

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08ka101t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	9
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	17
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	
6.0	Data EEPROM Memory	51
7.0	Resets	57
8.0	Interrupt Controller	
9.0	Oscillator Configuration	
10.0	Power-Saving Features	101
11.0	I/O Ports	113
12.0	Timer1	115
13.0	Timer2/3	117
14.0	Input Capture	123
15.0	Output Compare	125
16.0	Serial Peripheral Interface (SPI)	
17.0		
18.0		
19.0		
20.0		
21.0	High/Low-Voltage Detect (HLVD)	
22.0		
23.0		
24.0	· · · · · · · · · · · · · · · · · · ·	
25.0		
26.0		
27.0	F F F	
28.0		
29.0		
	Packaging Information	
	endix A: Revision History	
	(
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
	ler Response	
Prod	uct Identification System	

TABLE 4-4: ICN REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE ⁽¹⁾	CN14IE	CN13IE	CN12IE	CN11IE ⁽¹⁾		CN9IE	CN8IE	CN7IE ⁽¹⁾	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	CN30IE	CN29IE	_	CN27IE ⁽¹⁾	_	_	CN24IE ⁽¹⁾	CN23IE	CN22IE	CN21IE	_	_	_	_	CN16IE ⁽¹⁾	0000
CNPU1	0068	CN15PUE ⁽¹⁾	CN14PUE	CN13PUE	CN12PUE	CN11PUE ⁽¹⁾	_	CN9PUE	CN8PUE	CN7PUE ⁽¹⁾	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE		CN27PUE ⁽¹⁾	_	_	CN24PUE ⁽¹⁾	CN23PUE	CN22PUE	CN21PUE		_	_		CN16PUE ⁽¹⁾	0000
CNPD1	0070	CN15PDE ⁽¹⁾	CN14PDE	CN13PDE	CN12PDE	CN11PDE ⁽¹⁾	_	CN9PDE	CN8PDE	CN7PDE ⁽¹⁾	CN6PDE	CN5PDE	CN4PDE	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
CNPD2	0072	—	CN30PDE	CN29PDE	_	CN27PDE ⁽¹⁾	_	_	CN24PDE ⁽¹⁾	CN23PDE	CN22PDE	CN21PDE	_	_	_	_	CN16PDE ⁽¹⁾	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not implemented in 20-pin devices.

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	_	_	_	_	_	_	_	_	_	_	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	-	_		_	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	NVMIF	-	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	_	_	_	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	—	_			—	—			INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS3	008A	—	RTCIF	_	—	_			—	—					—	_	—	0000
IFS4	008C	—	_	CTMUIF	—	_			HLVDIF	—				CRCIF	U2ERIF	U1ERIF	—	0000
IEC0	0094	NVMIE	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE				T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	_	_			—	—			INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC3	009A	—	RTCIE	-	_		_	_	_	-	_	_	_	_	_	_	_	0000
IEC4	009C	_	-	CTMUIE	_		_	_	HLVDIE	-	_	_	_	CRCIE	U2ERIE	U1ERIE	_	0000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0		INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	_			—	—					—	_	—	4444
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	—	NVMIP2	NVMIP1	NVMIP0	_			—	—	AD1IP2	AD1IP1	AD1IP0		U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	—	MI2C1P2	MI2C1P1	MI2C1P0		SI2C1P2	SI2C1P1	SI2C1P0	4444
IPC5	00AE	—	_	_	—	_			—	—					INT1IP2	INT1IP1	INT1IP0	0004
IPC7	00B2	—	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	—	INT2IP2	INT2IP1	INT2IP0		—	_	—	4440
IPC15	00C2	—	_	_	—	_	RTCIP2	RTCIP1	RTCIP0	—					—	_	—	0400
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0		U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	-	—	—	—	4440
IPC18	00C8	_	_	_	_	_	—	—	_	_	_	_	_	—	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC19	00CA	_	_	_	—	_	—	—	_	_	CTMUIP2	CTMUIP1	CTMUIP0	—	_	_	_	0040
INTTREG	00E0	CPUIRQ	_	VHOLD	—	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620						Alarm V	alue Register	Window Base	d on ALR	MPTR<15:0)>						xxxx
ALCFGRPT	0622	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
RTCVAL	0624						RTCC	Value Registe	r Window Bas	ed on RTC	CPTR<15:0	>						xxxx
RCFGCAL	0626	RTCEN	—	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000
Lonondi		a n l a nn a n t a d	rood oo '	o' Deast val	una ara ahau	in hovodo	aimal											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: DUAL COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0630	CMSIDL		-	_	—	-	C2EVT	C1EVT	—	—	-	—			C2OUT	C10UT	0000
CVRCON	0632	_	-	_	_	_	_	_	_	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0634	CON	COE	CPOL	CLPWR	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2CON	0636	CON	COE	CPOL	CLPWR	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON	0640	_	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	_	CRCGO	PLEN3	PLEN2	PLEN1	PLEN0	0040
CRCXOR	0642								X<15:1>								_	0000
CRCDAT	0644							(CRC Data Ir	nput Registe	er							0000
CRCWDAT	0646								CRC Resu	ult Register								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '000100' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as displayed in Example 5-5.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

