

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	F ² MC-8FX
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SIO, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.88V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb95f818kpmc1-g-sne2

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9. Pin Connection

· Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latchups. Always pull up or pull down an unused input pin through a resistor of at least 2 k Ω . Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

· Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the Vcc pin and the Vss pin to the power supply and ground outside the device. In addition, connect the current supply source to the Vcc pin and the Vss pin with low impedance.

It is also advisable to connect a ceramic capacitor of approximately 0.1 μ F as a bypass capacitor between the V_{cc} pin and the V_{ss} pin at a location close to this device.

DBG pin

Connect the DBG pin to an external pull-up resistor of 2 k Ω or above.

After power-on, ensure that the DBG pin does not stay at "L" level until the reset output is released.

The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the tool document when selecting a pull-up resistor.

RST pin

Connect the RST pin to an external pull-up resistor of 2 k $\!\Omega$ or above.

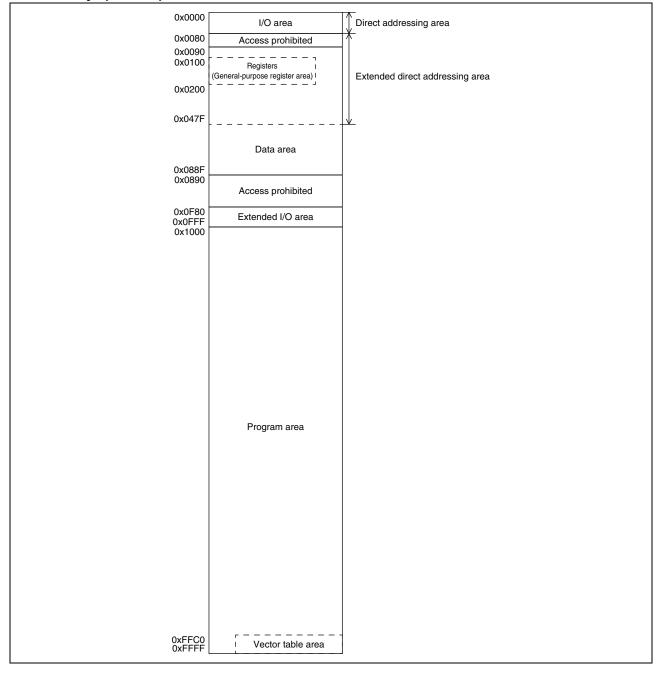
To prevent the device from unintentionally entering the reset mode due to noise, minimize the interconnection length between a pull-up resistor and the $\overrightarrow{\text{RST}}$ pin and that between a pull-up resistor and the V_{CC} pin when designing the layout of the printed circuit board.

The PF2/RST pin functions as the reset input/output pin after power-on. In addition, the reset output of the PF2/RST pin can be enabled by the RSTOE bit in the SYSC register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit in the SYSC register.

Analog power supply

Always set the same potential to the AVcc pin and the Vcc pin. When Vcc is larger than AVcc, the current may flow through the AN00 to AN11 pins.

• Treatment of power supply pins on the 8/10-bit A/D converter


Ensure that AVcc is equal to Vcc and AVss equal to Vss even when the 8/10-bit A/D converter is not in use. Noise riding on the AVcc pin may cause accuracy degradation. Therefore, connect a ceramic capacitor of $0.1 \,\mu\text{F}$ (approx.) as a bypass capacitor between the AVcc pin and the AVss pin in the vicinity of this device.

• C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The decoupling capacitor for the V_{CC} pin must have a capacitance equal to or larger than the capacitance of C_S. For the connection to a decoupling capacitor C_S, see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board.

12.5 Memory space map

Address	Register abbreviation	Register name	R/W	Initial value
0x0FC5 to 0x0FE2	_	(Disabled)	_	_
0x0FE3	WCDR	Watch counter data register	R/W	0b00111111
0x0FE4	CRTH	Main CR clock trimming register (upper)	R/W	0b000XXXXX
0x0FE5	CRTL	Main CR clock trimming register (lower)	R/W	0b000XXXXX
0x0FE6	_	(Disabled)	—	—
0x0FE7	CRTDA	Main CR clock temperature dependent adjustment register	R/W	0b000XXXXX
0x0FE8	SYSC	System configuration register	R/W	0b11000011
0x0FE9	CMCR	Clock monitoring control register	R/W	0b0000000
0x0FEA	CMDR	Clock monitoring data register	R	0b0000000
0x0FEB	WDTH	Watchdog timer selection ID register (upper)	R	0bXXXXXXXX
0x0FEC	WDTL	Watchdog timer selection ID register (lower)	R	0bXXXXXXXX
0x0FED, 0x0FEE	_	(Disabled)	-	_
0x0FEF	WICR	Interrupt pin selection circuit control register	R/W	0b01000000
0x0FF0 to 0x0FFF	_	(Disabled)	_	_

