

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08ka101-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to 20-pin and 28-pin packages. The general block the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all the devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, or even jumping from 20-pin to 28-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex.

1.2 Other Special Features

Communications: The PIC24F16KA102 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is and module that supports both the Master and Slave modes of operation. It also comprises UARTs with built-in IrDA^{fi} encoders/decoders and an SPI module. Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.

10-Bit A/D Converter: This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep to reduce power, or in Active mode to improve throughput.

Charge Time Measurement Unit (CTMU) Interface: The PIC24F16KA102 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing and also for precision time measurement and pulse generation.

1.3 Details on Individual Family Members

Devices in the PIC24F16KA102 family are available in diagram for all devices is displayedFigure 1-1.

The devices are different from each other in two ways:

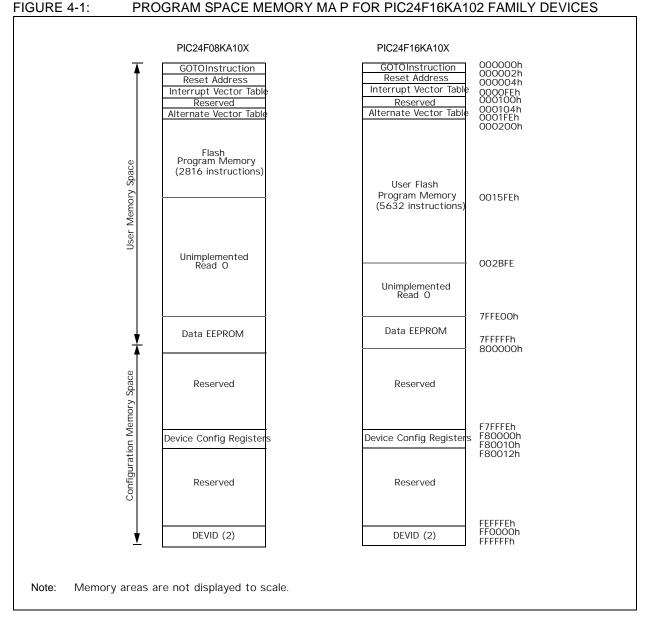
- 1. Flash program memory (8 Kbytes for PIC24F08KA devices, 16 Kbytes for PIC24F16KA devices).
- 2 Available I/O pins and ports (18 pins on two ports for 20-pin devices and 24 pins on two ports for 28-pin devices).
- 3. Alternate SCLx and SDAx pins are available only in 28-pin devices and not in 20-pin devices.

All other features for devices in this family are identical; these are summarized inable 1-1.

A list of the pin features available on the PIC24F16KA102 family devices, sorted by function, is provided inTable 1-2

Note: Table 1-1 provides the pin location of individual peripheral features and not how they are multiplexed on the same pin. 1 his information is provided in the pinout diagrams on pages4, 5 and 6 of the dat sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

4.0 MEMORY ORGANIZATION


As with Harvard architecture devices, the PIC24F microcontrollers feature separate program and data memory space and busing. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the PIC24F devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program exution, or from a table operation or data space remapping, as described in Section 4.3 "Interfacing Program and Data Memory Spaces".

The user access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24F16KA102 family of devices are displayed infigure 4-1