: Sot up NUMCON for row orago operation	
; Set up NVMCON for row erase operation	
MOV #0x4058, W0	;
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	i
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts
	for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

// C example using MPLAB C30	
<pre>intattribute ((space(auto_psv))) progAddr = 0x1234;</pre>	// Variable located in Pgm Memory, declared as a // global variable
unsigned int offset;	,, giobal variable
//Set up pointer to the first memory location to be written	
<pre>TBLPAG =builtin_tblpage(&progAddr);</pre>	// Initialize PM Page Boundary SFR
<pre>offset =builtin_tbloffset(&progAddr);</pre>	// Initialize lower word of address
<pre>builtin_tblwtl(offset, 0x0000);</pre>	// Set base address of erase block
	// with dummy latch write
NVMCON = $0 \times 4058;$	// Initialize NVMCON
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	<pre>// C30 function to perform unlock // sequence and set WR</pre>

REGISTER	8-4: INICC	JNZ: INTERR	UPI CONTI	ROL REGIST	EKZ		
R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	_	—	—	—	_
bit 15							bit
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	_		—	INT2EP	INT1EP	INT0EP
bit 7							bit
Legend:		HSC = Hardw	are Settable/C				
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 14 bit 13-3	1 = Use Alterr 0 = Use stand DISI: DISI In: 1 = DISI inst 0 = DISI inst	Ne Alternate Internate Internate Interrupt V lard (default) ve struction Status ruction is active ruction is not ac ted: Read as '0	ector Table ector table s bit ective				
bit 2	•	rnal Interrupt 2		Dolority Soloot	hit		
Dit 2	1 = Interrupt c	on negative edge	je		Dit		
bit 1	1 = Interrupt c	rnal Interrupt 1 on negative edg on positive edge	je	Polarity Select	bit		
bit 0	1 = Interrupt c	rnal Interrupt 0 on negative edg on positive edge	je	Polarity Select	bit		

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER2

10.2.4.5 Deep Sleep WDT

To enable the DSWDT in Deep Sleep mode, program the Configuration bit, DSWDTEN (FDS<7>). The device Watchdog Timer (WDT) need not be enabled for the DSWDT to function. Entry into Deep Sleep mode automatically resets the DSWDT.

The DSWDT clock source is selected by the DSWDTOSC Configuration bit (FDS<4>). The postscaler options are programmed by the DSWDTPS<3:0> Configuration bits (FDS<3:0>). The minimum time-out period that can be achieved is 2.1 ms and the maximum is 25.7 days. For more details on the FDS Configuration register and DSWDT configuration options, refer to **Section 26.0 "Special Features"**.

