

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08ka101-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

20-Pin PDIP/SSOP/SOIC/QFN 28-Pin SPDIP/SSOP/SOIC/QFN

TABLE 1-1: DEVICE FEATURES FOR T	HE PIC24F16k	A102 FAMILY		_
Features	PIC24F08KA101	PIC24F16KA101	PIC24F08KA102	PIC24F16KA102
Operating Frequency		DC – 3	32 MHz	
Program Memory (bytes)	8K	16K	8K	16K
Program Memory (instructions)	2816	5632	2816	5632
Data Memory (bytes)		15	36	
Data EEPROM Memory (bytes)		5	12	
Interrupt Sources (soft vectors/NMI traps)		30 (2	26/4)	
I/O Ports	PORT/ PORTB<15:1		PORT/ PORTE	4<7:0> 3<15:0>
Total I/O Pins	1	8	2	4
Timers: Total Number (16-bit) 32-Bit (from paired 16-bit timers)			3 1	
Input Capture Channels			1	
Output Compare/PWM Channels			1	
Input Change Notification Interrupt	1	7	2	3
Serial Communications: UART SPI (3-wire/4-wire) I ² C™			2 1 1	
10-Bit Analog-to-Digital Module (input channels)		(9	
Analog Comparators		2	2	
Resets (and delays)	REPEAT Ins	truction, Hardwa	i, <mark>MCLR</mark> , WDT, III re Traps, Configu ſ, OST, PLL Lock <u>)</u>	ration Word
Instruction Set	76 Base Ins	tructions, Multiple	e Addressing Mod	le Variations

Packages

		Pin N	Number				
Function	20-Pin PDIP/SSOP/ SOIC	20-Pin QFN	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	I/O	Input Buffer	Description
AN0	2	19	2	27	I	ANA	A/D Analog Inputs
AN1	3	20	3	28	I	ANA	
AN2	4	1	4	1	I	ANA	
AN3	5	2	5	2	I	ANA	
AN4	7	4	6	3	I	ANA	
AN5	8	5	7	4	I	ANA	
AN10	17	14	25	22	I	ANA	
AN11	16	13	24	21	I	ANA	
AN12	15	12	23	20	I	ANA	
U1BCLK	13	10	18	15	0	_	UART1 IrDA [®] Baud Clock
U2BCLK	9	6	11	8	0	_	UART2 IrDA Baud Clock
C1INA	8	5	7	4	I	ANA	Comparator 1 Input A (Positive Input)
C1INB	7	4	6	3	I	ANA	Comparator 1 Input B (Negative Input Option 1)
C1INC	5	2	5	2	I	ANA	Comparator Input C (Negative Input Option 2)
C1IND	4	1	4	1	I	ANA	Comparator Input D (Negative Input Option 3)
C1OUT	17	14	25	22	0	_	Comparator 1 Output
C2INA	5	2	5	2	I	ANA	Comparator 2 Input A (Positive Input)
C2INB	4	1	4	1	I	ANA	Comparator 2 Input B (Negative Input Option 1)
C2INC	8	5	7	4	I	ANA	Comparator 2 Input C (Negative Input Option 2)
C2IND	7	4	6	3	I	ANA	Comparator 2 Input D (Negative Input Option 3)
C2OUT	14	11	20	17	0	—	Comparator 2 Output
CLKI	7	4	9	6	Ι	ANA	Main Clock Input Connection
CLKO	8	5	10	7	0	_	System Clock Output

Legend: ST = Schmitt Trigger input buffer, ANA = Analog level input/output, $I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