- R/W access symbols
 - R/W : Readable/Writable
 - R : Read only
- Initial value symbols
 - 0 : The initial value of this bit is "0".
 - 1 : The initial value of this bit is "1".
 - X : The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an indeterminate value is returned.

15. I/O Ports

List of port registers

Register name	Read/Write	Initial value	
Port 0 data register	PDR0	R, RM/W	0b0000000
Port 0 direction register	DDR0	R/W	0b0000000
Port 1 data register	PDR1	R, RM/W	0b0000000
Port 1 direction register	DDR1	R/W	0b0000000
Port 2 data register	PDR2	R, RM/W	0b0000000
Port 2 direction register	DDR2	R/W	0b0000000
Port 3 data register	PDR3	R, RM/W	0b0000000
Port 3 direction register	DDR3	R/W	0b0000000
Port 4 data register	PDR4	R, RM/W	0b0000000
Port 4 direction register	DDR4	R/W	0b0000000
Port 5 data register	PDR5	R, RM/W	0b0000000
Port 5 direction register	DDR5	R/W	0b0000000
Port 6 data register	PDR6	R, RM/W	0b0000000
Port 6 direction register	DDR6	R/W	0b0000000
Port 7 data register	PDR7	R, RM/W	0b0000000
Port 7 direction register	DDR7	R/W	0b0000000
Port 8 data register	PDR8	R, RM/W	0b0000000
Port 8 direction register	DDR8	R/W	0b0000000
Port E data register	PDRE	R, RM/W	0b0000000
Port E direction register	DDRE	R/W	0b0000000
Port F data register	PDRF	R, RM/W	0b0000000
Port F direction register	DDRF	R/W	0b0000000
Port G data register	PDRG	R, RM/W	0b0000000
Port G direction register	DDRG	R/W	0b0000000
Port 0 pull-up register	PUL0	R/W	0b0000000
Port 1 pull-up register	PUL1	R/W	0b0000000
Port 2 pull-up register	PUL2	R/W	0b0000000
Port 3 pull-up register	PUL3	R/W	0b0000000
Port 4 pull-up register	PUL4	R/W	0b0000000
Port 5 pull-up register	PUL5	R/W	0b0000000
Port 6 pull-up register	PUL6	R/W	0b0000000
Port 7 pull-up register	PUL7	R/W	0b0000000
Port 8 pull-up register	PUL8	R/W	0b0000000
Port E pull-up register	PULE	R/W	0b0000000
Port G pull-up register	PULG	R/W	0b0000000

• Correspondence between registers and pins for port 4

		Correspondence between related register bits and pins											
Pin name	-	-	-	-	P43	P42	P41	P40					
PDR4													
DDR4					bit3	bit2	bit1	bit0					
PUL4	-	-	-	-	DILO	DILZ	DILI	DILU					
AIDRH													

15.5.4 Port 4 operations

Operation as an output port

- A pin becomes an output port if the bit in the DDR4 register corresponding to that pin is set to "1".
- For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- When a pin is used as an output port, it outputs the value of the PDR4 register to external pins.
- If data is written to the PDR4 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
- Reading the PDR4 register returns the PDR4 register value.
- Operation as an input port
 - A pin becomes an input port if the bit in the DDR4 register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When using a pin shared with the analog input function as an input port, set the corresponding bit in the A/D input disable register (upper) (AIDRH) to "1".
 - If data is written to the PDR4 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDR4 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR4 register, the PDR4 register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDR4 register corresponding to the input pin of a peripheral function to "0".
 - When using a pin shared with the analog input function as another peripheral function input pin, configure it as an input port by setting the bit in the AIDRH register corresponding to that pin to "1".
 - Reading the PDR4 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR4 register, the PDR4 register value is returned.
- Operation at reset

If the CPU is reset, all bits in the DDR4 register are initialized to "0" and port input is enabled. As for a pin shared with the analog input function, its port input is disabled because the AIDRH register is initialized to "0".

