

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08ka101-e-ss

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

20/28-Pin General Purpose, 16-Bit Flash Microcontrollers with nanoWatt XLP Technology

Power Management Modes:

- · Run CPU, Flash, SRAM and Peripherals On
- Doze CPU Clock Runs Slower than Peripherals
- Idle CPU Off, Flash, SRAM and Peripherals On
- Sleep CPU, Flash and Peripherals Off and SRAM On
- Deep Sleep CPU, Flash, SRAM and Most Peripherals Off:
- Run mode currents down to 8 µA typical
- Idle mode currents down to 2 µA typical
- Deep Sleep mode currents down to 20 nA typical
- RTCC 490 nA, 32 kHz, 1.8V
- Watchdog Timer 350 nA, 1.8V typical

High-Performance CPU:

- Modified Harvard Architecture
- Up to 16 MIPS Operation @ 32 MHz
- 8 MHz Internal Oscillator with 4x PLL Option and Multiple Divide Options
- 17-Bit by 17-Bit Single-Cycle Hardware Multiplier
- 32-Bit by 16-Bit Hardware Divider
- 16-Bit x 16-Bit Working Register Array
- · C Compiler Optimized Instruction Set Architecture

Peripheral Features:

- Hardware Real-Time Clock and Calendar (RTCC):
 - Provides clock, calendar and alarm functions
 - Can run in Deep Sleep Mode
- Programmable Cyclic Redundancy Check (CRC)
- Serial Communication modules:
- SPI, I²C[™] and two UART modules
- Three 16-Bit Timers/Counters with Programmable
 Prescaler
- 16-Bit Capture Inputs
- 16-Bit Compare/PWM Output
- · Configurable Open-Drain Outputs on Digital I/O Pins
- Up to Three External Interrupt Sources

Analog Features:

- 10-Bit, up to 9-Channel Analog-to-Digital Converter:
 500 ksps conversion rate
 - Conversion available during Sleep and Idle
- Dual Analog Comparators with Programmable Input/ Output Configuration
- Charge Time Measurement Unit (CTMU):
- Used for capacitance sensing
- Time measurement, down to 1 ns resolution
- Delay/pulse generation, down to 1 ns resolution

Special Microcontroller Features:

- Operating Voltage Range of 1.8V to 3.6V
- High-Current Sink/Source (18 mA/18 mA) on All I/O Pins
- · Flash Program Memory:
 - Erase/write cycles: 10,000 minimum
 - 40-years' data retention minimum
- Data EEPROM:
 - Erase/write cycles: 100,000 minimum
 - 40-years' data retention minimum
- · Fail-Safe Clock Monitor
- System Frequency Range Declaration bits:
 - Declaring the frequency range optimizes the current consumption.
- Flexible Watchdog Timer (WDT) with On-Chip, Low-Power RC Oscillator for Reliable Operation
- In-Circuit Serial Programming[™] (ICSP[™]) and In-Circuit Debug (ICD) via two Pins
- Programmable High/Low-Voltage Detect (HLVD)
- Brown-out Reset (BOR):
 - Standard BOR with three programmable trip points; can be disabled in Sleep
- Extreme Low-Power DSBOR for Deep Sleep, LPBOR for all other modes

PIC24F Device	Pins	Program Memory (bytes)	SRAM (bytes)	Data EEPROM (bytes)	Timers 16-Bit	Capture Input	Output Compare/ PWM	UART/ IrDA [®]	IdS	I²C™	10-Bit A/D (ch)	Comparators	CTMU (ch)	RTCC
08KA101	20	8K	1.5K	512	3	1	1	2	1	1	9	2	9	Y
16KA101	20	16K	1.5K	512	3	1	1	2	1	1	9	2	9	Υ
08KA102	28	8K	1.5K	512	3	1	1	2	1	1	9	2	9	Υ
16KA102	28	16K	1.5K	512	3	1	1	2	1	1	9	2	9	Υ

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all the devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, or even jumping from 20-pin to 28-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex.

1.2 Other Special Features

- Communications: The PIC24F16KA102 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an I²C[™] module that supports both the Master and Slave modes of operation. It also comprises UARTs with built-in IrDA[®] encoders/decoders and an SPI module.
- Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- **10-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24F16KA102 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing and also for precision time measurement and pulse generation.

1.3 Details on Individual Family Members

Devices in the PIC24F16KA102 family are available in 20-pin and 28-pin packages. The general block diagram for all devices is displayed in Figure 1-1.