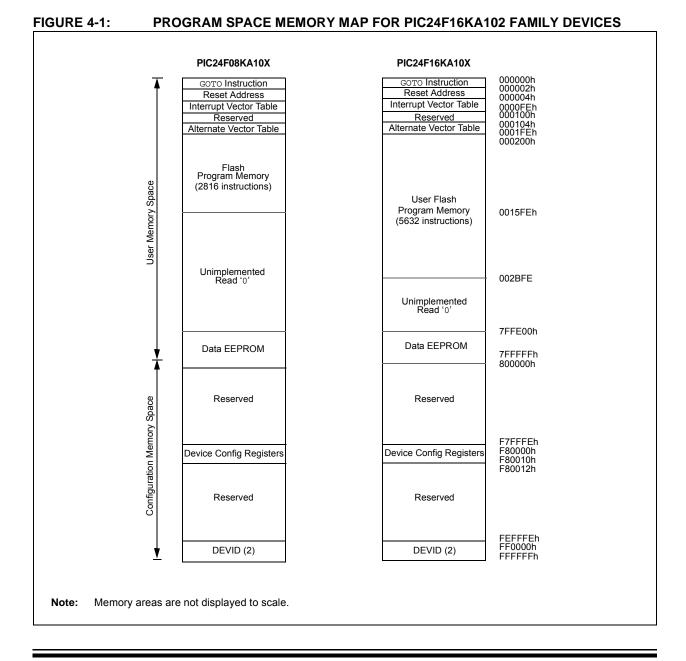
		Pin I	Number				
Function	20-Pin PDIP/SSOP/ SOIC	20-Pin QFN	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	I/O	Input Buffer	Description
CN0	10	7	12	9	I	ST	Interrupt-on-Change Inputs
CN1	9	6	11	8	I	ST	
CN2	2	19	2	27	I	ST	
CN3	3	20	3	28	I	ST	
CN4	4	1	4	1	I	ST	
CN5	5	2	5	2	I	ST	
CN6	6	3	6	3	I	ST	
CN7	_	_	7	4	I	ST	
CN8	14	11	20	17	I	ST	
CN9	—		19	16	I	ST	
CN11	18	15	26	23	I	ST	
CN12	17	14	25	22	I	ST	
CN13	16	13	24	21	I	ST	
CN14	15	12	23	20	I	ST	
CN15	—		22	19	I	ST	
CN16	—	_	21	18	I	ST	
CN21	13	10	18	15	I	ST	
CN22	12	9	17	14	I	ST	
CN23	11	8	16	13	I	ST	
CN24	_	_	15	12	I	ST	
CN27	_	_	14	11	I	ST	
CN29	8	5	10	7	I	ST	
CN30	7	4	9	6	I	ST	
CVREF	17	14	25	22	0	ANA	Comparator Voltage Reference Output
CTED1	14	11	20	17	I	ST	CTMU Trigger Edge Input 1
CTED2	15	12	23	20	I	ST	CTMU Trigger Edge Input 2
CTPLS	16	13	24	21	0	_	CTMU Pulse Output
IC1	14	11	19	16	I	ST	Input Capture 1 Input
INT0	11	8	16	13	I	ST	External Interrupt Inputs
INT1	17	14	25	22	I	ST]
INT2	14	11	20	17	I	ST	
HLVDIN	15	12	23	20	I	ANA	HLVD Voltage Input
MCLR	1	18	1	26	I	ST	Master Clear (device Reset) Input
OC1	14	11	20	17	0	—	Output Compare/PWM Outputs
OCFA	17	14	25	22	I	—	Output Compare Fault A
OSCI	7	4	9	6	I	ANA	Main Oscillator Input Connection
OSCO	8	5	10	7	0	ANA	Main Oscillator Output Connection
Legend:	OT - Cohmit				Lavral imm		² C™ = I ² C/SMBus input buffer

TABLE 1-2: PIC24F16KA102 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: ST = Schmitt Trigger input buffer, ANA = Analog level input/output, $I^2C^{TM} = I^2C/SMB$ us input buffer

Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

4.0 MEMORY ORGANIZATION


As with Harvard architecture devices, the PIC24F microcontrollers feature separate program and data memory space and busing. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 **Program Address Space**

The program address memory space of the PIC24F devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from a table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

The user access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24F16KA102 family of devices are displayed in Figure 4-1.

TABLE 4-17: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620		Alarm Value Register Window Based on ALRMPTR<15:0>														xxxx	
ALCFGRPT	0622	ALRMEN	LRMEN CHIME AMASK3 AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 (0000		
RTCVAL	0624						RTCC	Value Registe	r Window Bas	ed on RTC	CPTR<15:0	>						xxxx
RCFGCAL	0626	RTCEN	RTCEN - RTCWREN RTCSYNC HALFSEC RTCOE RTCPTR1 RTCPTR0 CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 00													0000		
Lonondi		a n l a nn a n t a d	rood oo '	o' Deast val	una ara ahau	in hovodo	aimal											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: DUAL COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0630	CMSIDL		-	_	—	-	C2EVT	C1EVT	—	—	-	—			C2OUT	C10UT	0000
CVRCON	0632	_	-	_	_	_	_	_	_	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0634	CON	COE	CPOL	CLPWR	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2CON	0636	CON	COE	CPOL	CLPWR	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON	0640	_	- CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWORD0 CRCFUL CRCMPT - CRCGO PLEN3 PLEN2 PLEN1 PLEN0													0040		
CRCXOR	0642		X<15:1> —													0000		
CRCDAT	0644							(CRC Data Ir	nput Registe	er							0000
CRCWDAT	0646	CRC Result Register													0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: CLOCK CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	SBOREN	_	_	DPSLP	_	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1)
OSCCON	0742	-	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	—	CF	_	SOSCEN	OSWEN	(Note 2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	—	—	3140
OSCTUN	0748	—		—		_	_		—	_	-	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	—	_	0000
HLVDCON	0756	HLVDEN	_	HLSIDL	_	_	_	_	_	VDIR	BGVST	IRVST	_	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on configuration fuses and by type of Reset.

TABLE 4-21: DEEP SLEEP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets ⁽¹⁾
DSCON	0758	DSEN	_	_	_	_	—	_	_	—				_	_	DSBOR	RELEASE	0000
DSWAKE	075A	_	<u> DSINTO</u>													0000		
DSGPR0	075C		Deep Sleep General Purpose Register 0													0000		
DSGPR1	075E		Deep Sleep General Purpose Register 1														0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Deep Sleep registers are only reset on a VDD POR event.