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR4 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- Operation as an analog input pin
 - Set the bit in the DDR4 register bit corresponding to the analog input pin to "0" and the bit corresponding to that pin

15.7.4 Port 6 operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDR6 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR6 register to external pins.
 - If data is written to the PDR6 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR6 register returns the PDR6 register value.
- · Operation as an input port
 - A pin becomes an input port if the bit in the DDR6 register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDR6 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDR6 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR6 register, the PDR6 register value is returned.
- Operation as a peripheral function output pin
 - A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
 - The pin value can be read from the PDR6 register even if the peripheral function output is enabled. Therefore, the
 output value of a peripheral function can be read by the read operation on the PDR6 register. However, if the readmodify-write (RMW) type of instruction is used to read the PDR6 register, the PDR6 register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDR6 register corresponding to the input pin of a peripheral function to "0".
 - Reading the PDR6 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR6 register, the PDR6 register value is returned.

Operation at reset If the CPU is reset, all bits in the DDR6 register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop
 mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR6 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open. However, if the interrupt input of P65/SCK and P67/SIN is enabled by the external interrupt control register ch. 0 (EIC00)
 of the external interrupt circuit and the interrupt pin selection circuit control register (WICR) of the interrupt pin selection circuit, the input is enabled and is not blocked.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- Operation of the pull-up register

Setting the bit in the PUL6 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL6 register.

15.8.3 Port 7 registers

Port 7 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write		
PDR7	0	Pin state is "L" level.	PDR7 value is "0".	As output port, outputs "L" level.		
FUR	1	Pin state is "H" level.	PDR7 value is "1".	As output port, outputs "H" level.		
DDR7	0	Port input enabled				
DDRI	1		Port output enable	d		
PUL7	0		Pull-up disabled			
FUL/	1		Pull-up enabled			

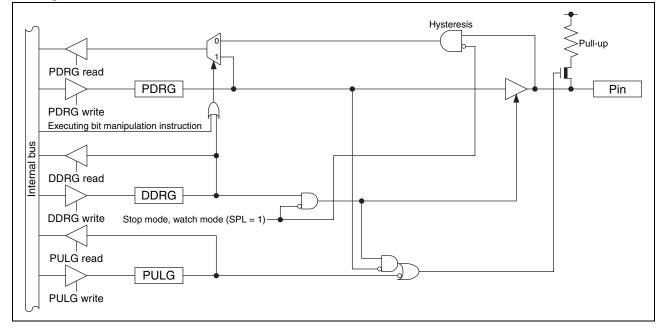
Correspondence between registers and pins for port 7

		Correspondence between related register bits and pins											
Pin name	-	-	-	-	-	P72	P71	P70					
PDR7													
DDR7	-	-	-	-	-	bit2	bit1	bit0					
PUL7													

15.8.4 Port 7 operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDR7 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR7 register to external pins.
 - If data is written to the PDR7 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR7 register returns the PDR7 register value.
- Operation as an input port
 - A pin becomes an input port if the bit in the DDR7 register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDR7 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDR7 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR7 register, the PDR7 register value is returned.
- Operation as a peripheral function output pin
 - A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
 - The pin value can be read from the PDR7 register even if the peripheral function output is enabled. Therefore, the
 output value of a peripheral function can be read by the read operation on the PDR7 register. However, if the readmodify-write (RMW) type of instruction is used to read the PDR7 register, the PDR7 register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDR7 register corresponding to the input pin of a peripheral function to "0".
 - Reading the PDR7 register returns the pin value, regardless of whether the peripheral function uses that pin as its

15.12 Port G


Port G is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95810K Series Hardware Manual".