The devices are different from each other in two ways:

- 1. Flash program memory (8 Kbytes for PIC24F08KA devices, 16 Kbytes for PIC24F16KA devices).
- 2. Available I/O pins and ports (18 pins on two ports for 20-pin devices and 24 pins on two ports for 28-pin devices).
- 3. Alternate SCLx and SDAx pins are available only in 28-pin devices and not in 20-pin devices.

All other features for devices in this family are identical; these are summarized in Table 1-1.

A list of the pin features available on the PIC24F16KA102 family devices, sorted by function, is provided in Table 1-2.

Note: Table 1-1 provides the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams on pages 4, 5 and 6 of the data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

TABLE 4-12: PORTA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5 ⁽¹⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	_	_	_	_	_	_	_		TRISA7 ⁽⁴⁾	TRISA6	_	TRISA4	TRISA3 ^(5,6)	TRISA2 ⁽⁵⁾	TRISA1	TRISA0	00DF
PORTA	02C2	_	-	-	_	—	_	_	_	RA7 ⁽⁴⁾	RA6	RA5	RA4 ⁽³⁾	RA3 ^(5,6)	RA2 ⁽⁵⁾	RA1 ⁽²⁾	RA0 ⁽²⁾	xxxx
LATA	02C4	_	—	—	—	—	_	_	_	LATA7 ⁽⁴⁾	LATA6	_	LATA4	LATA3 ^(5,6)	LATA2 ⁽⁵⁾	LATA1	LATA0	xxxx
ODCA	02C6	_	_	_	_	—	_			ODA7 ⁽⁴⁾	ODA6	_	ODA4	ODA3 ^(5,6)	ODA2 ⁽⁵⁾	ODA1	ODA0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is available only when MCLRE = 0.

2: A read of RA1 and RA0 results in '0' when debug is active on the PGC2/PGD2 pin.

3: A read of RA4 results in '0' when debug is active on the PGC3/PGD3 pin.

4: These bits are not implemented in 20-pin devices.

5: These bits are available only when the primary oscillator is disabled (POSCMD<1:0> = 00); otherwise read as '0'.

6: These bits are available only when the primary oscillator is disabled or EC mode is selected (POSCMD<1:0> = 00 or 11) and CLKO is disabled (OSCIOFNC = 0); otherwise read as '0'.

TABLE 4-13:PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11(3)	TRISB10 ⁽³⁾	TRISB9	TRISB8	TRISB7	TRISB6 ⁽³⁾	TRISB5 ⁽³⁾	TRISB4	TRISB3(3)	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11 ⁽³⁾	RB10 ⁽³⁾	RB9	RB8	RB7	RB6 ⁽³⁾	RB5 ⁽³⁾	RB4 ⁽²⁾	RB3 ⁽³⁾	RB2	RB1 ⁽¹⁾	RB0 ⁽¹⁾	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11 ⁽³⁾	LATB10 ⁽³⁾	LATB9	LATB8	LATB7	LATB6 ⁽³⁾	LATB5 ⁽³⁾	LATB4	LATB3 ⁽³⁾	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: A read of RB1 and RB0 results in '0' when debug is active on the PGEC1/PGED1 pins.

2: A read of RB4 results in '0' when debug is active on the PGEC3/PGED3 pins.

3: PORTB bits, 11, 10, 6, 5 and 3, are not implemented in 20-pin devices.

TABLE 4-14: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	_	—	—	_	—	—	—	—	—	—	—	SMBUSDEL	OC1TRIS	RTSECSEL1	RTSECSEL0	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DATA ACCESS FROM PROGRAM 4.3.2 MEMORY AND DATA EEPROM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program memory without going through data space. It also offers a direct method of reading or writing a word of any address within data EEPROM memory. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

Note: The TBLRDH and TBLWTH instructions are not used while accessing data EEPROM memory.

The PC is incremented by 2 for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit, word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

1. TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.

2. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only table read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

FIGURE 4-6: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 32 instructions or 96 bytes. RTSP allows the user to erase blocks of 1 row, 2 rows and 4 rows (32, 64 and 128 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 1-row (96 bytes), 2-row (192 bytes) and 4-row (384 bytes) erase blocks, and single row write block (96 bytes) are edge-aligned, from the beginning of program memory.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 32 TBLWT instructions are required to write the full row of memory.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note:	Writing to a location multiple times without
	erasing it is not recommended.