TABLE 4-22: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	PGMONLY	_	_	_	_	_	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000 (1)
NVMKEY	0766	—	—	-	—	_		-		NVMKEY7	NVMKEY6	NVMKEY5	NVMKEY4	NVMKEY3	NVMKEY2	NVMKEY1	NVMKEY0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

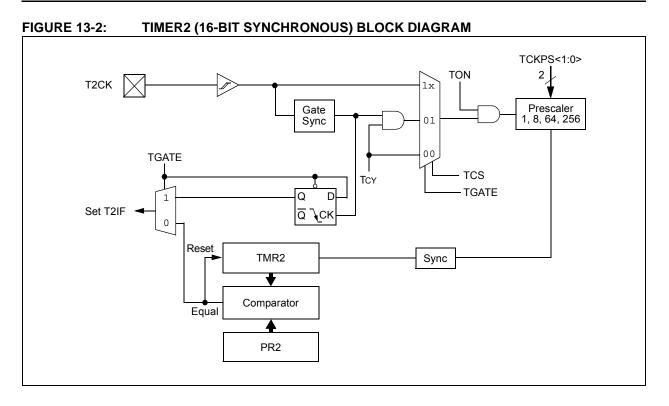
TABLE 4-23: PMD REGISTER MAP

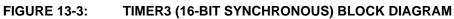
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	—	_	T3MD	T2MD	T1MD	_	_	_	I2C1MD	U2MD	U1MD		SPI1MD	_	_	ADC1MD	0000
PMD2	0772	_	-		—	—		_	IC1MD	_		_	_	_	_	_	OC1MD	0000
PMD3	0774	_	-		—	—	CMPMD	RTCCMD	_	CRCPMD		_	_	_	_	_	_	0000
PMD4	0776	—	Ι	_		_	_	—	—	_	_	_	EEMD	REFOMD	CTMUMD	HLVDMD		0000

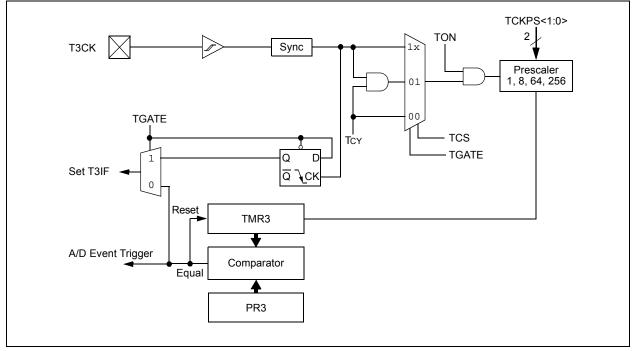
Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 5-3: LOADING THE WRITE BUFFERS – ASSEMBLY LANGUAGE CODE

Cot up NTMOON for your more and an and	
; Set up NVMCON for row programming opera	
MOV #0x4004, W0	
MOV W0, NVMCON	; Initialize NVMCON
; Set up a pointer to the first program m	-
; program memory selected, and writes ena	bled
MOV #0x0000, W0	i
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #0x1500, W0	; An example program memory address
; Perform the TBLWT instructions to write	the latches
; 0th_program_word	
MOV #LOW_WORD_0, W2	;
MOV #HIGH_BYTE_0, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; 1st_program_word	
MOV #LOW_WORD_1, W2	;
MOV #HIGH_BYTE_1, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; 2nd_program_word	
MOV #LOW_WORD_2, W2	;
MOV #HIGH_BYTE_2, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
•	
•	
•	
; 32nd_program_word	
MOV #LOW_WORD_31, W2	;
MOV #HIGH_BYTE_31, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0]	; Write PM high byte into program latch


EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE


```
// C example using MPLAB C30
  #define NUM_INSTRUCTION_PER_ROW 64
int __attribute__ ((space(auto_psv))) progAddr = 0x1234 // Variable located in Pgm Memory
  unsigned int offset;
  unsigned int i;
  unsigned int progData[2*NUM_INSTRUCTION_PER_ROW];
                                                            // Buffer of data to write
  //Set up NVMCON for row programming
  NVMCON = 0 \times 4004;
                                                            // Initialize NVMCON
  //Set up pointer to the first memory location to be written
  TBLPAG = __builtin_tblpage(&progAddr);
                                                           // Initialize PM Page Boundary SFR
                                                            // Initialize lower word of address
  offset = __builtin_tbloffset(&progAddr);
  //Perform TBLWT instructions to write necessary number of latches
  for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
  {
      __builtin_tblwtl(offset, progData[i++]);
                                                           // Write to address low word
       __builtin_tblwth(offset, progData[i]);
                                                            // Write to upper byte
      offset = offset + 2;
                                                            // Increment address
   }
```