TABLE 4	. 0.				RS MA														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit	1	Bit 0	All Resets
WREGO	0000								Working	g Register	0								0000
WREG1	0002								Working	g Register	1								0000
WREG2	0004								Working	g Register	2								0000
WREG3	0006								Working	g Register	3								0000
WREG4	8000								Working	g Register	4								0000
WREG5	000A								Working	g Register	5								0000
WREG6	000C								Working	g Register	6								0000
WREG7	000E								Working	g Register	7								0000
WREG8	0010								Working	g Register	8								0000
WREG9	0012								Working	g Register	9								0000
WREG10	0014								Working	Register	10								0000
WREG11	0016								Working	Register	11								0000
WREG12	0018								Working	Register	12								0000
WREG13	001A								Working	Register	13								0000
WREG14	001C								Working	Register	14								0000
WREG15	001E								Working	Register	15								0800
SPLIM	0020							Stac	ck Pointer	Limit Value	e Register								хххх
PCL	002E							Prog	ram Count	er Low By	te Registe	r							0000
PCH	0030											Progr	am Count	er Regist	ter High	Byte			0000
TBLPAG	0032											Table I	Memory P	age Addr	ess Regi	ster			0000
PSVPAG	0034										F	Program S	bace Visib	lity Page	e Address	Regist	er		0000
RCOUNT	0036				-	_		RE	PEAT Loop	Counter F	Register	-							XXXX
SR	0042								DC	IPL2	IPL1	IPLO	RA	Ν	0	/	Ζ	С	0000
CORCON	0044													IPL3	B PS	SV			0000
DISICNT	0052								Disabl	e Interrup	ts Counte	r Register							XXXX

Legend: = unimplemented, read as0. Reset values are shown in hexadecimal.

TABLE 4-15: A/D REGISTER MAP

	10.																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4 I	Bit 3 E	Sit 2 B	it1 B	it 0 Al	Resets
ADC1BUF0	0300								A/D Da	ta Buffer (0							хххх
ADC1BUF1	0302								A/D Da	ta Buffer '	1							хххх
ADC1BUF2	0304		A/D Data Buffer 2											хххх				
ADC1BUF3	0306		A/D Data Buffer 3											хххх				
ADC1BUF4	0308		A/D Data Buffer 4											хххх				
ADC1BUF5	030A								A/D Da	ta Buffer !	5							XXXX
ADC1BUF6	030C								A/D Da	ta Buffer (6							XXXX
ADC1BUF7	030E								A/D Da	ta Buffer '	7							XXXX
ADC1BUF8	0310								A/D Da	ta Buffer 8	8							XXXX
ADC1BUF9	0312								A/D Da	ta Buffer (9							XXXX
ADC1BUFA	0314								A/D Dat	a Buffer 1	0							XXXX
ADC1BUFB	0316								A/D Dat	ta Buffer 1	1							XXXX
ADC1BUFC	0318								A/D Dat	a Buffer 1	2							XXXX
ADC1BUFD	031A								A/D Dat	a Buffer 1	3							XXXX
ADC1BUFE	031C								A/D Dat	a Buffer 1	4							xxxx
ADC1BUFF	031E		-				-	_	A/D Dat	a Buffer 1	5					-		хххх
AD1CON1	0320	ADON		ADSIDL				FORM1	FORMO	SSRC2	SSRC1	SSRCO			ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFGO	OFFCAL		CSCNA			BUFS		SMPI3	SMPI2	SMPI1	SMPIO	BUFM	ALTS	0000
AD1CON3	0324	ADRC			SAMC4	SAMC3	SAMC2	SAMC1	SAMCO			ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS	0000
AD1CHS	0328	CHONB				CHOSB3	CHOSB2	CHOSB1	CHOSBO	CHONA			CHOSA4	CHOSA3	CHOSA2	CHOSA1	CHOSAC	0000
AD1PCFG	032C				PCFG12	PCFG11	CFG10					PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFGO	0000
AD1CSSL	0330				CSSL12	CSSL11	CSSL10					CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSLO	0000
l agond:	uniman	longontod	road oo O	Depat val	luco oro ok	own in ho	امماممام											

Legend: = unimplemented, read as0. Reset values are shown in hexadecimal.

