

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VQFN Exposed Pad
Supplier Device Package	20-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08ka101t-i-mq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24F08KA101
- PIC24F16KA101
- PIC24F08KA102
- PIC24F16KA102

The PIC24F16KA102 family introduces a new line of extreme low-power Microchip devices: a 16-bit microcontroller family with a broad peripheral feature set and enhanced computational performance. It also offers a new migration option for those high-performance applications, which may be outgrowing their 8-bit platforms, but do not require the numerical processing power of a digital signal processor.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] digital signal controllers. The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 64 Kbytes (data)
- A 16-element working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32-bit by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as C
- Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

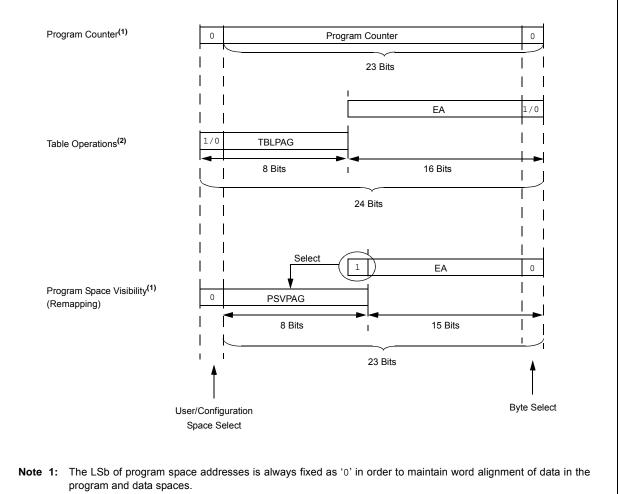
All of the devices in the PIC24F16KA102 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- On-the-Fly Clock Switching: The device clock can be changed under software control to the Timer1 source or the internal, low-power RC oscillator during operation, allowing users to incorporate power-saving ideas into their software designs.
- Doze Mode Operation: When timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes: There are three instruction-based power-saving modes:
 - Idle Mode: The core is shut down while leaving the peripherals active.
 - Sleep Mode: The core and peripherals that require the system clock are shut down, leaving the peripherals that use their own clock, or the clock from other devices, active.
 - Deep Sleep Mode: The core, peripherals (except RTCC and DSWDT), Flash and SRAM are shut down.

1.1.3 OSCILLATOR OPTIONS AND FEATURES

The PIC24F16KA102 family offers five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock modes offering the option of a divide-by-2 clock output.
- Two Fast Internal Oscillators (FRCs): One with a nominal 8 MHz output and the other with a nominal 500 kHz output. These outputs can also be divided under software control to provide clock speed as low as 31 kHz or 2 kHz.
- A Phase Locked Loop (PLL) frequency multiplier, available to the External Oscillator modes and the 8 MHz FRC oscillator, which allows clock speeds of up to 32 MHz.
- A separate Internal RC oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.


TABLE 4-24: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address						
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>		
Instruction Access	User	0		PC<22:1>		0		
(Code Execution)		0xx xxxx xxxx xxxx xxx0						
TBLRD/TBLWT	User	TBLPAG<7:0>		Data EA<15:0>				
(Byte/Word Read/Write)		02	xxx xxxx	XXX	XXXX XXXX XXXX XXXX			
	Configuration	TBLPAG<7:0>		Data EA<15:0>				
		1xxx xxxx xxxx xxxx xxxx			***	xxx		
Program Space Visibility (Block Remap/Read)	User	0 PSVPAG<7:		7:0> ⁽²⁾ Data EA<14:0> ⁽¹⁾		:0> ⁽¹⁾		
		0 xxxx xx		xx		x xxxx		

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) on the PIC24F16KA102 family.

FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

2: Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	;	Block all interrupts for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	2 NOPs required after setting WR
NOP		;	
BTSC	NVMCON, #15	;	Wait for the sequence to be completed
BRA	\$-2	;	

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB C30	
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	// Perform unlock sequence and set WR

REGISTER	R 8-8: IFS4	INTERRUPT	FLAG STAT	US REGISTE	R 4				
U-0	U-0	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS		
	—	CTMUIF		_	—	—	HLVDIF		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0		
—	—	—		CRCIF	U2ERIF	U1ERIF	—		
bit 7							bit 0		
Legend:		HS = Hardward	e Settable bit						
R = Readat	ole bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-14	Unimplemer	nted: Read as '0	3						
bit 13	CTMUIF: CT	MU Interrupt Fla	g Status bit						
		request has occur request has not							
bit 12-9	Unimplemer	nted: Read as '0	,						
bit 8	HLVDIF: Hig	h/Low-Voltage D	etect Interrup	t Flag Status bi	t				
		request has occurrequest has not							
bit 7-4	Unimplemer	nted: Read as '0	3						
bit 3	CRCIF: CRC	Generator Inter	rupt Flag Stat	us bit					
		request has occur request has not							
bit 2	U2ERIF: UA	RT2 Error Interru	pt Flag Status	s bit					
		1 = Interrupt request has occurred 0 = Interrupt request has not occurred							
bit 1	U1ERIF: UA	RT1 Error Interru	pt Flag Status	s bit					
		request has occur request has not							
bit 0	Unimplemer	nted: Read as '0	3						

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS Control bit (INTCON1<15>) if nested interrupts are not desired.
- 2. Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits, for all enabled interrupt sources, may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are								
	initialized, such that all user interrupt								
	sources are assigned to Priority Level 4.								

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period. Level 7 interrupt sources are not disabled by the DISI instruction.

REGISTER 10-6: PMD4: PERIPHERAL MODULE DISABLE REGISTER 4									
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—		—	—	—	—		
bit 15							bit 8		
r									
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
—	—	—	EEMD	REFOMD	CTMUMD	HLVDMD	—		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown		
bit 15-5	Unimplemer	nted: Read as '	כ'						
bit 4	EEMD: EEPI	ROM Memory M	lodule Disable b	bit					
		EEPROM memo I memory is dis	ory Flash panel, abled	minimizing cur	rent consumpti	ion			
bit 3	REFOMD: R	eference Oscilla	ator Module Disa	able bit					
	1 = Reference are not v		dule is disabled.	All Reference	Oscillator regi	sters are held i	n Reset and		
	0 = Referen	ce Oscillator mo	odule is enabled						
bit 2	CTMUMD: C	TMU Module D	isable bit						
		odule is disable odule is enable	d. All CTMU reg d	isters are held	in Reset and a	are not writable			
bit 1	HLVDMD: HI	LVD Module Dis	able bit						
		odule is disabled odule is enabled	d. All HLVD regis I	sters are held i	n Reset and ar	e not writable.			
bit 0	Unimplemer	nted: Read as 'o	כי						

NOTES:

17.0 INTER-INTEGRATED CIRCUIT (I²C[™])

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Inter-Integrated Circuit, refer to the *"PIC24F Family Reference Manual"*, Section 24. "Inter-Integrated Circuit™ (I²C™)" (DS39702).

The Inter-Integrated Circuit (I²C) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial data EEPROMs, display drivers, A/D Converters, etc.

The I^2C module supports these features:

- Independent master and slave logic
- 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Automatic clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications
- Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address
- Automatic SCL

Figure 17-1 illustrates a block diagram of the module.

17.1 Pin Remapping Options

The l^2 C module is tied to a fixed pin. To allow flexibility with peripheral multiplexing, the l2C1 module in 28-pin devices can be reassigned to the alternate pins, designated as SCL1 and SDA1 during device configuration.

Pin assignment is controlled by the I2C1SEL Configuration bit. Programming this bit (= 0) multiplexes the module to the SCL1 and SDA1 pins.