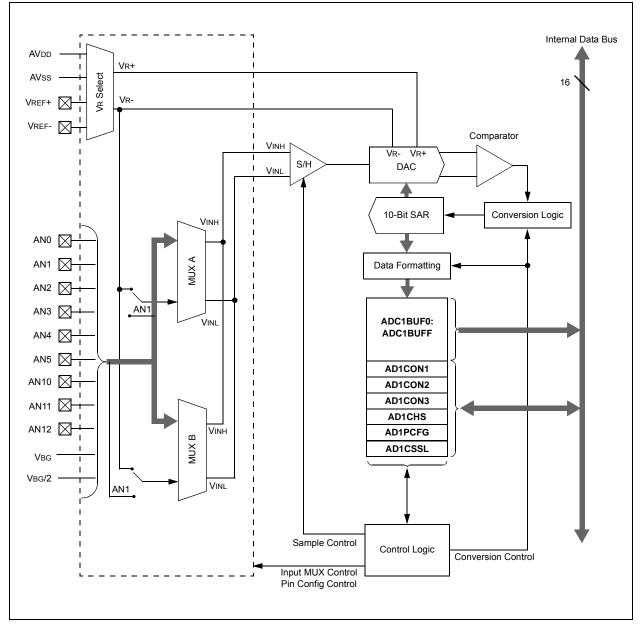

REGISTER 9-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 U-0 		J-4. KEIO							
bit 15 bit 15 bit 1 U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 - - - - - - - - - bit 7 -<	ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	
Legend: Note Note Note Note bit 7 bit 7 bit 1 bit 1 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' bit 13 ROSSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator is disabled in Sleep 0 = Reference oscillator Source Select bit 1 = Primary oscillator is used as the base clock; base clock reflects any clock switching of the device bit 11-8 RODV<3:0>: Reference Oscillator Select bits 1110 = Base clock value divided by 32,768 1110 = Base clock value divided by 32,068 1011 = Base clock value divided by 4,096 1011 = Base clock value divided by 1,024 100 = Base clock value divided by 10,224 100 = Base clock value divided by 128 1010 = Base clock value divided by 128	bit 15							bit 8	
Lagend: Note Note Note n = n n n n bit 7 bit 1 bit 1 bit 1 Lagend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' bit 13 ROSSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator is disabled in Sleep 0 = Reference oscillator is disabled in Sleep 0 = Reference oscillator is disabled in Sleep bit 12 ROSEL: Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock; base clock reflects any clock switching of the device bit 11-8 RODIV<3:0:>: Reference Oscillator Select bits 1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 4,096 1011 = Base clock value divided by 4,096 1011 = Base clock value divided by 1,024 1001 = Base clock value divided by 1,024 1001 = Base clock value divided by 1,024 1001 = Base clock value divided by 128 1010 = Base clock value divided by 128 1011 = Base clock value divided by 128 101									
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' 0 = Reference oscillator Output Stop in Sleep bit 1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is uisabled in Sleep 0 bit 12 ROSEL: Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock ⁽¹⁾ 0 = System clock is used as the base clock to sleet bits 111 = Base clock value divided by 32,768 1110 = Base clock value divided by 4,096 1011 = Base clock value divided by 4,096 1010 = Base clock value divided by 4,096 1011 = Base clock value divided by 512 1000 = Base clock value divided by 512 1000 = Base clock value divided by 22,048 0101 = Base clock value divided by 32,006 0111 = Base clock value divided by 32,006 0111 = Base clock value divided by 22,048 0101 = Base clock value divided by 22,048 0101 = Base clock value divided by 512 0100 = Base clock value divided by 22,048 0101 = Base clock value divided by 22,048 0101 = Base clock value divided by 22,04	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' 0 = Reference oscillator Output Stop in Sleep bit 1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is uisabled in Sleep 0 bit 12 ROSEL: Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock ⁽¹⁾ 0 = System clock is used as the base clock to sleet bits 111 = Base clock value divided by 32,768 1110 = Base clock value divided by 4,096 1011 = Base clock value divided by 4,096 1010 = Base clock value divided by 4,096 1011 = Base clock value divided by 512 1000 = Base clock value divided by 512 1000 = Base clock value divided by 22,048 0101 = Base clock value divided by 32,006 0111 = Base clock value divided by 32,006 0111 = Base clock value divided by 22,048 0101 = Base clock value divided by 22,048 0101 = Base clock value divided by 512 0100 = Base clock value divided by 22,048 0101 = Base clock value divided by 22,048 0101 = Base clock value divided by 22,04	 bit 7	_	_		—		_	hit 0	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' isabled bit 13 ROSSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator is disabled in Sleep bit 12 ROSEL: Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock ⁽¹⁾ 0 = System clock is used as the base clock; base clock reflects any clock switching of the device bit 11= Base clock value divided by 16,384 110 = Base clock value divided by 10,224 100 = Base clock value divided by 1,024 100 = Base clock value divided by 10,224 101 = Base clock value divided by 12 101 = Base clock value divided by 32 101 = Base clock value divided by 12 1010 = Base clock value divi									
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' 1 ROSSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is disabled in Sleep 0 bit 12 ROSEL: Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock(¹¹) 0 = System clock is used as the base clock base clock reflects any clock switching of the device bit 11-8 RODIV-3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 4,192 1000 = Base clock value divided by 4,096 1011 = Base clock value divided by 4,096 1011 = Base clock value divided by 4,096 1010 = Base clock value divided by 128 1010 = Base clock value divided by 128 1010 = Base clock value divided by 128 1010 = Base clock value divided by 226 0111 = Base clock value divided by 16 011 = Base clock value divided by 16 0111 = Base clock value divided by 16 011 = Base clock value divided by 128 0110 = Base clock value divided by 128 0100 = Base clock value divided by 128 <td>Legend:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Legend:								
bit 15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' bit 13 ROSSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator source Select bit 1 = Primary oscillator is used as the base clock ⁽¹⁾ 0 = System clock is used as the base clock base clock reflects any clock switching of the device bit 11-8 RODIV<3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 8,192 1000 = Base clock value divided by 4,096 1011 = Base clock value divided by 1,024 1000 = Base clock value divided by 1,024 1000 = Base clock value divided by 1,024 1000 = Base clock value divided by 128 0111 = Base clock value divided by 128 0110 = Base clock value divided by 4,096 0111 = Base clock value divided by 128 0101 = Base clock value divided by 4,006 0111 = Base clock value divided by 128 0101 = Base clock value divided by 128 0101 = Base clock value divided by 4,096 0111 = Base clock value divided by 128 0110 = Base clock value divided by 4,096 0111 = Base clock value divided by 4,096 0111 = Base clock value divided by 128 0110 = Base clock value divided by 128 0110 = Base clock value divided by 4,096 0111 = Base clock value divided by 4,096	R = Readab	le bit	W = Writable I	oit	U = Unimplem	nented bit, rea	d as '0'		