10.2.4.6 Switching Clocks in Deep Sleep Mode

Both the RTCC and the DSWDT may run from either SOSC or the LPRC clock source. This allows both the RTCC and DSWDT to run without requiring both the LPRC and SOSC to be enabled together, reducing power consumption.

Running the RTCC from LPRC will result in a loss of accuracy in the RTCC of approximately 5 to 10%. If a more accurate RTCC is required, it must be run from the SOSC clock source. The RTCC clock source is selected with the RTCOSC Configuration bit (FDS<5>).

Under certain circumstances, it is possible for the DSWDT clock source to be off when entering Deep Sleep mode. In this case, the clock source is turned on automatically (if DSWDT is enabled), without the need for software intervention. However, this can cause a delay in the start of the DSWDT counters. In order to avoid this delay when using SOSC as a clock source, the application can activate SOSC prior to entering Deep Sleep mode.

10.2.4.7 Checking and Clearing the Status of Deep Sleep

Upon entry into Deep Sleep mode, the status bit DPSLP (RCON<10>), becomes set and must be cleared by software.

On power-up, the software should read this status bit to determine if the Reset was due to an exit from Deep Sleep mode and clear the bit if it is set. Of the four possible combinations of DPSLP and POR bit states, three cases can be considered:

- Both the DPSLP and POR bits are cleared. In this case, the Reset was due to some event other than a Deep Sleep mode exit.
- The DPSLP bit is clear, but the POR bit is set. This is a normal POR.
- Both the DPSLP and POR bits are set. This means that Deep Sleep mode was entered, the device was powered down and Deep Sleep mode was exited.

10.2.4.8 Power-on Resets (PORs)

VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep functionally looks like a POR, the technique described in **Section 10.2.4.7** "**Checking and Clearing the Status of Deep Sleep**" should be used to distinguish between Deep Sleep and a true POR event.

When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers, RTCC, DSWDT, etc.) is reset.

10.2.4.9 Summary of Deep Sleep Sequence

To review, these are the necessary steps involved in invoking and exiting Deep Sleep mode:

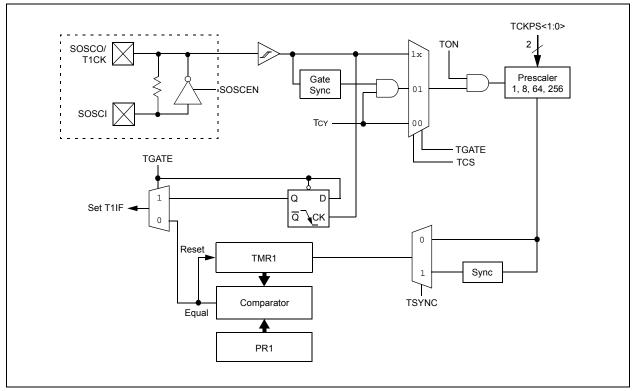
- 1. Device exits Reset and begins to execute its application code.
- 2. If DSWDT functionality is required, program the appropriate Configuration bit.
- 3. Select the appropriate clock(s) for the DSWDT and RTCC (optional).
- 4. Enable and configure the DSWDT (optional).
- 5. Enable and configure the RTCC (optional).
- 6. Write context data to the DSGPRx registers (optional).
- 7. Enable the INT0 interrupt (optional).
- 8. Set the DSEN bit in the DSCON register.
- 9. Enter Deep Sleep by issuing a PWRSV #SLEEP_MODE command.
- 10. Device exits Deep Sleep when a wake-up event occurs.
- 11. The DSEN bit is automatically cleared.
- 12. Read and clear the DPSLP status bit in RCON, and the DSWAKE status bits.
- 13. Read the DSGPRx registers (optional).
- 14. Once all state related configurations are complete, clear the RELEASE bit.
- 15. Application resumes normal operation.