15.12.1 Port G configuration

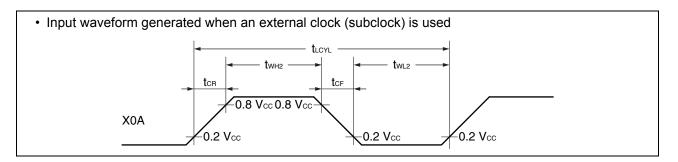
- Port G is made up of the following elements.
- General-purpose I/O pins/peripheral function I/O pins
- Port G data register (PDRG)
- Port G direction register (DDRG)
- Port G pull-up register (PULG)

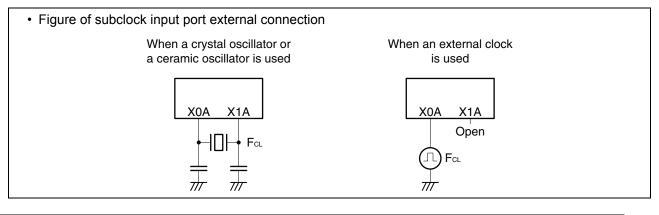
15.12.2 Block diagram of port G

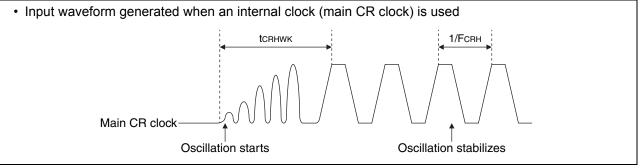
- PG1/X0A pin
 - This pin has the following peripheral function:
 - Subclock input oscillation pin (X0A)
- PG2/X1A pin
 - This pin has the following peripheral function:
 - Subclock I/O oscillation pin (X1A)
- · Block diagram of PG1/X0A and PG2/X1A

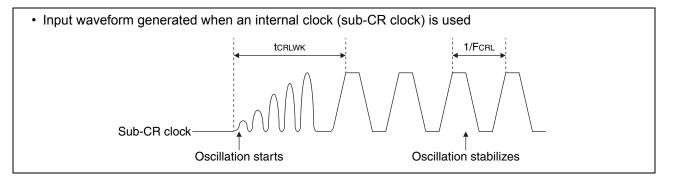
18.3 DC Characteristics

				(100 0	Value			, I _A = –40 °C to +85
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
<i>"</i>	Vіні	P10, P50, P51, P67		0.7 Vcc	_	Vcc + 0.3	V	CMOS input level
"H" level input voltage	Vins	Other than P10, P50, P51, P67, PF2	_	0.8 Vcc	_	Vcc + 0.3	V	Hysteresis input
	Vінм	PF2		0.8 Vcc	_	Vcc + 0.3	V	Hysteresis input
	Vili	P10, P50, P51, P67	_	Vss - 0.3		0.3 Vcc	V	CMOS input level
"L" level input voltage	VILS	Other than P10, P50, P51, P67, PF2	_	Vss – 0.3	_	0.2 Vcc	V	Hysteresis input
	VILM	PF2		Vss-0.3	_	0.2 Vcc	V	Hysteresis input
Open-drain output application voltage	VD	P12, P50, P51, PF2	_	Vss – 0.3		Vss + 5.5	V	
"H" level output voltage	Voh1	Output pins other than P00 to P07, P12, PF2	Іон = –4 mA	Vcc - 0.5		_	V	
-	Vон2	P00 to P07	Iон = –8 mA	Vcc-0.5	—	—	V	
"L" level output voltage	Vol1	Output pins other than P00 to P07	lo∟ = 4 mA	_	_	0.4	V	
vollage	Vol2	P00 to P07	lo∟ = 12 mA	—	_	0.4	V	
Input leak current (Hi-Z output leak current)	lu	All input pins	0.0 V < VI < Vcc	-5	_	+5	μA	When the internal pull-up resistor is disabled
Internal pull-up resistor	Rpull	Other than P12, P50, P51, PF0 to PF2	V1 = 0 V	25	50	100	kΩ	When the internal pull-up resistor is enabled
Input capacitance	Cin	Other than AVcc, AVss, AVR, Vcc and Vss	f = 1 MHz	_	5	15	pF	


18.4 AC Characteristics


18.4.1 Clock Timing

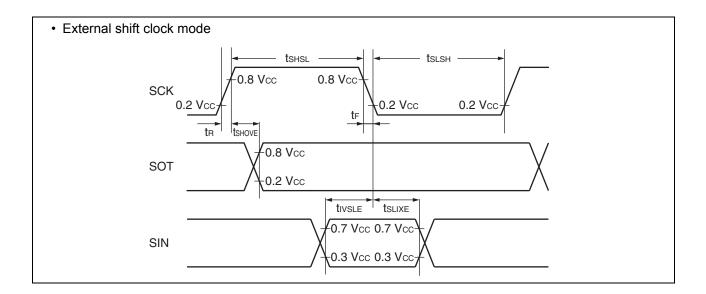

(Vcc = 2.88 V to 5.5 V, Vss = 0.0 V, T_A = -40 °C to +85 °C)