1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' bit 13 ROSSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator continues to run in Sleep 0 0 = Reference oscillator source Select bit 1 = Primary oscillator is used as the base clock ⁽¹⁾ 0 = System clock is used as the base clock (sase clock reflects any clock switching of the device bit 11-8 RODIV<3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 4,192 1100 = Base clock value divided by 4,192 1100 = Base clock value divided by 2,048 1011 = Base clock value divided by 1,024 1010 = Base clock value divided by 1,024 1011 = Base clock value divided by 256 0111 = Base clock value divided by 128 0111 = Base clock value divided by 128 0110 = Base clock value divided by 32 0100 = Base clock value divided by 32 0101 = Base clock value divided by 4 0111 = Base clock value divided by 4 0101 = Base clock value divided by 4 0111 = Base clock value divided by 4 0111 = Base clock value divided by 4 0111 = Ba	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown								
bit 13 ROSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is disabled in Sleep bit 12 ROSEL: Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock ⁽¹⁾ 0 = System clock is used as the base clock; base clock reflects any clock switching of the device bit 11-8 RODIV-3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 4,192 1100 = Base clock value divided by 4,096 1011 = Base clock value divided by 4,096 1011 = Base clock value divided by 4,096 1011 = Base clock value divided by 512 1000 = Base clock value divided by 10,244 1011 = Base clock value divided by 128 0110 = Base clock value divided by 128 0110 = Base clock value divided by 128 0110 = Base clock value divided by 4,096 0111 = Base clock value divided by 4,096 0111 = Base clock value divided by 128 0100 = Base clock value divided by 128 0100 = Base clock value divided by 128 0100 = Base clock value divided by 16 0011 = Base clock value divided by 16 0011 = Base clock value divided by 2 0000 = Base clock value divided by 2 0000 = Base clock value divided by 2 0000 = Base clock value divided by 2		1 = Reference 0 = Reference	e oscillator is er e oscillator is di	nabled on REF sabled					
1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is disabled in Sleep bit 12 ROSEL : Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock ⁽¹⁾ 0 = System clock is used as the base clock (shase clock reflects any clock switching of the device bit 11-8 RODIV<3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 16,384 1101 = Base clock value divided by 4,096 1011 = Base clock value divided by 1,024 1000 = Base clock value divided by 1,024 1000 = Base clock value divided by 128 0111 = Base clock value divided by 128 0110 = Base clock value divided by 128 0110 = Base clock value divided by 16 0111 = Base clock value divided by 16 0111 = Base clock value divided by 128 0110 = Base clock value divided by 128 0110 = Base clock value divided by 16 0111 = Base clock value divided by 2		-			n in Sleen bit				
<pre>1 = Primary oscillator is used as the base clock⁽¹⁾ 0 = System clock is used as the base clock; base clock reflects any clock switching of the device bit 11-8 RODIV-3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 4,086 1101 = Base clock value divided by 4,096 1011 = Base clock value divided by 2,048 1010 = Base clock value divided by 1,024 1001 = Base clock value divided by 512 1000 = Base clock value divided by 128 0110 = Base clock value divided by 128 0110 = Base clock value divided by 4 001 = Base clock value divided by 4 0101 = Base clock value d</pre>		1 = Reference	e oscillator cont	inues to run ir	n Sleep				
0 = System clock is used as the base clock; base clock reflects any clock switching of the device bit 11-8 RODIV<3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 16,384 1101 = Base clock value divided by 8,192 1100 = Base clock value divided by 2,048 1010 = Base clock value divided by 1,024 1001 = Base clock value divided by 512 1000 = Base clock value divided by 256 0111 = Base clock value divided by 128 0110 = Base clock value divided by 32 0100 = Base clock value divided by 40 011 = Base clock value divided by 40 010 = Base clock value divided by 40 011 = Base clock value divided by 40 010 = Base clock value divided by 40 010 = Base clock value divided by 40 010 = Base clock value divided by 40 011 = Base clock value divid	bit 12								
1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 16,384 1101 = Base clock value divided by 8,192 1100 = Base clock value divided by 2,048 1011 = Base clock value divided by 1,024 1001 = Base clock value divided by 512 1000 = Base clock value divided by 256 0111 = Base clock value divided by 128 0110 = Base clock value divided by 32 0101 = Base clock value divided by 32 0100 = Base clock value divided by 32 0100 = Base clock value divided by 4 0011 = Base clock value divided by 4 0011 = Base clock value divided by 4 0010 = Base clock value divided by 4 0011 = Base clock value divided by 4 0010 = Base clock value divided by 4 0010 = Base clock value divided by 4						eflects any cloc	k switching of	the device	
<pre>1110 = Base clock value divided by 16,384 1101 = Base clock value divided by 8,192 1100 = Base clock value divided by 4,096 1011 = Base clock value divided by 2,048 1010 = Base clock value divided by 1,024 1001 = Base clock value divided by 512 1000 = Base clock value divided by 256 0111 = Base clock value divided by 128 0110 = Base clock value divided by 32 0101 = Base clock value divided by 16 0011 = Base clock value divided by 8 0010 = Base clock value divided by 4 0001 = Base clock value divided by 4</pre>	bit 11-8	RODIV<3:0>:	Reference Os	cillator Divisor	Select bits				
bit 7-0 Unimplemented: Read as '0'		1110 = Base 1101 = Base 1011 = Base 1010 = Base 1001 = Base 1000 = Base 0111 = Base 0110 = Base 0101 = Base 0101 = Base 0101 = Base 0011 = Base 0011 = Base 0010 = Base 0010 = Base	clock value divi clock value divi	ded by 16,384 ded by 8,192 ded by 4,096 ded by 2,048 ded by 1,024 ded by 512 ded by 256 ded by 128 ded by 64 ded by 32 ded by 16 ded by 8 ded by 4					
	bit 7-0	Unimplemen	ted: Read as '0)'					

