

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	HC08
Core Size	8-Bit
Speed	6MHz
Connectivity	SCI, USB
Peripherals	LED, LVD, POR, PWM
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc908jb16fae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

13.9.1	Bandwidth Control Register
13.9.2	VCO Control Register (PVCR)
13.9.3	VCO and Reference Divider Select Registers High 257
13.9.4	VCO Divider Select Register Low
13.9.5	Reference Divider Select Register Low
13.9.6	Phase Detector Control Register (PDCR)
13.10 F	Pre-Defined VCO Output Frequency Settings
13.11 L	ow-Power Modes
13.11.1	Wait Mode
13.11.2	Stop Mode

Section 14. Input/Output (I/O) Ports

14.1 Contents
14.2 Introduction
14.3Port A
14.4 Port C .269 14.4.1 Port C Data Register .269 14.4.2 Data Direction Register C .270
14.5 Port D .272 14.5.1 Port D Data Register .272 14.5.2 Data Direction Register D .273
14.6 Port E .275 14.6.1 Port E Data Register .275 14.6.2 Data Direction Register E .277
14.7Port Options

Section 15. External Interrupt (IRQ)

15.1	Contents	281
15.2	Introduction	281

Table of Contents

Section 21. Mechanical Specifications

21.1	Contents
21.2	Introduction
21.3	32-Pin Low-Profile Quad Flat Pack (LQFP)
21.4	28-Pin Small Outline Integrated Circuit (SOIC)

Section 22. Ordering Information

22.1	Contents	329
22.2		329
22.3	MC Order Numbers	329

General Description

Summary of the pin functions are provided in Table 1-1.

PIN NAME	PIN DESCRIPTION	IN/OUT	VOLTAGE LEVEL
V _{DD}	Power supply.		4.0 to 5.5V
V _{SS}	Power supply ground.	OUT	0V
V _{REG}	3.3V regulated output from MCU.	OUT	V _{REG} (3.3V)
RST	Reset input, active low. With internal pull-up and schmitt trigger input.	IN/OUT	V _{DD}
ĪRQ	External IRQ pin; with programmable internal pull-up and schmitt trigger input.	IN	V _{DD}
	Used for mode entry selection.	IN	V_{REG} to V_{TST}
OSC1	Crystal oscillator input.	IN	V _{REG}
OSC2	Crystal oscillator output; inverting of OSC1 signal.	OUT	V _{REG}
V _{DDA} ⁽¹⁾	Analog power supply.	IN	4.0 to 5.5V
V _{SSA0} ⁽¹⁾ V _{SSA1} ⁽¹⁾	Analog power supply ground.	OUT	0V
V _{REGA0} ⁽¹⁾	3.3V regulated output from MCU.	OUT	V _{REGA0} (3.3V)
V _{REGA1} ⁽¹⁾	3.3V input for CGM2.	IN	V _{REGA0}
CGMXFC1 ⁽¹⁾	CGM1 external filter capacitor connection.	OUT	V _{REGA0}
CGMXFC2 ⁽¹⁾	CGM2 external filter capacitor connection.	OUT	V _{REGA0}
CGMOUT1 ⁽¹⁾	CGM1 clock output.	OUT	V _{REGA0}
CGMOUT2 ⁽¹⁾	CGM2 clock output.	OUT	V _{REGA0}
ΡΤΔΩ/ <u>ΚΒΔΩ</u>	8-bit general purpose I/O port.	IN/OUT	V _{DD}
:	Pins as keyboard interrupts, KBA0–KBA7.	IN	V _{DD}
PTA7/KBA7 Each pin has programmable internal pullup when configured as input.		IN	V _{DD}

Table 1-1. Summary of Pin Functions

Section 4. FLASH Memory

4.1 Contents

4.2	Introduction
4.3	Functional Description60
4.4	FLASH Control Register61
4.5	FLASH Block Erase Operation
4.6	FLASH Mass Erase Operation
4.7	FLASH Program Operation
4.8 4.8.1	FLASH Protection
4.9 4.9.1 4.9.2 4.9.3 4.9.4	ROM-Resident Routines67Variables.68ERASE Routine.68PROGRAM Routine.69VERIFY Routine.69

4.2 Introduction

This section describes the operation of the embedded FLASH memory. This memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump.