12.0 TIMER1

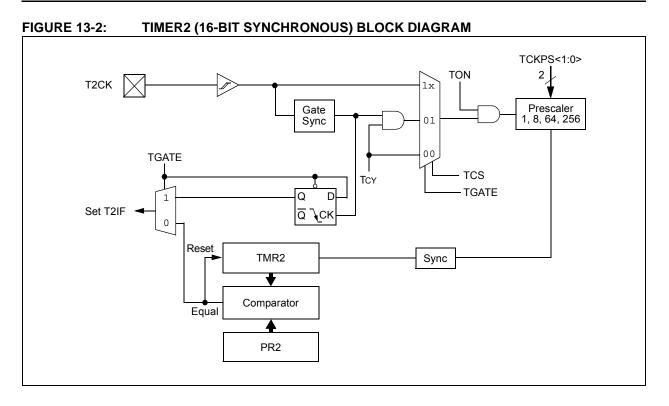
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).

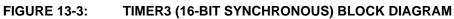
The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC), or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal


Figure 12-1 presents a block diagram of the 16-bit Timer1 module.


To configure Timer1 for operation:

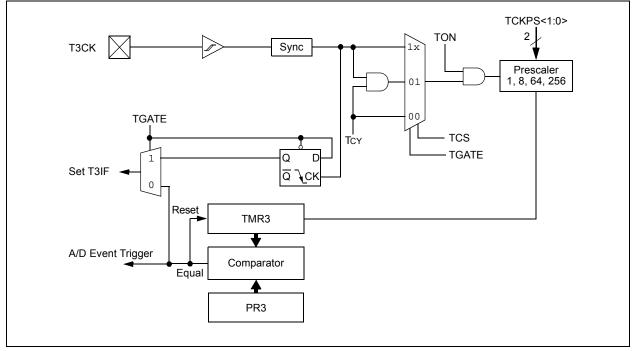

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

EXAMPLE 15-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

Tcy = 2 * Tosc = 62.5 ns

PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2μ s

PWM Period = (PR2 + 1) • Tcy • (Timer 2 Prescale Value)

19.2 µs = (PR2 + 1) • 62.5 ns • 1

PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:

PWM Resolution = $log_{10}(FCY/FPWM)/log_{10}2)$ bits

= (log₁₀(16 MHz/52.08 kHz)/log₁₀2) bits

= 8.3 bits

Note 1: Based on Tcy = 2 * Tosc; Doze mode and PLL are disabled.

TABLE 15-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)⁽¹⁾

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

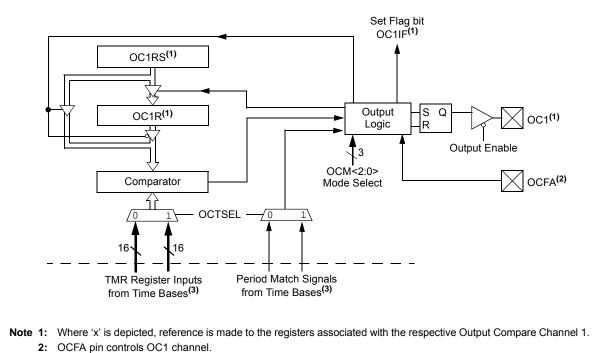

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

Control princontrols our channel.
 Each output compare channel can use one of two selectable time bases. Refer to the device data sheet for the time bases associated with the module.

REGISTER 15-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	-	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	SMBUSDEL ⁽³⁾	OC1TRIS ⁽²⁾	RTSECSEL1 ^(1,4)	RTSECSEL0 ^(1,4)	_
bit 7							bit 0
Logondy							

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

- bit 3 OC1TRIS: OC1 Output Tri-State Select bit⁽²⁾
 - 1 = OC1 output will not be active on the pin; OCPWM1 can still be used for internal triggers
 - 0 = OC1 output will be active on the pin based on the OCPWM1 module settings

bit 0 Unimplemented: Read as '0'

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

- 2: To enable the actual OC1 output, the OCPWM1 module has to be enabled.
- 3: Bit 4 is described in Section 17.0 "Inter-Integrated Circuit (I2C[™])".
- 4: Bits 2 and 1 are described in Section 19.0 Real-Time Clock and Calendar (RTCC).