Note 1: The crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

REGISTER 17-2: I2C1STAT: I2C1 STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10
bit 15						•	bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF
bit 7							bit 0
Logondi		C = Clearab	la hit	HS = Hardwa	o Cottoblo bit	USC - Hardwara S	ettable/Clearable bit
Legend: R = Readat	alo hit	W = Writabl			ented bit, read		
-n = Value a		'1' = Bit is se		'0' = Bit is clea		x = Bit is unknown	
	al FUR		51		lieu		
bit 15	ACKSTAT	Acknowledg	e Status bit				
		was detected					
	0 = ACK w	as detected	last				
	Hardware i	s set or clea	r at of Acknov	vledge.			
bit 14	-	ransmit Stat		nliachla ta ma	otor transmit o	noration)	
	-	-	n progress (8	-	ster transmit o	peration.)	
			ot in progress				
					n; hardware is	clear at end of slave	e Acknowledge.
bit 13-11	Unimplem	ented: Read	l as '0'				
oit 10	BCL: Mast	er Bus Collis	ion Detect bit				
	0 = No coll	ision	been detecte	d during a mas	ter operation		
bit 9		General Call		omoion.			
510 0			s was receive	ed			
			s was not rec				
				nes general ca	I address; hard	dware is clear at Sto	p detection.
bit 8)-Bit Address					
		address was	matched not matched				
				of matched 10	-bit address; h	ardware is clear at	Stop detection.
bit 7		rite Collision	•				•
	1 = An atte	mpt to write	to the I2C1TF	RN register fail	ed because the	e I ² C module is bus	y
	0 = No coll		<i>.</i>				
				e to I2C1 I RN	while busy (cle	eared by software).	
bit 6		ceive Overflo	•		r is still halding	the province but	
	1 = A byte 0 = No ove		a while the izy		r is suil noiding	g the previous byte	
			npt to transfe	r to I2C1RCV	cleared by sof	tware).	
bit 5	D/A: Data/	Address bit (when operatii	ng as I ² C slave	e)		
			st byte receiv				
				ed was the de			
			ce address ma	alon; naroware	is set by a write	to 12CT I KIN or by re	ception of slave byte.
bit 4	P: Stop bit						
	1 - Indiant	on that a Sta	n hit haa haar	a datacted least			
		es that a Sto t was not de		n detected last			


REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

FIGURE 22-1: 10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-0	R/P-1	R/P-1
MCLRE ⁽²) BORV1 ⁽³⁾	BORV0 ⁽³⁾	I2C1SEL ⁽¹⁾	PWRTEN	_	BOREN1	BOREN0
bit 7	·						bit 0
Legend:							
R = Reada	able bit	P = Program	nable bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	MCLRE: MCL	 R Pin Enable b	_{it} (2)				
2		is enabled; RA		isabled			
		pin is enabled;					
bit 6-5	BORV<1:0>:	Brown-out Rese	et Enable bits ⁽³)			
		ut Reset is set t	o the lowest vo	oltage			
	10 = Brown-o u						
		ut Reset is set t /er Brown-out F					
bit 4		ernate I2C1 Pin		00110 2.0 V			
DIL 4		ocation for SCL					
		cation for SCL1					
bit 3	PWRTEN: Po	wer-up Timer E	nable bit				
	0 = PWRT is c	disabled					
	1 = PWRT is e	enabled					
bit 2	Unimplement	ted: Read as '0	,				
bit 1-0	BOREN<1:0>	: Brown-out Re	set Enable bits				
				re; SBOREN bit			
			•			Sleep; SBOREN	l bit is disabled
				SBOREN bit se re; SBOREN bi	0		
Note 1:	Applies only to 2			-,			
	The MCLRE fuse	•	nanged when u	sing the Vpp-B:	ased ICSP™ i	mode entry. Thi	s prevents a
	user from accide						
3.	Refer to Section	29.0 Electrical	Characteristics	for the BOR w	oltanes		

3: Refer to Section 29.0, Electrical Characteristics for the BOR voltages.