17.2 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

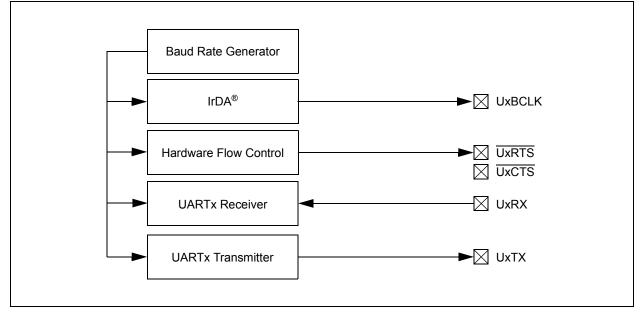
- 1. Assert a Start condition on SDA1 and SCL1.
- 2. Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDA1 and SCL1.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDA1 and SCL1.

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Universal Asynchronous Receiver Transmitter, refer to the *"PIC24F Family Reference Manual"*, Section 21. "UART" (DS39708).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in this PIC24F device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. This module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:


- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS pins

- Fully Integrated Baud Rate Generator (IBRG) with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is displayed in Figure 18-1. The UART module consists of these important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- · Asynchronous Receiver

FIGURE 18-1: UART SIMPLIFIED BLOCK DIAGRAM

20.3 Registers

There are four registers used to control programmable CRC operation:

- CRCCON
- CRCXOR
- CRCDAT
- CRCWDAT

REGISTER 20-1: CRCCON: CRC CONTROL REGISTER

U-0	U-0	R/W-0	R-0, HSC				
_	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							bit 8

R-0, HSC	R-1, HSC	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO	PLEN3	PLEN2	PLEN1	PLEN0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CRC Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12-8	VWORD<4:0>: Pointer Value bits
	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> > 7, or 16 when PLEN<3:0> \leq 7.
bit 7	CRCFUL: FIFO Full bit
	1 = FIFO is full 0 = FIFO is not full
bit 6	CRCMPT: FIFO Empty Bit
	1 = FIFO is empty0 = FIFO is not empty
bit 5	Unimplemented: Read as '0'
bit 4	CRCGO: Start CRC bit
	1 = Start CRC serial shifter
	0 = CRC serial shifter is turned off
bit 3-0	PLEN<3:0>: Polynomial Length bits
	Denotes the length of the polynomial to be generated minus 1.

REGISTER 21-1:

U-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 **HLVDEN** HLSIDL bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 VDIR BGVST IRVST HLVDL0 ____ HLVDL3 HLVDL2 HLVDL1 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 HLVDEN: High/Low-Voltage Detect Power Enable bit 1 = HLVD is enabled 0 = HLVD is disabled bit 14 Unimplemented: Read as '0' bit 13 HLSIDL: HLVD Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode Unimplemented: Read as '0' bit 12-8 bit 7 VDIR: Voltage Change Direction Select bit 1 = Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>) 0 = Event occurs when voltage equals or falls below trip point (HLVDL<3:0>) BGVST: Band Gap Voltage Stable Flag bit bit 6 1 = Indicates that the band gap voltage is stable 0 = Indicates that the band gap voltage is unstable bit 5 **IRVST:** Internal Reference Voltage Stable Flag bit 1 = Indicates that the internal reference voltage is stable and the High-Voltage Detect logic generates the interrupt flag at the specified voltage range 0 = Indicates that the internal reference voltage is unstable and the High-Voltage Detect logic will not generate the interrupt flag at the specified voltage range, and the HLVD interrupt should not be enabled bit 4 Unimplemented: Read as '0' bit 3-0 HLVDL<3:0>: High/Low-Voltage Detection Limit bits 1111 = External analog input is used (input comes from the HLVDIN pin) 1110 = Trip Point 1⁽¹⁾ 1101 = Trip Point 2⁽¹⁾ 1100 = Trip Point 3⁽¹⁾ 0000 = Trip Point 15⁽¹⁾

HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

REGISTER 22-5: AD1PCFG: A/D PORT CONFIGURATION REGISTER

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PCFG15	PCFG14	—	PCFG12	PCFG11	PCFG10	_	
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit (
Lonondi							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

26.3 Deep Sleep Watchdog Timer (DSWDT)

In PIC24F16KA102 family devices, in addition to the WDT module, a DSWDT module is present which runs while the device is in Deep Sleep, if enabled. It is driven by either the SOSC or LPRC oscillator. The clock source is selected by the Configuration bit, DSWDTOSC (FDS<4>).