TABLE 4-16: CTMU REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4 E	Bit 3 E	it 2 E	Bit1 B	it O	All Resets
CTMUCON	033C	CTMUEN		CTMUSIDL	TGEN	EDGEN E	DGSEQEN ID	ISSEN CT	TRIG EDO	2POL EDG	2SEL1 EDG2	SELO EDG1	POL EDG1S	EL1 EDG1SE	LO EDG2ST	AT EDG1STAT	ſ	0000
CTMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIMO	IRNG1	IRNGO									0000

Legend: = unimplemented, read as0. Reset values are shown in hexadecimal.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY AND DATA EEPROM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any ². address within the program memory without going through data space. It also offers a direct method of reading or writing a word of any address within data EEPROM memory. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

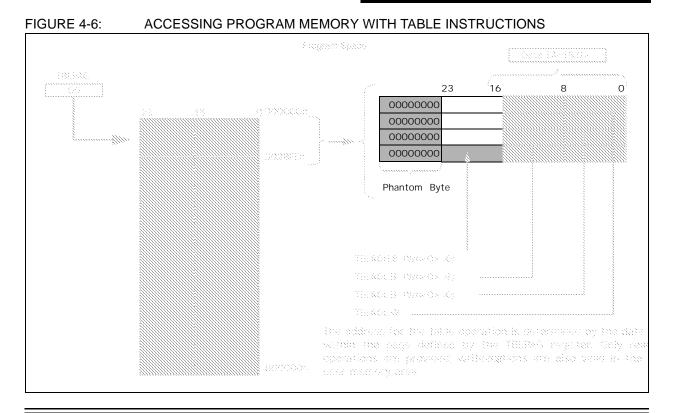
Note: The TBLRDH and TBLWTH instructions are not used while accessing data EEPROM memory.

The PC is incremented by 2 for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit, word-wide address spaces, residing side by side, each with the same address rang BLRDL and TBLWTL access the space which contains the least significant data word, and BLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

1. TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0×t)o a data address (D<15:0>).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select 1s; the lower byte is selected when it **B**.


. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the phantom byte, will alway\$De

In Byte mode, it maps the upper or lower byte of the program word to D < 7:O > of the data address, as above. Note that the data will always be 0 when the upper phantom byte is selected (byte select1).

In a similar fashion, two table instruction Bb, WTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained Spection 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> =1, the page is located in configuration space.

Note: Only table read operations will execute in the configuration memory space, and only ther, in implemented areas, such as the Device D. Table write operations are not allowed.

6.4.1.1 Data EEPROM Bulk Erase

To erase the entire data EEPROM (bulk erase), the address registers do not need to be configured because this operation affects the entire data EEPROM. The following sequence helps in performing bulk erase:

- 1. Configure NVMCON to Bulk Erase mode.
- 2. Clear NVMIF status bit and enable NVM interrupt (optional).
- 3. Write the key sequence to NVMKEY.
- 4. Set the WR bit to begin erase cycle.
- 5. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

A typical bulk erase sequence is provided in Example 6-3

6.4.2 SINGLE-WORD WRITE

To write a single word in the data EEPROM, the following sequence must be followed:

- Erase one data EEPROM word (as mentioned in Section 6.4.1 "Erase Data EEPROM") if the PGMONLY bit (NVMCON<12>) is set tb.
- 2. Write the data word into the data EEPROM latch.
- 3. Program the data word into the EEPROM:
 - Configure the NVMCON register to program one EEPROM word (NVMCON<5:0> €001xx).
 - Clear NVMIF status bit and enable NVM interrupt (optional).
 - Write the key sequence to NVMKEY.
 - Set the WR bit to begin erase cycle.
 - Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).
 - To get cleared, wait until NVMIF is set.

A typical single-word write sequence is provided in Example 6-4

EXAMPLE 6-3: DATA EEPROM BULK ERASE

// Set up NVMCON to bulk erase the data EEPROM NVMCON = 0x4050;

// Disable Interrupts For 5 Instructions
asm volatile ("disi #5");

// Issue Unlock Sequence and Start Erase Cycle
__builtin_write_NVM();