4.4 FLASH Control Register

The FLASH control register (FLCR) controls FLASH program and erase operation.

Address: \$FE08

Figure 4-2. FLASH Control Register (FLCR)

HVEN — High Voltage Enable Bit

This read/write bit enables high voltage from the charge pump to the memory for either program or erase operation. It can only be set if either PGM=1 or ERASE=1 and the sequence for erase or program/verify is followed.

1 = High voltage enabled to array and charge pump on

0 = High voltage disabled to array and charge pump off

MASS — Mass Erase Control Bit

This read/write bit configures the memory for mass erase operation or block erase operation when the ERASE bit is set.

1 = Mass Erase operation selected

0 = Block Erase operation selected

ERASE — Erase Control Bit

This read/write bit configures the memory for erase operation. This bit and the PGM bit should not be set to 1 at the same time.

1 = Erase operation selected

0 = Erase operation not selected

PGM — Program Control Bit

This read/write bit configures the memory for program operation. This bit and the ERASE bit should not be set to 1 at the same time.

1 = Program operation selected

0 = Program operation not selected

FLASH Memory

4.5 FLASH Block Erase Operation

Use the following procedure to erase a block of FLASH memory. A block consists of 512 consecutive bytes starting from addresses \$X000, \$X200, \$X400, \$X600, \$X800, \$XA00, \$XC00 or \$XE00. The 48-byte user interrupt vectors area also forms a block. Any block within the 16K bytes user memory area (\$BA00-\$F9FF) can be erased alone.

- **NOTE:** The 48-byte user interrupt vectors, \$FFD0–\$FFFF, cannot be erased by the block erase operation because of security reasons. Mass erase is required to erase this block.
 - 1. Set the ERASE bit and clear the MASS bit in the FLASH control register.
 - 2. Write any data to any FLASH address within the address range of the block to be erased.
 - 3. Wait for a time, t_{nvs} (5µs).
 - 4. Set the HVEN bit.
 - 5. Wait for a time t_{Erase} (10ms).
 - 6. Clear the ERASE bit.
 - 7. Wait for a time, t_{nvh} (5µs).
 - 8. Clear the HVEN bit.
 - 9. After time, t_{rcv} (1 μ s), the memory can be accessed in read mode again.
- **NOTE:** Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps.