Parameter	Symbol	Symbol Pin name Condition Value		Value		l lmit	Domorko	
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
	Fсн	X0, X1	—	1	—	16.25	MHz	When the main oscillation circuit is used
	ГСН	X0	X1: open	1		12	MHz	When the main external clock
		X0, X1	*	1	_	32.5	MHz	is used
				3.92	4	4.08	MHz	$\begin{array}{l} \mbox{Operating conditions}\\ \bullet \mbox{ The main CR clock is used.}\\ \bullet \mbox{ 0 }^{\circ}\mbox{C} \leq T_A \leq +70 \ ^{\circ}\mbox{C} \end{array}$
	Ескн	_	_	3.8	4	4.2	MHz	$\begin{array}{l} \mbox{Operating conditions}\\ \bullet \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
				7.84	8	8.16	MHz	Operating conditions • PLL multiplication rate: 2 • 0 $^{\circ}C \le T_{A} \le +70 \ ^{\circ}C$
				7.6	8	8.4	MHz	$\begin{array}{l} \mbox{Operating conditions}\\ \bullet \mbox{ PLL multiplication rate: 2}\\ \bullet \mbox{ - 40 } ^{\circ}\mbox{C} \leq T_{A} < 0 \ ^{\circ}\mbox{C}, \\ + \mbox{ 70 } ^{\circ}\mbox{C} < T_{A} \leq + \mbox{ 85 } \ ^{\circ}\mbox{C} \end{array}$
	-			9.8	10	10.2	MHz	Operating conditions • PLL multiplication rate: 2.5 • $0 \ ^{\circ}C \le T_{A} \le +70 \ ^{\circ}C$
Clock frequency				9.5	10	10.5	MHz	$\begin{array}{l} \hline \text{Operating conditions}\\ \bullet \ \text{PLL multiplication rate: 2.5}\\ \bullet \ -40\ ^{\circ}\text{C} \leq \text{T}_{\text{A}} < 0\ ^{\circ}\text{C},\\ +70\ ^{\circ}\text{C} < \text{T}_{\text{A}} \leq +85\ ^{\circ}\text{C} \end{array}$
	FMCRPLL			11.76	12	12.24	MHz	Operating conditions • PLL multiplication rate: 3 • $0 \ ^{\circ}C \le T_A \le +70 \ ^{\circ}C$
				11.4	12	12.6	MHz	$\begin{array}{l} \text{Operating conditions} \\ \bullet \ \text{PLL multiplication rate: 3} \\ \bullet \ -40 \ ^{\circ}\text{C} \leq \text{T}_{\text{A}} < 0 \ ^{\circ}\text{C}, \\ +70 \ ^{\circ}\text{C} < \text{T}_{\text{A}} \leq +85 \ ^{\circ}\text{C} \end{array}$
				15.68	16	16.32	MHz	Operating conditions • PLL multiplication rate: 4 • $0 \ ^{\circ}C \le T_{A} \le +70 \ ^{\circ}C$
				15.2	16	16.8	MHz	$\begin{array}{l} \mbox{Operating conditions}\\ \bullet \mbox{ PLL multiplication rate: 4}\\ \bullet \mbox{ - 40 }^{\circ}\mbox{C} \leq T_A < 0 \;^{\circ}\mbox{C},\\ + \; 70 \;^{\circ}\mbox{C} < T_A \leq + \; 85 \;^{\circ}\mbox{C} \end{array}$
	Fc∟	X0A, X1A	_	_	32.768	_	kHz	When the suboscillation circuit is used
		ΛυΑ, ΛΙΑ		_	32.768	_	kHz	When the sub-external clock is used
	FCRL		_	50	100	150	kHz	When the sub-CR clock is used