EXAMPLE 6-4: SINGLE-WORD WRITE TO DATA EEPROM

intattribute ((space(eedata))) eeData = 0x1234;	// Variable located in EEPROM,declared as a global variable.
int newData; unsigned int offset;	// New data to write to EEPROM
<pre>// Set up NVMCON to erase one word of data EEPR NVMCON = 0x4004;</pre>	OM
// Set up a pointer to the EEPROM location to be e	rased
TBLPAG =builtin_tblpage(&eeData);	// Initialize EE Data page pointer
offset =builtin_tbloffset(&eeData);	// Initizlize lower word of address
builtin_tblwtl(offset, newData);	// Write EEPROM data to write latch
asm volatile ("disi #5");	// Disable Interrupts For 5 Instructions
builtin_write_NVM();	// Issue Unlock Sequence & Start Write Cycle

REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-O	U-0						
NSTDIS							
bit 15							bit 8

U-0	U-0	U-0	R/W-O, HS	R/W-0, H	S R/W-	o, HS	R/W-0, H\$	S U-O
			MATHERR	ADDRERR	STKERR	OSCI	FAIL	
bit 7								bit C

Legend:		HS = Hardware Settable	bit	
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	read as O
-n = Value a	at POR	1 = Bit is set	0 = Bit is cleared	x = Bit is unknown
bit 15	1 = Interro	nterrupt Nesting Disable bit upt nesting is disabled upt nesting is enabled		
bit 14-5		ented: Read as O		
bit 4	1 = Overfl	: Arithmetic Error Trap Statu ow trap has occurred ow trap has not occurred	us bit	
bit 3	1 = Addres	: Address Error Trap Status ss error trap has occurred ss error trap has not occurr		
bit 2	1 = Stack	Stack Error Trap Status bit error trap has occurred error trap has not occurred		

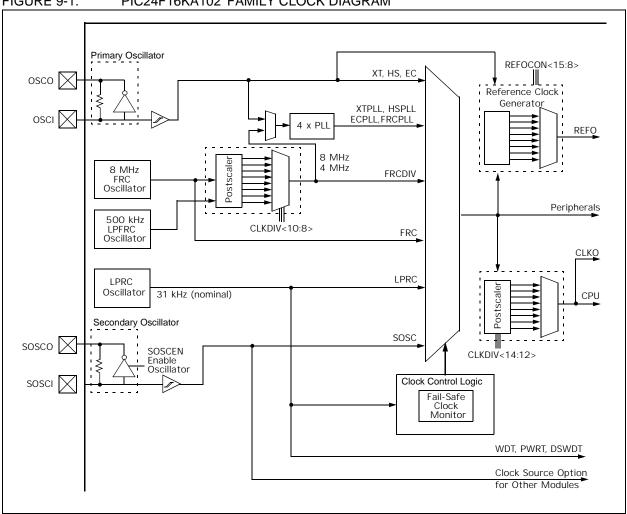
	•
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit O	Unimplemented: Read as O

9.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the fea-
	tures of this group of PIC24F devices. It
	is not intended to be a comprehensive
	reference source. For more information
	on Oscillator Configuration, refer to the
	"PIC24F Family Reference Manual",
	Section 38. "Oscillator with 500 kHz
	Low-Power FRC" (DS39726).

The oscillator system for the PIC24F16KA102 family of devices has the following features:

A total of five external and internal oscillator options as clock sources, providing 11 different clock modes.


On-chip 4x Phase Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources.

Software-controllable switching between various clock sources.

Software-controllable postscaler for selective clocking of CPU for system power savings.

System frequency range declaration bits for EC mode. When using an external clock source, the current consumption is reduced by setting the declaration bits to the expected frequency range. A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown.

Figure 9-1 provides a simplified diagram of the oscillator system.

FIGURE 9-1: PIC24F16KA102 FAMILY CLOCK DIAGRAM

9.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

Primary Oscillator (POSC) on the OSCI and OSCO pins

Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins

The PIC24F16KA102 family devices consist of two types of secondary oscillator:

- High-Power Secondary Oscillator
- Low-Power Secondary Oscillator

These can be selected by using the SOSCSEL (FOSC<5>) bit.