Source	Operation	Description		Effect on CCR					ress e	ode	rand	es
Form			۷	н	I	Ν	Z	С	Add Mod	Opc	Ope	Cycl
BCS rel	Branch if Carry Bit Set (Same as BLO)	PC ← (PC) + 2 + <i>rel</i> ? (C) = 1	_	-	_		I	-	REL	25	rr	3
BEQ rel	Branch if Equal	PC ← (PC) + 2 + <i>rel</i> ? (Z) = 1	-	-	-	-	-	-	REL	27	rr	3
BGE opr	Branch if Greater Than or Equal To (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (N \oplus V) = 0$	-	-	_	-	-	-	REL	90	rr	3
BGT opr	Branch if Greater Than (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (Z) \mid (N \oplus V) = 0$	-	-	-	-	-	-	REL	92	rr	3
BHCC rel	Branch if Half Carry Bit Clear	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (H) = 0$	-	-	-	Ι	I	-	REL	28	rr	3
BHCS rel	Branch if Half Carry Bit Set	PC ← (PC) + 2 + <i>rel</i> ? (H) = 1	_	-	-	-	I	-	REL	29	rr	3
BHI rel	Branch if Higher	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) \mid (Z) = 0$	-	-	-	-	-	-	REL	22	rr	3
BHS rel	Branch if Higher or Same (Same as BCC)	PC ← (PC) + 2 + <i>rel</i> ? (C) = 0	-	-	_	-	-	-	REL	24	rr	3
BIH rel	Branch if IRQ Pin High	$PC \leftarrow (PC) + 2 + rel ? \overline{IRQ} = 1$	-	-	-	-	-	-	REL	2F	rr	3
BIL rel	Branch if IRQ Pin Low	$PC \leftarrow (PC) + 2 + \mathit{rel} ? \overline{IRQ} = 0$	_	-	-	-	I	-	REL	2E	rr	3
BIT #opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP	Bit Test	(A) & (M)	0	_	_	↓	↓	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A5 B5 C5 D5 E5 F5 9EE5 9ED5	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
BLE opr	Branch if Less Than or Equal To (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (Z) \mid (N \oplus V) = 1$	_	_	_	_	_	-	REL	93	rr	3
BLO rel	Branch if Lower (Same as BCS)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) = 1$	I	I	Ι	I	I	-	REL	25	rr	3
BLS rel	Branch if Lower or Same	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) \mid (Z) = 1$	-	-	-	I	I	-	REL	23	rr	3
BLT opr	Branch if Less Than (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (N \oplus V) = 1$	-	-	-	Ι	I	-	REL	91	rr	3
BMC rel	Branch if Interrupt Mask Clear	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (I) = 0$	-	-	-	Ι	I	-	REL	2C	rr	3
BMI rel	Branch if Minus	PC ← (PC) + 2 + <i>rel</i> ? (N) = 1	_	-	-	-	-	-	REL	2B	rr	3
BMS rel	Branch if Interrupt Mask Set	PC ← (PC) + 2 + <i>rel</i> ? (I) = 1	I	I	I	1	I	-	REL	2D	rr	3
BNE rel	Branch if Not Equal	$PC \leftarrow (PC) + 2 + rel? (Z) = 0$	-	-	-	_	_	-	REL	26	rr	3
BPL rel	Branch if Plus	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (N) = 0$	-	-	-	-	-	-	REL	2A	rr	3
BRA rel	Branch Always	$PC \leftarrow (PC) + 2 + \mathit{rel}$	-	-	_	_	_	-	REL	20	rr	3

Table 6-1. Instruction Set Summary (Sheet 2 of 8)

System Integration Module (SIM)

8.5.2 SIM Counter During Stop Mode Recovery

The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the configuration register (CONFIG). If the SSREC bit is a logic 1, then the stop recovery is reduced from the normal delay of 4096 OSCDCLK cycles down to 2048 OSCDCLK cycles. This is ideal for applications using canned oscillators that do not require long startup times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared in the configuration register (CONFIG).

8.5.3 SIM Counter and Reset States

External reset has no effect on the SIM counter. (See 8.7.2 Stop Mode for details.) The SIM counter is free-running after all reset states. (See 8.4.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences.)

8.6 Exception Control

Normal, sequential program execution can be changed in three different ways:

- Interrupts
 - Maskable hardware CPU interrupts
 - Non-maskable software interrupt instruction (SWI)
- Reset
- Break interrupts

8.6.1 Interrupts

An interrupt temporarily changes the sequence of program execution to respond to a particular event. **Figure 8-8** flow charts the handling of system interrupts.