All of the table write operations are single-word writes (two instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 Enhanced In-Circuit Serial Programming

Enhanced ICSP uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.4 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls the blocks that need to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.5 "Programming Operations"** for further details.

5.5 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

TABLE 8-1: TRAP VECTOR DETAILS

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS

	Vector	N/T Address	ΑΙΥΤ	Inte	rrupt Bit Locat	ions
Interrupt Source	Number	IVI Address	Address	Flag	Enable	Priority
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>
СТМИ	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>
HLVD High/Low-Voltage Detect	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC17<2:0>
NVM – NVM Write Complete	15	000032h	000132h	IFS0<15>	IEC0<15>	IPC3<14:12>
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>

R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 U2TXIE **U2RXIE** INT2IE ____ bit 15 bit 8 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 INT1IE CNIE CMIE MI2C1IE SI2C1IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 **U2TXIE:** UART2 Transmitter Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 14 **U2RXIE:** UART2 Receiver Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 13 INT2IE: External Interrupt 2 Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 12-5 Unimplemented: Read as '0' bit 4 INT1IE: External Interrupt 1 Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 3 **CNIE:** Input Change Notification Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 2 **CMIE:** Comparator Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 1 MI2C1IE: Master I2C1 Event Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled bit 0 SI2C1IE: Slave I2C1 Event Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled

REGISTER 8-10: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

REGISTER	8-19: IPC7:	: INTERRUPT		ONTROL RE	GISTER 7						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	U2TXIP2	U2TXIP1	U2TXIP0	—	U2RXIP2	U2RXIP1	U2RXIP0				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
	INT2IP2	INT2IP1	INT2IP0	<u> </u>		—					
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							
			_								
bit 15	Unimplemen	ted: Read as ')'								
bit 14-12	U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits										
	111 = Interru	pt is Priority 7 (highest priority	interrupt)							
	•										
	•										
	001 = Interru	pt is Priority 1									
	000 = Interru	pt source is dis	abled								
bit 11	Unimplemen	ted: Read as '	כ'								
bit 10-8	U2RXIP<2:0	>: UART2 Rece	eiver Interrupt F	Priority bits							
	111 = Interru	pt is Priority 7 (highest priority	interrupt)							
	•										
	•										
	001 = Interru	pt is Priority 1									
	000 = Interru	pt source is dis	abled								
bit 7	Unimplemen	ted: Read as '	כי								
bit 6-4	INT2IP<2:0>	: External Interr	upt 2 Priority b	its							
	111 = Interru	pt is Priority 7 (highest priority	interrupt)							
	•										
	•										
	001 = Interru	pt is Priority 1									
	000 = Interru	pt source is dis	abled								
bit 3-0	Unimplemen	ted: Read as '	כי								

REGISTER 16-1: SPI1STAT: SPI1 STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC			
SPIEN		SPISIDL			SPIBEC2	SPIBEC1	SPIBEC0			
bit 15					•		bit 8			
R-0,HSC	R/C-0, HS	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R-0, HSC	R-0, HSC			
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF			
bit 7		b								
Legend:		U = Unimplemente	d bit, read as '0'	HSC = Hardwa	re Settable/Cle	earable bit				
R = Reada	able bit	W = Writable bit		H = Hardware	Settable bit	C = Clearable	bit			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown			
bit 15	SPIEN: SPI1	Enable bit								
	1 = Enables	module and configu	ures SCK1, SDO	1, SDI1 and \overline{SS}	1 as serial po	rt pins				
	0 = Disables	module								
bit 14	Unimplemer	nted: Read as '0'								
bit 13	SPISIDL: Sto	op in Idle Mode bit								
	1 = Discontin	ues module operat	tion when device	enters Idle mod	le					
	0 = Continues module operation in Idle mode									
bit 12-11	Unimplemer	nted: Read as '0'								
bit 10-8	SPIBEC<2:0	>: SPI1 Buffer Eler	ment Count bits (valid in Enhance	ed Buffer mod	e)				
	Master mode	<u>):</u> Di transfora ara naj	adiaa							
	Slavo modo:	Fi liansiers are per	nung.							
	Number of S	PI transfers are uni	read.							
bit 7	SRMPT: Shif	t Register (SPI1SR) Empty bit (valio	d in Enhanced B	uffer mode)					
	1 = SPI1 Sh	ift register is empty	and ready to ser	nd or receive	,					
	0 = SPI1 Sh	ift register is not en	npty							
bit 6	SPIROV: Re	ceive Overflow Flag	g bit							
	1 = A new by	yte/word is complete	ely received and	discarded						
	The use	r software has not i	read the previous	data in the SPI	1BUF registe	r.				
L:1 F		now has occurred	hit (maliation Frake		-1 -)					
DIT 5			bit (valid in Enna	anced Buffer mo	de)					
	\perp = Receive	FIFO is empty								
hit 4-2		SPI1 Buffer Intern	unt Mode hits (va	llid in Enhanced	Buffer mode					
	111 = Interr	unt when the SPI1	transmit huffer is	full (SPITRE bit	t is set)					
	110 = Interr	upt when the last bi	it is shifted into S	PI1SR; as a res	sult, the TX FI	FO is empty				
	101 = Interr	upt when the last b	it is shifted out of	SPI1SR; now t	he transmit is	complete				
	100 = Interru	upt when one data b	byte is shifted into	the SPI1SR; as	a result, the T	X FIFO has on	e open spot			
	011 = Intern	upt when the SPI1	receive buffer is	TUII (SPIRBF bit 3/4 or more full	set)					
	001 = Intern	upt when data is av	ailable in receive	e buffer (SRMP1	「bit is set)					
	000 = Interr	upt when the last d	ata in the receive	buffer is read;	as a result, th	e buffer is emp	ty			
	(SRXMPT bit is set)									