IABLE	23-3.	DC CHARACTERISTIC					3.6V (unless otherwise stated)
DC CHA		ERISTICS	Operating te				5°C for Industrial
			operating to				25°C for Extended
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾	—	—	—	_	
DI10		I/O Pins	Vss	_	0.2 Vdd	V	
DI15		MCLR	Vss		0.2 Vdd	V	
DI16		OSCI (XT mode)	Vss		0.2 Vdd	V	
DI17		OSCI (HS mode)	Vss		0.2 Vdd	V	
DI18		I/O Pins with I ² C™ Buffer	Vss		0.3 VDD	V	SMBus disabled
DI19		I/O Pins with SMBus Buffer	Vss		0.8	V	SMBus enabled
	VIH (5)	Input High Voltage ⁽⁴⁾	_		_		
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	_	Vdd Vdd	V	
DI25		MCLR	0.8 VDD	_	VDD	V	
DI26		OSCI (XT mode)	0.7 Vdd	_	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd		Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		Vdd Vdd	V V	
DI29		I/O Pins with SMBus	2.1	-	VDD	V	$2.5V \le VPIN \le VDD$
DI30	ICNPU	CNx Pull-up Current	50	250	500	μA	VDD = 3.3V, VPIN = VSS
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Ports	_	0.050	±0.100	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\rm in \ at \ high-impedance} \end{split}$
DI51		VREF+, VREF-, AN0, AN1	_	0.300	±0.500	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\rm in \ at \ high-impedance} \end{split}$
DI55		MCLR	—	—	±5.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSCI	_	_	±5.0	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and } H{\sf S} \text{ modes} \end{split}$

TABLE 29-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: Refer to Table 1-2 for I/O pin buffer types.
- 5: VIH requirements are met when internal pull-ups are enabled.

TABLE 29-13: COMPARATOR DC SPECIFICATIONS

	$\begin{array}{llllllllllllllllllllllllllllllllllll$											
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments					
D300	VIOFF	Input Offset Voltage*	_	20	40	mV						
D301	VICM	Input Common Mode Voltage*	0	_	Vdd	V						
D302												

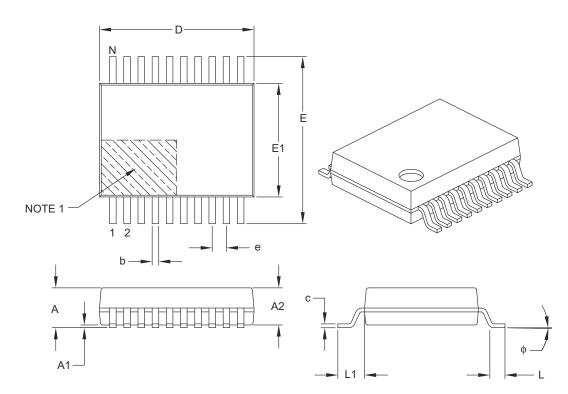
* Parameters are characterized but not tested.

TABLE 29-14: COMPARATOR VOLTAGE REFERENCE DC SPECIFICATIONS

-	$\begin{array}{llllllllllllllllllllllllllllllllllll$											
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments					
VRD310	CVRES	Resolution	VDD/24		Vdd/32	LSb						
VRD311	CVRAA	Absolute Accuracy		—	AVDD - 1.5	LSb						
VRD312	CVRur	Unit Resistor Value (R)		2k	_	Ω						

TABLE 29-15: INTERNAL VOLTAGE REFERENCES

$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments
	Vbg	Internal Band Gap Reference	1.14	1.2	1.26	V	
	TIRVST	Internal Reference Stabilization Time	—	200	250	μS	


TABLE 29-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
	IOUT1	CTMU Current Source, Base Range		550	Ι	nA	CTMUICON<1:0> = 01
	IOUT2	CTMU Current Source, 10x Range	—	5.5	—	μA	CTMUICON<1:0> = 10
	IOUT3	CTMU Current Source, 100x Range	_	55	_	μA	CTMUICON<1:0> = 11

Note 1: Nominal value at the center point of the current trim range (CTMUICON<7:2> = 000000).