Technical Data

Source	Flags	Mask ⁽¹⁾	INT Register Flag	Priority ⁽²⁾	Vector Address		
Reset	None	None	None	0	\$FFFE-\$FFFF		
SWI instruction	None	None	None	0	\$FFFC-\$FFFD		
USB reset interrupt	RSTF	URSTD					
USB endpoint 0 transmit	TXD0F	TXD0IE					
USB endpoint 0 receive	RXD0F	RXD0IE					
USB endpoint 1 transmit	TXD1F	TXD1IE		1	¢EEEA ¢EEED		
USB endpoint 2 transmit	TXD2F	TXD2IE		1	φρερα-φρερο		
USB endpoint 2 receive	RXD2F	RXD2IE					
USB end of packet	EOPF	EOPIE					
USB resume interrupt	RESUMF	—					
IRQ interrupt (IRQ, PTE4)	IRQF, PTE4IF	IMASK	IF2	2	\$FFF8-\$FFF9		
TIM 1 channel 0	CH0F	CH0IE	IF3	3	\$FFF6-\$FFF7		
TIM 1 channel 1	CH1F	CH1IE	IF4	4	\$FFF4\$FFF5		
TIM 1 channel 0 & 1	CH0F & CH1F	CH01IE	IF5	5	\$FFF2-\$FFF3		
TIM 1 overflow	TOF	TOIE	IF6	6	\$FFF0-\$FFF1		
TIM 2 channel 0	CH0F	CH0IE	IF7	7	\$FFEE-\$FFEF		
TIM 2 channel 1	CH1F	CH1IE	IF8	8	\$FFEC-\$FFED		
TIM 2 channel 0 & 1	CH0F & CH1F	CH01IE	IF9	9	\$FFEA\$FFEB		
TIM 2 overflow	TOF	TOIE	IF10	10	\$FFE8-\$FFE9		
SCI receiver overrun	OR	ORIE					
SCI noise fag	NF	NEIE	1511	11	¢EEE6 ¢EEE7		
SCI framing error	FE	FEIE			φιι <u>Ε</u> σ-φιι Ε <i>ι</i>		
SCI parity error	PE	PEIE					
SCI receiver full	SCRF	SCRIE	1512	12			
SCI input idle	IDLE	ILIE	1612	12	φ ΓΓ Ε4 - φΓΓΕΟ		
SCI transmitter empty	SCTE	SCTIE	1512	12	¢ ¢		
SCI transmission complete	ТС	TCIE	1 1713	13	φΓΓ Ε Ζ - ΦΓΓΕ3		
Keyboard interrupt	KEYF	IMASKK	IF14	14	\$FFE0-\$FFE1		

Table 8-4. Interrupt Sources

Notes:

1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction. 2. Highest priority = 0.

MC68HC908JB16 - Rev. 1.1

9.4.2 Data Format

Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. Transmit and receive baud rates must be identical.

Figure 9-3. Monitor Data Format

9.4.3 Break Signal

A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal.

Figure 9-4. Break Transaction

9.4.4 Baud Rate

The communication baud rate is dependent on oscillator frequency, f_{XCLK} . The state of PTA3 also affects baud rate if entry to monitor mode is by $\overline{IRQ} = V_{TST}$. When PTA3 is high, the divide by ratio is 625. If the PTA3 pin is at logic zero upon entry into monitor mode, the divide by ratio is 312.

Table 9-3.	Monitor	Baud Rate	Selection
------------	---------	------------------	-----------

Monitor Mode Entry By:	Oscillator Clock Frequency, ^f c∟ĸ	РТАЗ	Baud Rate
	12 MHz	0	38400 bps
inte – v _{TST}	12 MHz	1	19200 bps
Blank reset vector, IRQ = V _{DD}	12 MHz	Х	19200 bps

Timer Interface Module (TIM)

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0	
\$0014	Timer 1 Channel 1 Register High (T1CH1H)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8	
		Reset:	Indeterminate after reset								
\$0015	Timer 1 Channel 1 Register Low (T1CH1L)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0	
		Reset:	Indeterminate after reset								
\$0040	Timer 2 Status and Control Register (T2SC)	Read:	TOF	TOIE	TSTOP	0	0	PS2	PS1	PS0	
		Write:	0			TRST					
		Reset:	0	0	1	0	0	0	0	0	
\$0042	Timer 2 Counter Register High (T2CNTH)	Read:	Bit 15	14	13	12	11	10	9	Bit 8	
		Write:									
		Reset:	0	0	0	0	0	0	0	0	
\$0043	Timer 2 Counter Register Low (T2CNTL)	Read:	Bit 7	6	5	4	3	2	1	Bit 0	
		Write:									
		Reset:	0	0	0	0	0	0	0	0	
\$0044	Timer 2 Counter Modulo Register High (T2MODH)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8	
		Reset:	1	1	1	1	1	1	1	1	
\$0045	Timer 2 Counter Modulo Register Low (T2MODL)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0	
		Reset:	1	1	1	1	1	1	1	1	
\$0046	Timer 2 Channel 0 Status and Control Register (T2SC0)	Read:	CH0F	CH0IE	MS0B	MS0A	ELS0B	ELS0A	TOV0	CHOMAX	
		Write:	0								
		Reset:	0	0	0	0	0	0	0	0	
\$0047	Timer 2 Channel 0 Register High (T2CH0H)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8	
		Reset:		Indeterminate after reset							
				= Unimple	mented						
	Figur	e 10-	2. TIM I	/O Regi	ster Sur	nmary (Sheet 2	of 3)			