17.3 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator (BRG) reload value, use Equation 17-1.

EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE⁽¹⁾

TABLE 17-1: I²C[™] CLOCK RATES⁽¹⁾

17.4 Slave Address Masking

The I2C1MSK register (Register 17-3) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2C1MSK register causes the slave module to respond whether the corresponding address bit value is '0' or '1'. For example, when I2C1MSK is set to '00100000', the slave module will detect both addresses: '0000000' and '00100000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the IPMIEN bit (I2C1CON<11>).

Note: As a result of changes in the I²C protocol, the addresses in Table 17-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Required	_	I2C1BF	G Value	Actual
System FscL	FCY	(Decimal)	(Hexadecimal)	FSCL
100 kHz	16 MHz	157	9D	100 kHz
100 kHz	8 MHz	78	4E	100 kHz
100 kHz	4 MHz	39	27	99 kHz
400 kHz	16 MHz	37	25	404 kHz
400 kHz	8 MHz	18	12	404 kHz
400 kHz	4 MHz	9	9	385 kHz
400 kHz	2 MHz	4	4	385 kHz
1 MHz	16 MHz	13	D	1.026 MHz
1 MHz	8 MHz	6	6	1.026 MHz
1 MHz	4 MHz	3	3	0.909 MHz

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled;

TABLE 17-2: I²C[™] RESERVED ADDRESSES⁽¹⁾

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	x	Cbus Address
0000 010	x	Reserved
0000 011	x	Reserved
0000 1xx	x	HS Mode Master Code
1111 1xx	x	Reserved
1111 0xx	x	10-Bit Slave Upper Byte ⁽³⁾

Note 1: The address bits listed here will never cause an address match, independent of the address mask settings.

- 2: The address will be Acknowledged only if GCEN = 1.
- 3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

REGISTER 17-2: I2C1STAT: I2C1 STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 2	R/W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates the data transfer is output from slave
	0 = Write – indicates the data transfer is input to slave
	Hardware is set or clear after reception of I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive complete, I2C1RCV is full
	0 = Receive not complete, I2C1RCV is empty
	Hardware is set when I2C1RCV is written with received byte; hardware is clear when software reads I2C1RCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2C1TRN is full

0 = Transmit complete, I2C1TRN is empty

Hardware is set when software writes to I2C1TRN; hardware is clear at completion of data transmission.