The DSWDT can be configured to generate a time-out at 2.1 ms to 25.7 days by selecting the respective postscaler. The postscaler can be selected by the Configuration bits, DSWDTPS<3:0> (FDS<3:0>). When the DSWDT is enabled, the clock source is also enabled.

DSWDT is one of the sources that can wake-up the device from Deep Sleep mode.

26.4 Program Verification and Code Protection

For all devices in the PIC24F16KA102 family, code protection for the boot segment is controlled by the Configuration bit, BSS0, and the general segment by the Configuration bit, GSS0. These bits inhibit external reads and writes to the program memory space; this has no direct effect in normal execution mode.

Write protection is controlled by bit, BWRP, for the boot segment and bit, GWRP, for the general segment in the Configuration Word. When these bits are programmed to '0', internal write and erase operations to program memory are blocked.

26.5 In-Circuit Serial Programming

PIC24F16KA102 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGCx) and data (PGDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

26.6 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the EMUCx (Emulation/Debug Clock) and EMUDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, PGCx, PGDx and the EMUDx/EMUCx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + Iit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE, Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT,Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE, Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU,Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT,Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN,Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

TABLE 28-2:	INSTRUCTION SET	OVERVIEW
		•••••••••

NOTES:

TABLE 29-11: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Conditions		
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000 (2)	—	—	E/W		
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage	
D133A	Tiw	Self-Timed Write Cycle Time	—	2	—	ms		
D134	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated	
D135	IDDP	Supply Current During Programming	—	10	—	mA		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Self-write and block erase.

TABLE 29-12: DC CHARACTERISTICS: DATA EEPROM MEMORY

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units				Conditions	
		Data EEPROM Memory						
D140	Epd	Cell Endurance	100,000	_	_	E/W		
D141	VPRD	VDD for Read	VMIN	_	3.6	V	VMIN = Minimum operating voltage	
D143A	Tiwd	Self-Timed Write Cycle Time	—	4	—	ms		
D143B	Tref	Number of Total Write/Erase Cycles Before Refresh	—	10M	—	E/W		
D144	TRETDD	Characteristic Retention	40	—	_	Year	Provided no other specifications are violated	
D145	Iddpd	Supply Current During Programming	—	7		mA		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic ⁽¹⁾	Min	Min Typ ⁽²⁾ Max Units			Conditions	
OS50	Fplli	PLL Input Frequency Range	4	_	8	MHz	ECPLL, HSPLL modes, -40°C \leq TA \leq +85°C	
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz	$-40^{\circ}C \le TA \le +85^{\circ}C$	
OS52	TLOCK	PLL Start-up Time (Lock Time)	—	1	2	ms		
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over a 100 ms period	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHA	RACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	Internal FRC Accuracy @ 8 MHz ⁽¹⁾								
F20	FRC	-1		+1	%	+25°C	3.0V < VDD < 3.6V		
		-3	_	+3	%	$-40^\circ C \le T A \le +85^\circ C$	$3.00 \leq 000 \leq 3.00$		
		-5	_	+5	%	$-40^\circ C \le T A \le +85^\circ C$	1.8V < VDD < 3.6V		
		-10	_	+10	%	$-40^\circ C \le TA \le +125^\circ C$	$1.0V \leq VDD \leq 3.0V$		
F21	LPRC @ 31 kHz ⁽²⁾								
		-15	_	15	%	+25°C			
		-15	_	15	%	$-40^\circ C \le T A \le +85^\circ C$	$1.8V \leq V\text{DD} \leq 3.6V$		
		-30	_	+30	%	$-40^\circ C \le T A \le +125^\circ C$			

Note 1: Frequency calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.