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

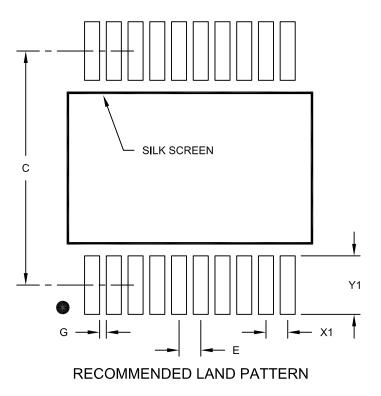
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS		
Dimensio	on Limits	MIN	NOM	MAX		
Number of Pins	umber of Pins N		20			
Pitch	h e		0.65 BSC			
Overall Height	А	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	6.90	7.20	7.50		
Foot Length	L	0.55	0.75	0.95		
ootprint L1		1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle	ф	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch E			0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads G		0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

http://www.microchip.com/packaging EXPOSED D2 D PAD е E2 2 2 1 1 Ν Ν NOTE 1 TOP VIEW BOTTOM VIEW А AAAAA 99

20-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x0.9 mm Body [QFN]

For the most current package drawings, please see the Microchip Packaging Specification located at

	MILLIMETERS				
Dimens	sion Limits	MIN	NOM	MAX	
Number of Pins	N	20			
Pitch	е	0.65 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.15	3.25	3.35	
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.15	3.25	3.35	
Contact Width	b	0.25	0.30	0.35	
Contact Length	L	0.35	0.40	0.45	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

A3

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

A1

- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-139B

APPENDIX A: REVISION HISTORY

Revision A (November 2008)

Original data sheet for the PIC24F16KA102 family of devices.

Revision B (March 2009)

Section 29.0 "Electrical Characteristics" was revised and minor text edits were made throughout the document.

Revision C (October 2011)

- · Changed all instances of DSWSRC to DSWAKE.
- Corrected Example 5-2.
- Corrected Example 5-4.
- Corrected Example 6-1.
- Corrected Example 6-3.
- Added a comment to Example 6-5.
- Corrected Figure 9-1 to connect the SOSCI and SOSCO pins to the Schmitt trigger correctly.
- Added register descriptions for PMD1, PMD2, PMD3 and PMD4.
- Added note that RTCC will run in Reset.
- Corrected time values of ADCS (AD1CON3<5:0>).
- Corrected CH0SB and CH0SA (AD1CHS<11:8> and AD1CHS<3:0>) to correctly reference AVDD and AN3.
- Added description of PGCF15 and PGCF14 (AD1PCFG<15:14>).
- Edited Figure 22-2 to correctly reference RIC and the A/D capacitance.
- Changed all references from CTEDG1 to CTED1.
- Changed all references from CTEDG2 to CTED2.
- Changed description of CMIDL: it used to say it disables all comparators in Idle, now only disables interrupts in Idle mode.
- Changed all references of RTCCKSEL to RTCOSC.
- Changed all references of DSLPBOR to DSBOREN.
- Changed all references of DSWCKSEL to DSWDTOSC
- Imported Figure 40-9 from PIC24F FRM, Section 40.
- Added spec for BOR hysteresis.
- Edited Note 1 for Table 29-5 to further describe LPBOR.
- Edited max values of DC20d and DC20e on Table 29-6.
- Edited typical value for DC61-DC61c in Table 29-8.
- Edited Note 2 of Table 29-8.
- Added Note 5 to Table 29-9.
- Added Table 29-15.
- Added AD08 and AD09 in Table 29-26.
- Added Note 3 to Table 29-26.

- Imported Figure 40.10 from PIC24F FRM, Section 40.
- Deleted TVREG spec.
- Imported Figure 15-5 from PIC24F FRM, Section 15.
- Imported Table 15-4 from PIC24F FRM, Section 15.
- Imported Figure 16-22 from PIC24F FRM, Section 16.
- Imported Table 16-9 from PIC24F FRM, Section 16.
- Imported Figure 16-23 from PIC24F FRM, Section 16.
- Imported Table 16-10 from PIC24F FRM, Section 16.
- Imported Figure 21-24 from PIC24F FRM. Section 21.
- Imported Figure 21-25 from PIC24F FRM, Section 21.
- Imported Table 21-5 from PIC24F FRM, Section 21.
- Imported Figure 23-17 from PIC24F FRM, Section 23.
- Imported Table 23-3 from PIC24F FRM, Section 23.
- Imported Figure 23-18 from PIC24F FRM, Section 23.
- Imported Table 23-4 from PIC24F FRM, Section 23.
- Imported Figure 23-19 from PIC24F FRM, Section 23.
- Imported Table 23-5 from PIC24F FRM, Section 23.
- Imported Figure 23-20 from PIC24F FRM, Section 23.
- Imported Table 23-6 from PIC24F FRM, Section 23.
- Imported Figure 24-33 from PIC24F FRM, Section 24.
- Imported Table 24-6 from PIC24F FRM, Section 24.
- Imported Figure 24-34 from PIC24F FRM, Section 24.
- Imported Table 24-7 from PIC24F FRM, Section 24.
- Imported Figure 24-35 from PIC24F FRM, Section 24.
- Imported Table 24-8 from PIC24F FRM, Section 24.
- Imported Figure 24-36 from PIC24F FRM, Section 24.
- Imported Table 24-9 from PIC24F FRM, Section 24.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
	n: Name	
FIU		
	Company Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Арр	ication (optional):	
Wou	ld you like a reply?YN	
	ce: PIC24F16KA102 Family	Literature Number: DS39927C
Que	stions:	
1.	What are the best features of this document?	
•		
2.	How does this document meet your hardware and s	oftware development needs?
3.	Do you find the organization of this document easy t	o follow? If not, why?
4.	What additions to the document do you think would	enhance the structure and subject?
•		
5.	What deletions from the document could be made w	vithout affecting the overall usefulness?
6.	Is there any incorrect or misleading information (what	at and where)?
7.	How would you improve this document?	