18.4.2 Source Clock/Machine Clock

(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol	Pin		Value		Unit	Remarks
i arameter	Symbol	name	Min	Тур	Max	Onit	Remarks
							When the main external clock is used
			61.5		2000	ns	Min: Fcн = 32.5 MHz, divided by 2
							Max: Fcн = 1 MHz, divided by 2
							When the main CR clock is used
Source clock cycle time*1	tsclk	_	62.5		1000	ns	Min: FCRH = 4 MHz, multiplied by 4
	LOOLIN						Max: FCRH = 4 MHz, divided by 4
				61		μs	When the suboscillation clock is used
				01		μο	FcL = 32.768 kHz, divided by 2
				20		μs	When the sub-CR clock is used
				20		-	FCRL = 100 kHz, divided by 2
	Esp		0.5		16.25		When the main oscillation clock is used
Source clock	I SP		_	4	12.5	MHz	When the main CR clock is used
frequency	Fspl	—	_	16.384	_	kHz	When the suboscillation clock is used
				50	—	kHz	When the sub-CR clock is used
						KI IZ	FCRL = 100 kHz, divided by 2
					32000		When the main oscillation clock is used
			61.5	—			Min: Fsp = 16.25 MHz, no division
							Max: Fsp = 0.5 MHz, divided by 16
Machine clock							When the main CR clock is used
cycle time*2			250		4000	ns	Min: Fsp = 4 MHz, no division
(minimum	t MCLK						Max: Fsp = 4 MHz, divided by 16
instruction	LINCLK						When the suboscillation clock is used
execution time)			61		976.5	μs	Min: Fspl = 16.384 kHz, no division
							Max: Fspl = 16.384 kHz, divided by 16
							When the sub-CR clock is used
			20		320	μs	Min: Fspl = 50 kHz, no division
							Max: Fspl = 50 kHz, divided by 16
	Fмр		0.031		16.25	MHz	
Machine clock			0.25		16	MHz	When the main CR clock is used
frequency		—	1.024		16.384	kHz	
nequency	FMPL		3.125		– 50 kH		When the sub-CR clock is used
			5.125		50		FCRL = 100 kHz

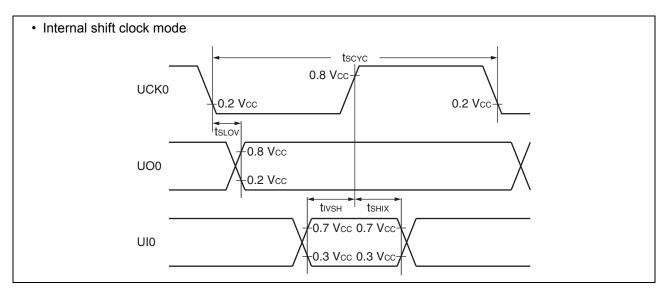

*1: This is the clock before it is divided according to the division ratio set by the machine clock division ratio select bits (SYCC:DIV[1:0]). This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio select bits (SYCC:DIV[1:0]). In addition, a source clock can be selected from the following.

- · Main clock divided by 2
- Main CR clock
- PLL multiplication of main CR clock (Select a multiplication rate from 2, 2.5, 3 and 4.)
- Subclock divided by 2
- Sub-CR clock divided by 2

*2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.

- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

Denne	.	Pin	0	Val		10 v, TA = -40 C t		
	Symbol	name	Condition	Min	Max	Unit	Remarks	
SCL clock "L" width	t LOW	SCL		(2 + nm/2)tмськ – 20	_	ns	Master mode	
SCL clock "H" width	t high	SCL		(nm/2)tмськ – 20	(nm/2)tмськ + 20	ns	Master mode	
START condition hold time	thd;sta	SCL, SDA0	- - - - R = 1.7 kΩ,	(-1 + nm/2)tмськ – 20	(-1 + nm)tмськ + 20	ns	Master mode Maximum value is applied when m, n = 1, 8. Otherwise, the minimum value is applied.	
STOP condition setup time	t su;sто	SCL, SDA		(1 + nm/2)tмськ – 20	(1 + nm/2)tмськ + 20	ns	Master mode	
START condition setup time	tsu;sta	SCL, SDA		(1 + nm/2)tмськ – 20	(1 + nm/2)tмськ + 20	ns	Master mode	
Bus free time between STOP condition and START condition	t BUF	SCL, SDA			(2 nm + 4) tмськ – 20	_	ns	
Data hold time	t hd;dat	SCL, SDA	R = 1.7 KS2, C = 50 pF ^{*1}	3 tмс∟к – 20	_	ns	Master mode	
Data setup time	tsu;dat	SCL, SDA		(-2 + nm/2) tмс∟к – 20	(-1 + nm/2) tмс∟к + 20	ns	Master mode It is assumed that "L" of SCL is not extended. The minimum value is applied to the first bit of continuous data. Otherwise, the maximum value is applied.	
Setup time between clearing interrupt and SCL rising	tsu;int	SCL		(nm/2) tмськ – 20	(1 + nm/2) tмськ + 20	ns	The minimum value is applied to the interrupt at the ninth SCL \downarrow . The maximum value is applied to the interrupt at the eighth SCL \downarrow .	
SCL clock "L" width	t LOW	SCL		4 tmclk – 20	_	ns	At reception	
SCL clock "H" width	tніgн	SCL		4 tmclk – 20	—	ns	At reception	