Fast Internal RC (FRC) Oscillator

- 8 MHz FRC Oscillator

- 500 kHz Lower Power FRC Oscillator

Low-Power Internal RC (LPRC) Oscillator

The primary oscillator and 8 MHz FRC sources have the option of using the internal 4x PLL. The frequency of the FRC clock source can optionally be reduced by the programmable clock divider. The selected clock source generates the processor and peripheral clock sources.

The processor clock source is divided by two to produce the internal instruction cycle clocky. In this document, the instruction cycle clock is also denoted by Fosc/2. The internal instruction cycle clocks F_2 , can be provided on the OSCO I/O pin for some operating modes of the primary oscillator.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset (POR) event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (reference 26.1 "Configuration Bits" for further details). The Primary Oscillator Configuration bits, POSCMD<1:0> (FOSC<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a POR. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The secondary oscillator, or one of the internal oscillators, may be chosen by programming these bit locations. The EC mode frequency range Configuration bits, POSCFREQ<1:0> (FOSC<4:3>), optimize power consumption when running in EC mode. The default configuration is frequency range is greater than 8 MHz.

The Configuration bits allow users to choose between the various clock modes, shownTable 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM Configuration bits (FOSC<7:6>) are used jointly to configure device clock switching and the FSCM. Clock switching is enabled only when FCKSM1 is programmed Q). The FSCM is enabled only when FCKSM<1:0> are both programmed Q).

Oscillator Mode	Oscillator Source P	OSCMD<1:0>	FNOSC<2:0>	Note
8 MHz FRC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
500 MHz FRC Oscillator with Postscale (LPFRCDIV)	Internal	11	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	00	100	1
Primary Oscillator (HS) with PLL Module (HSPLL)	Primary	10	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
8 MHz FRC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
8 MHz FRC Oscillator (FRC)	Internal	11	000	1

TABLE 9-1: CONFIGURATION BIT VA LUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.4 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

The Peripheral Enable bit, generically named, XXXEN, located in the module s main control SFR.

The Peripheral Module Disable (PMD) bit, generically named, XXXMD, located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as the PMD bits are used. Most peripheral modules have an enable bit; exceptions include capture, compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, XXXIDL. By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

11.0 I/O PORTS

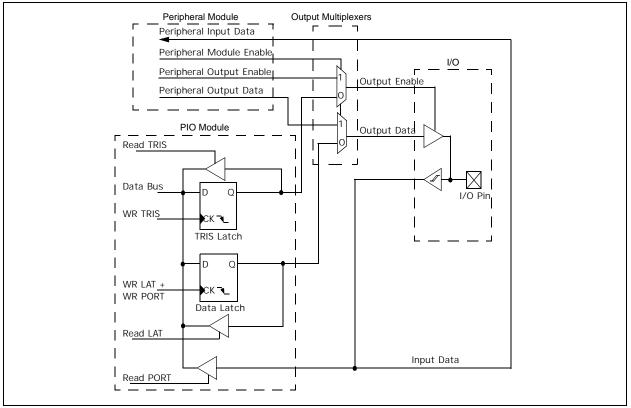
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the I/O ports, refer to the treat of the treat of the treat of the treat ence Manual", Section 12. "I/O Ports with Peripheral Pin Select (PPS)" (DS39711). Note that the PIC24F16KA102 family devices do not support Peripheral Pin Select features.

All of the device pins (except/Vand Vss) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral s output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents loop through , in which a port s digital output can drive the input of a peripheral that shares the same pirigure 11-1 displays how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.