18.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UART:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt two cycles after being set).
- 4. Write data byte to lower byte of UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0, and then, the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

18.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UART (as described in **Section 18.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt two cycles after being set).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

18.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UART for the desired mode.
- 2. Set UTXEN and UTXBRK sets up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

18.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UART (as described in Section 18.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UART.
- 3. A receive interrupt will be generated when one or more data characters have been received, as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

18.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear to Send (UxCTS) and Request to Send (UxRTS) are the two hardware-controlled pins that are associated with the UART module. These two pins allow the UART to operate in Simplex and Flow Control modes. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

18.7 Infrared Support

The UART module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder.

As the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

18.7.1 EXTERNAL IrDA SUPPORT – IrDA CLOCK OUTPUT

To support external IrDA encoder and decoder devices, the UxBCLK pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the UxBCLK pin will output the 16x baud clock if the UART module is enabled; it can be used to support the IrDA codec chip.

18.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UART has full implementation of the IrDA encoder and decoder as part of the UART module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

26.0 SPECIAL FEATURES

- **Note:** This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Watchdog Timer, High-Level Device integration and Programming Diagnostics, refer to the individual sections of the *"PIC24F Family Reference Manual"* provided below:
 - Section 9. "Watchdog Timer (WDT)" (DS39697)
 - Section 36. "High-Level Integration with Programmable High/ Low-Voltage Detect (HLVD)" (DS39725)
 - Section 33. "Programming and Diagnostics" (DS39716)

PIC24F16KA102 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

26.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped, starting at program memory location, F80000h. A complete list is provided in Table 26-1. A detailed explanation of the various bit functions is provided in Register 26-1 through Register 26-8.

The address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using table reads and table writes.

TABLE 26-1: CONFIGURATION REGISTERS LOCATIONS

Configuration Register	Address
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E
FDS	F80010

REGISTER 26-1: FBS: BOOT SEGMENT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	—	BSS2	BSS1	BSS0	BWRP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Read as '0'

- bit 3-1 BSS<2:0>: Boot Segment Program Flash Code Protection bits
 - 111 = No boot program Flash segment
 - 011 = Reserved
 - 110 = Standard security, boot program Flash segment starts at 200h, ends at 000AFEh
 - 010 = High-security boot program Flash segment starts at 200h, ends at 000AFEh
 - 101 = Standard security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾
 - 001 = High-security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾
 - 100 = Reserved
 - 000 = Reserved

bit 0 BWRP: Boot Segment Program Flash Write Protection bit

- 1 = Boot segment may be written
- 0 = Boot segment is write-protected

Note 1: This selection should not be used in PIC24F08KA1XX devices.

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1									
FCKSM1	FCKSM0	SOSCSEL	POSCFREQ1	POSCFREQ0	OSCIOFNC	POSCMD1	POSCMD0									
bit 7							bit C									
Legend:																
R = Readabl	le bit	P = Progran	nmable bit	U = Unimplem	ented bit, read	l as '0'										
-n = Value at	t POR	'1' = Bit is s	et	'0' = Bit is clea	red	x = Bit is unkr	iown									
bit 7-6	FCKSM<1:0>:	Clock Switch	ning and Monitor	Selection Confi	iguration bits											
				Clock Monitor is												
				Clock Monitor is												
	00 = Clock swi	itching is ena	bled, Fail-Safe (Clock Monitor is	enabled											
bit 5			illator Select bit													
	,	Secondary oscillator is configured for high-power operation Secondary oscillator is configured for low-power operation														
			0	• •												
bit 4-3			•	uency Range Co	•											
				frequency is gre												
	10 = Primary oscillator/external clock input frequency is between 100 kHz and 8 MHz 01 = Primary oscillator/external clock input frequency is less than 100 kHz															
	00 = Reserved					-										
bit 2	OSCIOFNC: C	LKO Enable	Configuration bi	t												
	1 = CLKO output signal active on the OSCO pin; primary oscillator must be disabled or configured for															
	the External Clock mode (EC) for the CLKO to be active (POSCMD<1:0> = 11 or 00)															
	0 = CLKO outp	out is disabled	ł													
bit 1-0	POSCMD<1:0	>: Primary O	scillator Configu	ration bits												
	11 = Primary C															
	10 = HS Oscill															
	01 = XT Oscilla															
	00 = External 0	CIOCK MODE IS	selected				00 = External Clock mode is selected									