Technical Data

11.5.1 USB Protocol

Figure 11-3 shows the various transaction types supported by the USB module. The transactions are portrayed as error free. The effect of errors in the data flow are discussed later.

ENDPOINT 0 TRANSACTIONS:

To enable the next data packet transmission, TX2E also must be set. If the TXD2F bit is not cleared, a NAK handshake will be returned in the next IN transaction.

Reset clears this bit. Writing to TXD2F has no effect.

- 1 = Transmit on endpoint 2 has occurred
- 0 = Transmit on endpoint 2 has not occurred

RXD2F — Endpoint 2 Data Receive Flag

This read-only bit is set after the USB module has received a data packet and responded with an ACK handshake packet. Software must clear this flag by writing a logic 1 to the RXD2FR bit after all of the received data has been read. Software also must set the RX2E bit to 1 to enable the next data packet reception. If the RXD2F bit is not cleared, a NAK handshake will be returned in the next OUT transaction.

Reset clears this bit. Writing to RXD2F has no effect.

- 1 = Receive on endpoint 2 has occurred
- 0 = Receive on endpoint 2 has not occurred

TXD1F — Endpoint 1 Data Transmit Flag

This read-only bit is set after the data stored in the endpoint 1 transmit buffer has been sent and an ACK handshake packet from the host is received. Once the next set of data is ready in the transmit buffers, software must clear this flag by writing a logic 1 to the TXD1FR bit. To enable the next data packet transmission, TX1E also must be set. If the TXD1F bit is not cleared, a NAK handshake will be returned in the next IN transaction.

Reset clears this bit. Writing to TXD1F has no effect.

1 = Transmit on endpoint 1has occurred

0 = Transmit on endpoint 1has not occurred

RESUMF — Resume Flag

This read-only bit is set when USB bus activity is detected while the SUSPND bit is set. Software must clear this flag by writing a logic 1 to the RESUMFR bit. Reset clears this bit. Writing a logic 0 to RESUMF has no effect.

1 = USB bus activity has been detected

0 = No USB bus activity has been detected

Universal Serial Bus Module (USB)

11.8.12 USB Endpoint 0 Data Registers

Address:	\$0020	UE0D0						
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	UE0R07	UE0R06	UE0R05	UE0R04	UE0R03	UE0R02	UE0R01	UE0R00
Write:	UE0T07	UE0T06	UE0T05	UE0T04	UE0T03	UE0T02	UE0T01	UE0T00
Reset:				Unaffecte	d by reset			
	\downarrow							\downarrow
Address:	↓ \$0027	UE0D7						\downarrow
Address: Read:	↓ \$0027 UE0R77	UE0D7 UE0R76	UE0R75	UE0R74	UE0R73	UE0R72	UE0R71	↓ UE0R70
Address: Read: Write:	↓ \$0027 UE0R77 UE0T77	UE0D7 UE0R76 UE0T76	UE0R75 UE0T75	UE0R74 UE0T74	UE0R73 UE0T73	UE0R72 UE0T72	UE0R71 UE0T71	↓ UE0R70 UE0T70

Figure 11-26. USB Endpoint 0 Data Registers (UE0D0–UE0D7)

UE0Rx7–UE0Rx0 — Endpoint 0 Receive Data Buffer

These read-only bits are serially loaded with OUT token or SETUP token data directed at endpoint 0. The data is received over the USB's D+ and D– pins.

UE0Tx7–UE0Tx0 — Endpoint 0 Transmit Data Buffer

These write-only buffers are loaded by software with data to be sent on the USB bus on the next IN token directed at endpoint 0.