All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Data Latch register (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

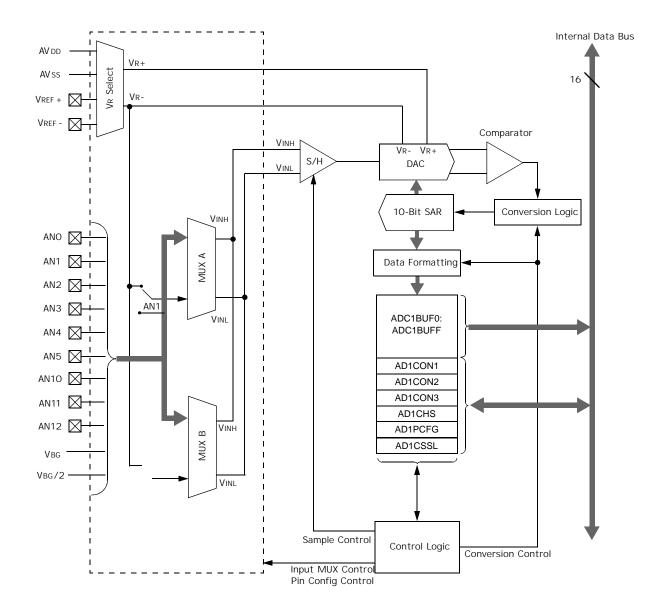

Note: The I/O pins retain their state during Deep Sleep. They will retain this state at wake-up until the software restore bit (RELEASE) is cleared.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

/ 2008-2011 Microchip Technology Inc.

R/W-O	U-O	R/W-O	R/W-1 HC	R/W-O	R/W-	O R/W	/-0	R/W-O		
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SM	EN		
it 15								bit 8		
R/W-O	R/W-O	R/W-O	R/W-0, H	C R/W-O, H	HC R/W-C	, HC R/W-	O, HC	R/W-0, H		
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
it 7								bit C		
egend:			are Clearable k							
R = Reada		W = Writabl		•		t, read as 0	D!1	- 1		
n = Value	at POR	1 = Bit is	set	0 = BIt	is cleared	X = 1	bit is u	nknown		
it 15	12CEN: 12C1	Enable bit								
11 15			ule and config	ures the SDA	1 and SCL1 i	oins as serial	port pi	ns		
			lule; affCl pins				1 1			
oit 14	Unimplemente	ed: Read as C)							
oit 13	I2CSIDL: Sto	p in Idle Mode	e bit							
			peration whe		rs an Idle m	ode				
oit 12		•	ration in Idle r		C dlava)					
nt iz	SCLREL: SCL1 Release Control bit (when operating as slave) 1 = Releases SCL1 clock									
	0 = Holds SCL1 clock low (clock stretch)									
	If STREN = 1:									
	Bit is R/W(i.e., software may wrice to initiate stretch and write release clock). Hardware is clear at the beginning of slave transmission; hardware is clear at the end of slave reception.									
	If STREN = 0:									
	Bit is R/S (i.€ transmission.		nay only wflitet	o release cloo	ck). Hardwar	e is clear at	the beg	ginning of s		
oit 11										
<i>л</i> с 11	IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI Support mode is enabled; all addresses are Acknowledged									
	0 = IPMI Support mode is disabled									
oit 10	A10M: 10-Bit Slave Addressing bit									
		is a 10-bit sl is a 7-bit slav								
oit 9	DISSLW: Disa	able Slew Rate	e Control bit							
		1 = Slew rate control is disabled								
		e control is e								
bit 8	SMEN: SMBus Input Levels bit 1 = Enables I/O pin thresholds compliant with the SMBus specification									
			put threshold		/IBus specifie	cation				
it 7	GCEN: Gener	al Call Enable	bit (when op	erating 🖧 Isla	ive)					
	receptior	r)	en a general c	all address is	s received in	the I2C1RSR	(modu	lle is enable		
		call address is			2					
oit 6			h Enable bit (•	ng ′ @sslave)					
	Used in coniu	inction with t	the SCLREL bit							

FIGURE 22-1: 10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM

REGISTER 22-6: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW)

U-0	U-0	U-0	R/W-O	R/W-0	R/W-O	U-0	U-0
			CSSL12	CSSL11	CSSL10		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-O	R/W-O	R/W-0	R/W-C) R/W-Ø
		CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSLO
bit 7							bit C