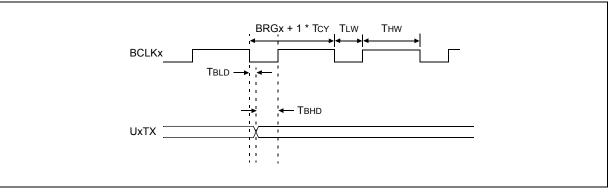
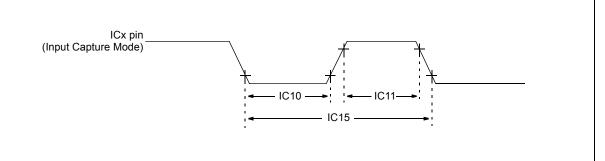

2: Change of LPRC frequency as VDD changes.

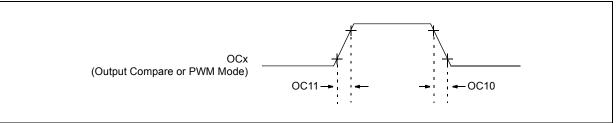
TABLE 29-28:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET TIMING REQUIREMENTS


			Standard Operating Co (unless otherwise state Operating temperature					
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions	
SY10	TmcL	MCLR Pulse Width (low)	2	_	_	μS		
SY11	TPWRT	Power-up Timer Period	50	64	90	ms		
SY12	TPOR	Power-on Reset Delay	1	5	10	μS		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	-	100	ns		
SY20	TWDT	Watchdog Timer Time-out Period	0.85	1.0	1.15	ms	1.32 prescaler	
			3.4	4.0	4.6	ms	1:128 prescaler	
SY25	TBOR	Brown-out Reset Pulse Width	1			μS		
SY35	TFSCM	Fail-Safe Clock Monitor Delay		2	2.3	μS		
SY45	TRST	Configuration Update Time		20		μS		
SY55	TLOCK	PLL Start-up Time		1		ms		
SY65	Tost	Oscillator Start-up Time		1024		Tosc		
SY75	TFRC	Fast RC Oscillator Start-up Time		1	1.5	μS		
SY85	TLPRC	Low-Power Oscillator Start-up Time	_	—	100	μS		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 29-8: BAUD RATE GENERATOR OUTPUT TIMING

FIGURE 29-14: INPUT CAPTURE TIMINGS


TABLE 29-33: INPUT CAPTURE

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20	_	ns	Must also meet
	Synchronous Timer	With Prescaler	20	_	ns	Parameter IC15	
IC11	C11 TccH ICx Input Low Time –		No Prescaler	Tcy + 20	_	ns	Must also meet
Synchronous Timer		With Prescaler	20	_	ns	Parameter IC15	
IC15	TccP	ICx Input Period – Synchronous Timer		<u>2 * Tcy + 40</u> N	—	ns	N = prescale value (1, 4, 16)

TABLE 29-34: OUTPUT CAPTURE

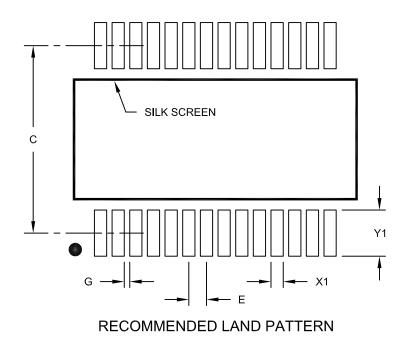

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
OC11	TCCR	OC1 Output Rise Time	—	10	ns	
			—	—	ns	
OC10	TCCF	OC1 Output Fall Time	—	10	ns	
			—	—	ns	

FIGURE 29-15: OUTPUT COMPARE TIMINGS

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A