11.8.13 USB Endpoint 1 Data Registers

Figure 11-27. USB Endpoint 1 Data Registers (UE1D0–UE1D7)

UE1Tx7–UE1Tx0 — Endpoint 1 Transmit or Receive Data Buffer

These write-only buffers are loaded by software with data to be sent on the USB bus on the next IN token directed at endpoint 1. Universal Serial Bus Module (USB)

11.9.1.2 Transmit Control Endpoint 0

For a control IN transaction directed at endpoint 0, the USB module will generate an interrupt by setting the TXD0F flag in the UIR1 register. The conditions necessary for the interrupt to occur are shown in the flowchart in **Figure 11-31**.

Figure 11-31. IN Token Data Flow for Transmit Endpoint 0

tolerance is much more than the degree of misalignment that is likely to occur.

As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge within the character. Resynchronization within characters corrects misalignments between transmitter bit times and receiver bit times.

Slow Data Tolerance

Figure 12-7 shows how much a slow received character can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10.

Figure 12-7. Slow Data

For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times \times 16 RT cycles + 10 RT cycles = 154 RT cycles.

With the misaligned character shown in **Figure 12-7**, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 9 bit times \times 16 RT cycles + 3 RT cycles = 147 RT cycles.

The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit character with no errors is

$$\frac{154 - 147}{154} \times 100 = 4.54\%$$

For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times \times 16 RT cycles + 10 RT cycles = 170 RT cycles.

MC68HC908JB16 - Rev. 1.1

13.3.3 Reference Divider

The crystal oscillator frequency (OSCXCLK) is fed to the phase detector through a 10-bit programmable divider module R. The divider output (CGMRCLK) is equal to CGMXCLK divided by R and is used as the final reference signal for the phase detector.

13.3.4 VCO Frequency Divider

The VCO output clock (CGMVCLK) is fed to the phase detector through another 12-bit programmable divider module N. The divider output (CGMFCLK) is equal to CGMVCLK divided by N and it is the feedback signal for the phase detector.

13.3.5 Phase Detector

The phase detector compares the VCO feedback clock with the final reference clock. A correction pulse is generated based on the phase difference between the two signals. The loop filter then slightly alters the DC voltage on the external capacitor connected to pin CGMXFC base on the width and direction of the correction pulse.

13.3.6 Phase Detector Filter

The loop filter controls the dynamic characteristics of the PLL. The loop filter can make fast or low corrections depending on whether the phase detector is unlocked or stable.

13.3.7 Lock Detector

The lock detector compares the frequencies of the VCO feedback clock, CGMFCLK, and the final reference clock, CGMRCLK. Therefore, the speed of the lock detector is directly proportional to the final reference clock, CGMRCLK.

15.9 IRQ Option Control Register

The IRQ option control register controls and monitors the external interrupt function available on the PTE4 pin. It also disables/enables the pullup resistor on the IRQ pin.

- Controls pullup option on IRQ pin
- Enables PTE4 pin for external interrupts to IRQ
- Shows the state of the PTE4 interrupt flag

Address: \$001C

PTE4IF — PTE4 Interrupt Flag

This read-only status bit is high when a falling edge on PTE4 pin is detected. PTE4IF bit clears when the IOCR is read.

1 = Falling edge on PTE4 is detected and PTE4IE is set

0 = Falling edge on PTE4 is not detected or PTE4IE is clear

PTE4IE — PTE4 Interrupt Enable

This read/write bit enables or disables the interrupt function on the PTE4 pin to trigger the IRQ interrupt. Setting the PTE4IE bit and clearing the USBEN bit in the USB address register configure the PTE4 pin for interrupt function to the IRQ interrupt. Setting PTE4IE also enables the internal pullup on PTE4 pin.

- 1 = PTE4 interrupt enabled; triggers IRQ interrupt
- 0 = PTE4 interrupt disabled

IRQPD — IRQ Pullup Disable

This read/write bit controls the pullup option for the \overline{IRQ} pin.

- 1 = Internal pullup is disconnected
- 0 = Internal pull-up is connected between \overline{IRQ} pin and V_{DD}