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as O
-n = Value at POR	1 = Bit is set	0 = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as O

bit 12-10 CSSL<12:10>: A/D Input Pin Scan Selection bits 1 = Corresponding analog channel is selected for input scan 0 = Analog channel omitted from input scan

bit 9-6 Unimplemented: Read as 0

bit 5-0 CSSL<5:0>: A/D Input Pin Scan Selection bits

1 = Corresponding analog channel is selected for input scan

0 = Analog channel omitted from input scan

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-O	R/P-1	R/P-1			
MCLRE ⁽²⁾	BORV1 ⁽³⁾	BORVO ⁽³⁾	I2C1SEL ⁽¹⁾	PWRTEN		BOREN1	BORENO			
bit 7							bit C			
_egend:										
R = Readat	ole bit	P = Progra	nmable bit	U = Unim	plemented bit	, read as 0				
-n = Value	at POR	1 = Bit is	set	O = Bit	is cleared	x = B	it is unknown			
bit 7	MCLRE: MCL	R Pin Fnable I). ((2)							
	1 = MCLR pin 0 = RA5 input	is enabled; R	<u>A5 inp</u> ut pin is							
oit 6-5	BORV<1:0>: [BORV<1:0>: Brown-out Reset Enable bits								
	11 = Brown-c 10 = Brown-c 01 = Brown-c 00 = Low-Pov	out Reset out Reset is s	et to the high	est voltage	W					
bit 4	I2C1SEL: Alte 0 = Alternate 1 = Default Ic	location for	SCL1/SDA1 pir							
bit 3	PWRTEN: Pov O = PWRT is o 1 = PWRT is o	disabled	Enable bit							
oit 2	Unimplemente	d: Read as O								
oit 1-0	BOREN<1:0>: Brown-out Reset Enable bits									
		out Reset is er out Reset is c	ontrolled with	ile device is a the SBOREN	ctive and disal bit setting	bled in Sleep;	SBOREN bit is (
Note 1: A	Applies only to 2	28-pin device	S.							
	The MCLRE fuse		changed where	0			is prevents a			

- user from accidentally locking out the device from the low-voltage test entry.
- 3: Refer toSection 29.0, Electrical Characteristfos the BOR voltages.

27.0 DEVELOPMENT SUPPORT

The PIC^{fi} microcontrollers and dsPiCdigital signal controllers are supported with a full range of software The MPLAB IDE software brings an ease of software and hardware development tools: development previously unseen in the 8/16/32-bi

- Integrated Development Environment
- MPLAB^{fi} IDE Software
- Compilers/Assemblers/Linkers
- MPLAB C Compiler for Various Device Families
- HI-TECH C^{fi} for Various Device Families
- MPASMTM Assembler
- MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
- MPLAB Assembler/Linker/Librarian for Various Device Families

Simulators

- MPLAB SIM Software Simulator

Emulators

- MPLAB REAL ICE In-Circuit Emulator

In-Circuit Debuggers

- MPLAB ICD 3
- PICkit 3 Debug Express
- Device Programmers
- PICkit 2 Programmer
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Wind&ws operating system-based application that contains:

- A single graphical interface to all debugging tools
- Simulator
- Programmer (sold separately)
- In-Circuit Emulator (sold separately)
- In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context

A multiple project manager

Customizable data windows with direct edit of contents

High-level source code debugging

Mouse over variable inspection

Drag and drop variables from source to watch windows

Extensive on-line help

Integration of select third party tools, such as $\ensuremath{\mathsf{IAR}}$ C Compilers

The MPLAB IDE allows you to:

Edit your source files (either C or assembly) One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)

Debug using:

- Source files (C or assembly)
- Mixed C and assembly
- Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV,
	INC	f,WREG	WREG = $f + 1$	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, 2
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV,
	INC2	f,WREG	WREG = $f + 2$	1	1	C, DC, N, OV, 2
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV,
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG,f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(W	s) 1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5) 1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(li	t5) 1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	f = f+ 1	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd-		2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 28-2:	INSTRUCTION SET OVERVIEW	١
TADLE 20-2.)