new Note 14;		
		updated associated references.		
		 Added Note 3 to SDMA[1:0] signals about internal pull-up resistors during reset state. Reversed vector ordering for the PCI Interface Signals: C/BE[0:3] changed to C/BE[3:0], AD[0:31] changed to AD[31:0], GNT[0:3] changed to GNT[3:0], and REQ[0:3] changed to REQ[3:0]. The 		
		package pin number orderings were also reversed meaning that pin functionality did NOT change. For example, AD0 is still on signal C22, AD1 is still on signal D22,, AD31 is still on signal V25. This		
		the PCI Local Bus Specification and the MPC8245 Integrated Processor Reference Manual vector		
		Changed TEST1/DRDY signal on pin B20 to DRDY.		
		Changed TEST2 signal on pin Y2 to RTC for performance monitor use.		
		Updated PLL Table 17 with the following changes for 133-MHz memory interface operation:		
		 Added Ref. 9 (01001) and Ref. 17 (10111) details; removed these settings from Note 10 (reserved settings list). 		
		Enhanced range of Ref. 10 (10000).		
		Updated Note 13, changed bits 16–20 erroneous information to correct bits 23–19.		
		• Added Notes 16 and 17. Added information to Section 1.7.8 in reference to CHKSTOP_IN and SRESET being unavailable in extended ROM mode.		
0.0		Initial release.		

Ordering Information

9 Ordering Information

Ordering information for the parts fully covered by this specification document is provided in Section 9.1, "Part Numbers Fully Addressed by This Document." Section 9.2, "Part Numbers Not Fully Addressed by This Document," lists the part numbers that do not fully conform to the specifications of this document. These special part numbers require an additional document called a hardware specifications addendum.

9.1 Part Numbers Fully Addressed by This Document

Table 20 provides the Freescale part numbering nomenclature for the MPC8245. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact a local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier that may specify special application conditions. Each part number also contains a revision code that refers to the die mask revision number. The revision level can be determined by reading the Revision ID register at address offset 0x08.

MPC	nnnn	L	XX	nnn	X	
Product Code	Part Identifier	Process Descriptor	Package ¹	Processor Frequency ² (MHz)	Revision Level	Processor Version Register Value
MPC	8245	L: 0° to 105°C	ZU = TBGA V V = Lead-free TBGA	266, 300 1.7 V to 2.1 V	D:1.4 Rev ID:0x14	0x80811014
		L: 0° to 105°C	ZU = TBGA V V = Lead-free TBGA	333, 350 1.9 V to 2.2 V		

Table 20. Part Numbering	Nomenclature
--------------------------	--------------

Notes:

1. See Section 5, "Package Description," for more information on available package types.

2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by a hardware specifications addendum may support other maximum core frequencies.

9.2 Part Numbers Not Fully Addressed by This Document

Parts with application modifiers or revision levels not fully addressed in this specification document are described in separate part number specifications that supplement and supersede this document. Table 21 shows the part numbers addressed by the MPC8245TXXnnnx series. The revision level can be determined by reading the Revision ID register at address offset 0x08.

Table 21. Part Numbers Addressed by MPC8245TXXnnnx Series Part Number Specification Markings (Document Order No. MPC8245ECS01AD)

MPC	nnnn	X	XX	nnn	X	
Product Code	Part Identifier	Process Descriptor	Package ¹	Processor Frequency ²	Revision Level	Processor Version Register Value
MPC	8245	T: -40° to 105°C	ZU = TBGA V V= Lead-free TBGA	266 MHz, 300 MHz: 1.7 V to 2.1 V 333 MHz, 350 MHz: 1.9 V to 2.2 V	D:1.4 Rev ID:0x14	0x80811014

Notes:

1. See Section 5, "Package Description," for more information on available package types.

2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by a hardware specifications addendum may support other maximum core frequencies.

Table 22 shows the part numbers addressed by the MPC8245ARZUnnnx series.

Table 22. Part Numbers Addressed by MPC8245ARZUnnnx Series Part Number Specification Markings (Document Order No. MPC8245ECS02AD)

MPC	nnnn	X	X	XX	nnn	x	
Product Code	Part Identifier	Process ³ Identifier	Process Descriptor	Package ¹	Processor Frequency ²	Revision Level	Processor Version Register Value
MPC	8245	A	R: 0° to 85°C	ZU = TBGA V V= Lead-free TBGA	400 MHz 2.1 V ± 100 mV	D:1.4 Rev ID:0x14	0x80811014

Notes:

1. See Section 5, "Package Description," for more information on available package types.

- Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by a hardware specifications addendum may support other maximum core frequencies.
- Process identifier 'A' represents parts that are manufactured under a 29-angstrom process verses the original 35-angstrom process.