						(2)	(2)
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾
UARTEN	N —	USIDL	IREN ⁽¹⁾	RTSMD		UEN1	UEN0
bit 15							bit 8
R/C-0, H		R/W-U, HC		R/W-U			R/W-U
VVARE	LPBACK	ABAUD	RAINV	вкоп	PDSELI	PDSELU	SISEL bit 0
							DIL U
Legend:		C = Clearable	bit	HC = Hardwa	re Clearable bi	t	
R = Reada	able bit	W = Writable b	bit	U = Unimplem	nented bit, read	I as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	UARTEN: UA	ARTx Enable bit					
	1 = UARTx is	s enabled; all U	ARTx pins are	e controlled by L	JARTx as defin	ed by UEN<1:0)>
	0 = UARTx is minimal	s disabled; all L	IARTx pins ar	e controlled by	port latches; L	JARTx power c	onsumption is
bit 14	Unimplemen	ted: Read as '0	3				
bit 13	USIDL: Stop	in Idle Mode bit					
	1 = Discontir	nue module ope	ration when d	evice enters Idle	e mode		
	0 = Continue	e module operati	on in Idle mo	de			
bit 12	IREN: IrDA®	Encoder and De	ecoder Enable	e bit ⁽¹⁾			
	1 = IrDA enc	oder and decod	er are enable er are disable	d			
hit 11	RTSMD: Mor	te Selection for		t			
bit 11	$1 = \overline{\text{UxRTS}}$	oin is in Simplex	mode	·			
	$0 = \overline{\text{UxRTS}} p$	oin is in Flow Co	ntrol mode				
bit 10	Unimplemen	ted: Read as '0	,				
bit 9-8	UEN<1:0>: L	JARTx Enable b	its ⁽²⁾				
	11 = UxTX, U	JxRX and UxBC	LK pins are e	enabled and use	ed; UxCTS pin	is controlled by	port latches
	10 = UxTX, UxXX, UxXXX, UxXX, UxXXX, UxXXXX, UxXXX, UxXXX, UxXXXX, UxXXXX, UxXXX, UxXXX, UxXXXX, UxXXXX, UxXXX, UxXXX, UxXXXXXXX, UxXXXX, UxXXXX, UxXXXXX, UxXXXX, UxXXXXX, UxXXXX, UxXXXX, UxXXXX	JXRX, UXCIS a	S pins are er	ns are enabled a abled and used	an <u>a usea</u> I: <u>UxCTS</u> pin is	controlled by p	ort latches
	00 = UxTX a	nd UxRX pins are	e enabled and	used; UxCTS ar	nd UxRTS/UxB	CLK pins are co	ntrolled by port
	latches						
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	g Sleep Mode E	nable bit	falling adapted	it is also and in
	⊥ = UARTXV hardware	e on the followin	ample the Ux a rising edge	RX pin; interrup	ot generated on	i tailing edge, b	it is cleared in
	0 = No wake	-up is enabled	3				
bit 6	LPBACK: UA	ARTx Loopback	Mode Select	bit			
	1 = Enable L	oopback mode					
L:1 F		k mode is disab	led				
DIT 5	1 = Enable h	o-Baud Enable i	DIE vrement on th	e nevt characte	r - requires re	cention of a Sv	inc field (55h):
	cleared i	n hardware upo	n completion				ne neia (3311),
	0 = Baud rat	e measurement	is disabled or	completed			
bit 4	RXINV: Rece	ive Polarity Inve	ersion bit				
		le state is '0'					
Note 1:	I his feature is on	ily available for t	the 16x BRG	mode (BRGH =	0).		
Ζ:	DIL AVAIIADIIILY DE	penus on pin av	anabinty.				

EQUATION 22-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

ADCS =
$$\frac{TAD}{TCY} - 1$$

TAD = TCY • (ADCS + 1)

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

FIGURE 22-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

REGISTER 24-1: CVRCO	N: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER
----------------------	--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_		—			_	—	_		
bit 15							bit 8		
r									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0		
bit 7							bit 0		
.									
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
hit 15 0	Unimplomon	tod: Dood on '	,						
bit 7		near tor Voltage	, Poforonco El	nablo bit					
	1 = CVREE ci	rcuit is powered							
	0 = CVREF ci	rcuit is powered	d down						
bit 6	CVROE: Com	parator VREF C	Dutput Enable	bit					
	1 = CVREF VC	oltage level is o	utput on CVRE	F pin					
	0 = CVREF VC	oltage level is d	isconnected fr	om CVREF pin					
bit 5	CVRR: Comp	arator VREF Ra	inge Selection	bit					
	1 = CVRSRCI 0 = CVRSRCI	range should be	e 0 to 0.625 C 0 25 to 0 719	VRSRC with CVF	RSRC/24 step si CVRSRC/32 ste	IZE n size			
bit 4	CVRSS: Com	narator VREE S	ource Selectic	on bit		0.20			
	1 = Compara	tor reference s	ource, CVRSR	C = VREF+ – VRI	EF-				
	0 = Compara	tor reference s	ource, CVRSR	c = AVDD – AVs	S				
bit 3-0	CVR3:CVR0:	Comparator Vi	REF Value Sele	ection $0 \le CVR <$	$3:0> \le 15$ bits				
	When CVRR	= 1 and CVRS	S = 0:						
	$UVREF = (UVR < 3:U > /24)^{(UVRSRC)}$								
	$\frac{VVIIeII OVRK = 0 alid OVRSS = 0}{CVREF} = 1/4 (CVRSRC) + (CVR<3:0>/32) * (CVRSRC)$								
	When CVRR = 1 and CVRSS = 1:								
	CVREF = ((CV	′R<3:0>/24) * ((CVRSRC)) + VF	REF-					
	<u>When CVRR</u>	= 0 and CVRS	<u>S = 1:</u> VP<2:0>/22) *						
	$CVREF = (1/4 (CVRSRC) + (CVRSRC)^{-1} (CVRSRC)) + VREF-$								