(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40 °C to +85 °C)

18.4.9 UART/SIO, Serial I/O Timing

Parameter	Symbol Pin name		Condition	Va	Unit	
Farailleter	Symbol	Fininanie	Condition	Min	Мах	Unit
Serial clock cycle time	tscyc	UCK0		4 t мськ*	—	ns
$UCK \downarrow \rightarrow UO$ time	tslov	UCK0, UO0	Internal clock operation	-190	+190	ns
Valid UI \rightarrow UCK \uparrow	tivsh	UCK0, UI0		2 t мськ*	-	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tsнix	UCK0, UI0		2 tmclk*	_	ns
Serial clock "H" pulse width	ts∺s∟	UCK0		4 t мськ*	-	ns
Serial clock "L" pulse width	tslsh	UCK0		4 t мськ*	-	ns
UCK $\downarrow \rightarrow$ UO time	tslov	UCK0, UO0	External clock operation	—	190	ns
Valid UI \rightarrow UCK \uparrow	tivsh	UCK0, UI0		2 t мськ*	—	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tsнıx	UCK0, UI0		2 t MCLK*		ns

*: See "Source Clock/Machine Clock" for tMCLK.

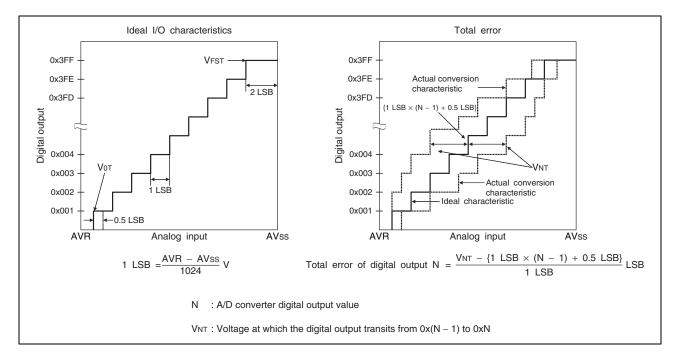
18.5.3 Definitions of A/D Converter Terms

Resolution

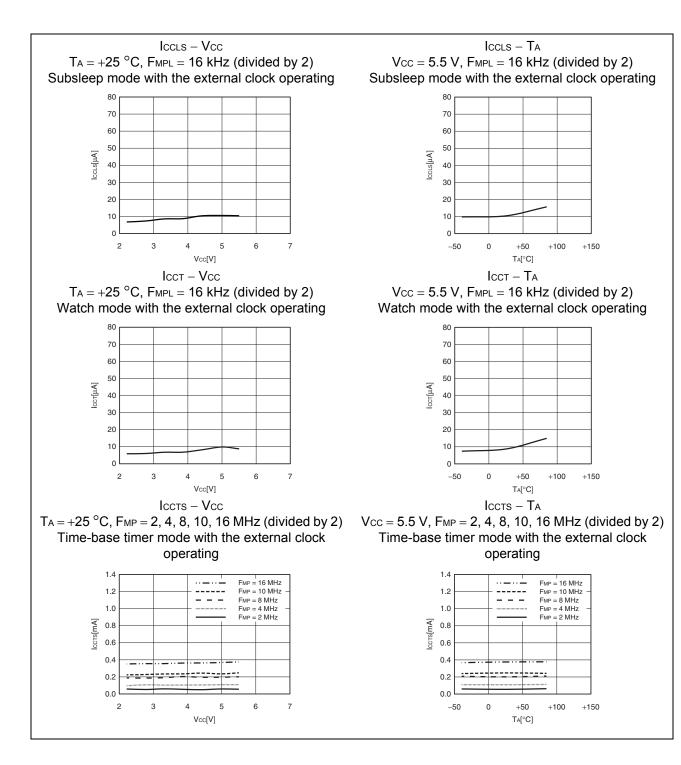
٠

It indicates the level of analog variation that can be distinguished by the A/D converter.

When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.

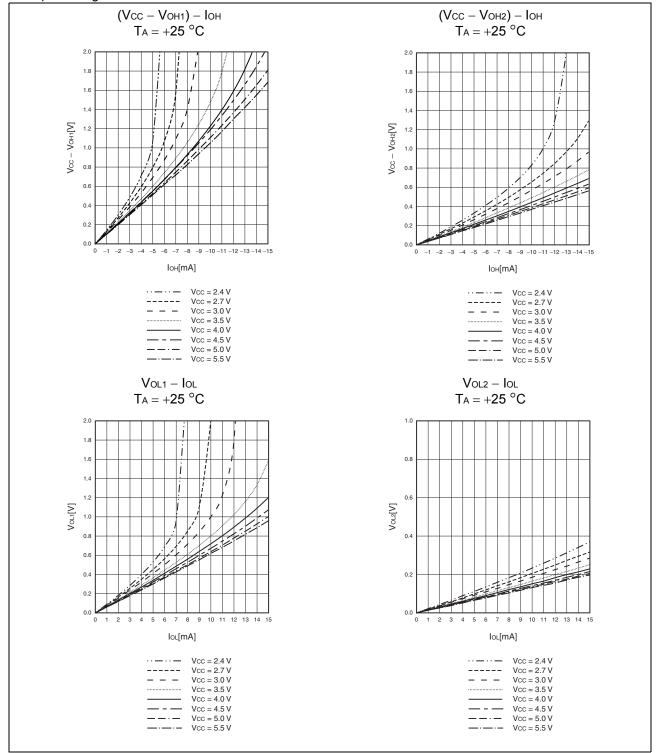

• Linearity error (unit: LSB)

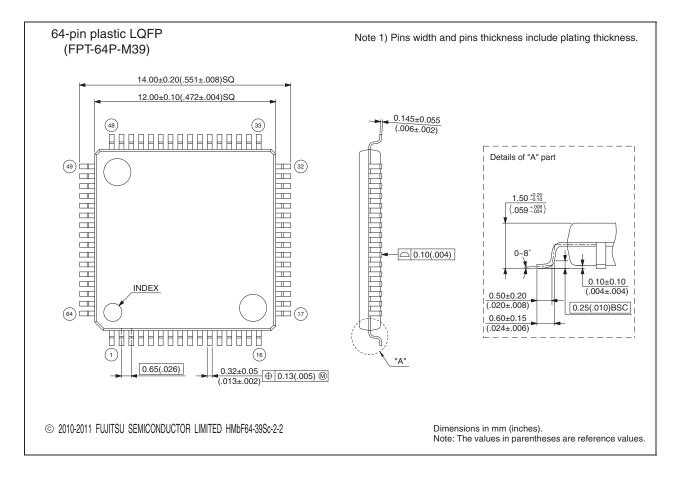
It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("000000000" $\leftarrow \rightarrow$ "0000000001") of a device to the full-scale transition point ("1111111111" $\leftarrow \rightarrow$ "111111110") of the same device.


• Differential linear error (unit: LSB)

It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value. Total error (unit: LSB)

It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.




· Output voltage characteristics

64-pin plastic LQFP	Lead pitch	0.65 mm
	Package width \times package length	12.00 mm × 12.00 mm
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	1.70 mm MAX
	Weight	0.47 g
(FPT-64P-M39)		

Document History Page

Document Title: MB95810K Series, New 8FX 8-bit Microcontrollers Document Number: 002-04694					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	-	AKIH	05/27/2013	Migrated to Cypress and assigned document number 002-08453. No change to document contents or format.	
*A	5193921	AKIH	03/29/2016	Updated to Cypress template Added MB95F818KPMC-G-UNE2 in "Ordering Information".	
*В	5845951	YSAT	08/07/2017	Adapted new Cypress logo	