REGISTER	26-8: FDS:	DEEP SLEE		RATION REG	ISTER		
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
DSWDTEN	DSBOREN	RTCOSC	DSWDTOSC	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0
bit 7							bit 0
Legend:							
R = Readabl	le bit	P = Program	mable bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	DSWDTEN: D 1 = DSWDT is 0 = DSWDT is	eep Sleep Wa enabled disabled	tchdog Timer E	nable bit			
bit 6	DSBOREN: De 1 = Deep Slee 0 = Deep Slee	eep Sleep/Low p BOR is enat p BOR is disa	Power BOR En bled in Deep Sle bled in Deep Sle	able bit (does r eep eep	not affect operat	ion in non Deep	Sleep modes)
bit 5	RTCOSC: RT	CC Reference	Clock Select bi	t			
	1 = RTCC use 0 = RTCC use	s SOSC as a i s LPRC as a r	reference clock reference clock				
bit 4	DSWDTOSC:	DSWDT Refe	rence Clock Sel	ect bit			
	1 = DSWDT u	ses LPRC as a	a reference cloc	k			
	0 = DSWDT u	ses SOSC as	a reference cloc				
bit 3-0	DSWDTPS<3:	:0>: Deep Slee	ep Watchdog Tir	mer Postscale	Select bits	£ 4	
	11111 = 1.2 14	7 483 648 (25	; this creates an 7 days) nomina	approximate t	base time unit c	or 1 ms.	
	1110 = 1:536,	870,912 (6.4 c	lays) nominal				
	1101 = 1:134 ,	217,728 (38.5	hours) nominal				
	1100 = 1:33,5	54,432 (9.6 hc	ours) nominal				
	1011 = 1.8,38 1010 = 1.2,09	8,608 (2.4 not 7,152 (36 mini	utes) nominal				
	1001 = 1:524,	288 (9 minute:	s) nominal				
	1000 = 1:131,	072 (135 seco	nds) nominal				
	0111 = 1:32,7 0110 = 1:8.19	68 (34 second 2 (8 5 second	s) nominal				
	0101 = 1:2,04	8 (2.1 seconds	s) nominal				
	0100 = 1:512	(528 ms) nom	inal				
	0011 = 1:128 0010 = 1:32 (3)	(132 ms) nomina	inal				
	0001 = 1.8 (8)	3 ms) nominal	u 				
	0000 = 1:2 (2.	1 ms) nominal					

REGISTER 26-9: DEVID: DEVICE ID REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 23							bit 16
R	R	R	R	R	R	R	R
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
bit 15 bit a							
R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7						•	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown
bit 23-16	Unimplemen	ted: Read as 'd)'				
bit 15-8 FAMID<7:0>: Device Family Identifier bits							
	00001011 =	PIC24F16KA10	02 family				
bit 7-0	DEV<7:0>: In	dividual Device	e Identifier bits				

00000011 = PIC24F16KA102 00001010 = PIC24F08KA102 00000001 = PIC24F16KA101 00001000 = PIC24F08KA101

REGISTER 26-10: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	—	—	—	—	—
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	—	—	—	—	—
bit 15			•		•		bit 8
U-0	U-0	U-0	U-0	R	R	R	R
_		_	_	REV3	REV2	REV1	REV0
bit 7			•		•	•	bit 0
L							
Legend:							
R = Readable	eadable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow			nown				

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Minor Revision Identifier bits

TABLE 29-37: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	_	_	ns			
SP11	TscH	SCKx Output High Time ⁽²⁾	TCY/2	—	—	ns			
SP20	TscF	SCKx Output Fall Time ⁽³⁾	—	10	25	ns			
SP21	TscR	SCKx Output Rise Time ⁽³⁾	—	10	25	ns			
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—	10	25	ns			
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	10	25	ns			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	30	ns			
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		—	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—		ns			

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S		
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	3	
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е	0.65 BSC			
Overall Height	Α	0.80 0.90 1.00			
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

APPENDIX A: REVISION HISTORY

Revision A (November 2008)

Original data sheet for the PIC24F16KA102 family of devices.

Revision B (March 2009)

Section 29.0 "Electrical Characteristics" was revised and minor text edits were made throughout the document.

Revision C (October 2011)

- · Changed all instances of DSWSRC to DSWAKE.
- Corrected Example 5-2.
- Corrected Example 5-4.
- Corrected Example 6-1.
- Corrected Example 6-3.
- Added a comment to Example 6-5.
- Corrected Figure 9-1 to connect the SOSCI and SOSCO pins to the Schmitt trigger correctly.
- Added register descriptions for PMD1, PMD2, PMD3 and PMD4.
- Added note that RTCC will run in Reset.
- Corrected time values of ADCS (AD1CON3<5:0>).
- Corrected CH0SB and CH0SA (AD1CHS<11:8> and AD1CHS<3:0>) to correctly reference AVDD and AN3.
- Added description of PGCF15 and PGCF14 (AD1PCFG<15:14>).
- Edited Figure 22-2 to correctly reference RIC and the A/D capacitance.
- Changed all references from CTEDG1 to CTED1.
- Changed all references from CTEDG2 to CTED2.
- Changed description of CMIDL: it used to say it disables all comparators in Idle, now only disables interrupts in Idle mode.
- Changed all references of RTCCKSEL to RTCOSC.
- Changed all references of DSLPBOR to DSBOREN.
- Changed all references of DSWCKSEL to DSWDTOSC
- Imported Figure 40-9 from PIC24F FRM, Section 40.
- Added spec for BOR hysteresis.
- Edited Note 1 for Table 29-5 to further describe LPBOR.
- Edited max values of DC20d and DC20e on Table 29-6.
- Edited typical value for DC61-DC61c in Table 29-8.
- Edited Note 2 of Table 29-8.
- Added Note 5 to Table 29-9.
- Added Table 29-15.
- Added AD08 and AD09 in Table 29-26.
- Added Note 3 to Table 29-26.

- Imported Figure 40.10 from PIC24F FRM, Section 40.
- Deleted TVREG spec.
- Imported Figure 15-5 from PIC24F FRM, Section 15.
- Imported Table 15-4 from PIC24F FRM, Section 15.
- Imported Figure 16-22 from PIC24F FRM, Section 16.
- Imported Table 16-9 from PIC24F FRM, Section 16.
- Imported Figure 16-23 from PIC24F FRM, Section 16.
- Imported Table 16-10 from PIC24F FRM, Section 16.
- Imported Figure 21-24 from PIC24F FRM. Section 21.
- Imported Figure 21-25 from PIC24F FRM, Section 21.
- Imported Table 21-5 from PIC24F FRM, Section 21.
- Imported Figure 23-17 from PIC24F FRM, Section 23.
- Imported Table 23-3 from PIC24F FRM, Section 23.
- Imported Figure 23-18 from PIC24F FRM, Section 23.
- Imported Table 23-4 from PIC24F FRM, Section 23.
- Imported Figure 23-19 from PIC24F FRM, Section 23.
- Imported Table 23-5 from PIC24F FRM, Section 23.
- Imported Figure 23-20 from PIC24F FRM, Section 23.
- Imported Table 23-6 from PIC24F FRM, Section 23.
- Imported Figure 24-33 from PIC24F FRM, Section 24.
- Imported Table 24-6 from PIC24F FRM, Section 24.
- Imported Figure 24-34 from PIC24F FRM, Section 24.
- Imported Table 24-7 from PIC24F FRM, Section 24.
- Imported Figure 24-35 from PIC24F FRM, Section 24.
- Imported Table 24-8 from PIC24F FRM, Section 24.
- Imported Figure 24-36 from PIC24F FRM, Section 24.
- Imported Table 24-9 from PIC24F FRM, Section 24.