26.2 Watchdog Timer (WDT)

For the PIC24F16KA102 family of devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the Configuration bits, WDTPS<3:0> (FWDT<3:0>), which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranging from 1 ms to 131 seconds, can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction During normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3:2>) will need to be cleared in software after the device wakes up.

The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

26.2.1 WINDOWED OPERATION

The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the Configuration bit, WINDIS (FWDT<6>), to '0'.

26.2.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN Configuration bit. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

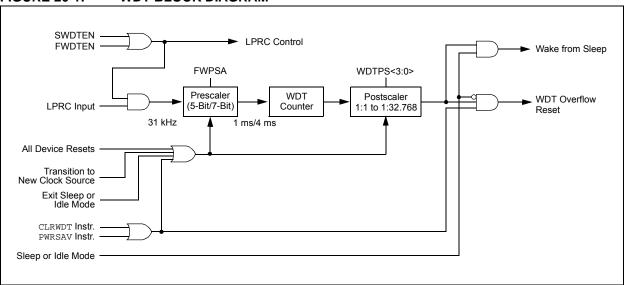


FIGURE 26-1: WDT BLOCK DIAGRAM

26.3 Deep Sleep Watchdog Timer (DSWDT)

In PIC24F16KA102 family devices, in addition to the WDT module, a DSWDT module is present which runs while the device is in Deep Sleep, if enabled. It is driven by either the SOSC or LPRC oscillator. The clock source is selected by the Configuration bit, DSWDTOSC (FDS<4>).

The DSWDT can be configured to generate a time-out at 2.1 ms to 25.7 days by selecting the respective postscaler. The postscaler can be selected by the Configuration bits, DSWDTPS<3:0> (FDS<3:0>). When the DSWDT is enabled, the clock source is also enabled.

DSWDT is one of the sources that can wake-up the device from Deep Sleep mode.

26.4 Program Verification and Code Protection

For all devices in the PIC24F16KA102 family, code protection for the boot segment is controlled by the Configuration bit, BSS0, and the general segment by the Configuration bit, GSS0. These bits inhibit external reads and writes to the program memory space; this has no direct effect in normal execution mode.

Write protection is controlled by bit, BWRP, for the boot segment and bit, GWRP, for the general segment in the Configuration Word. When these bits are programmed to '0', internal write and erase operations to program memory are blocked.

26.5 In-Circuit Serial Programming

PIC24F16KA102 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGCx) and data (PGDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

26.6 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the EMUCx (Emulation/Debug Clock) and EMUDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, PGCx, PGDx and the EMUDx/EMUCx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

TABLE 29-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)

DC CHARACTER	RISTICS			Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Parameter No.	Typical ⁽¹⁾	Max	Units		Conditions						
IDD Current ⁽²⁾											
DC31		28		-40°C							
DC31a		28	μΑ	+25°C	1.8V						
DC31b	8	28		+60°C							
DC31c		28		+85°C							
DC31d		55		-40°C		LPRC (31 kHz)					
DC31e		55		+25°C							
DC31f	15	55	μA	+60°C	3.3V	1					
DC31g		55		+85°C							
DC31h		250		+125°C							

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Operating Parameters:

• EC mode with clock input driven with a square wave rail-to-rail

• I/Os are configured as outputs, driven low

• MCLR - VDD

• WDT FSCM is disabled

• SRAM, program and data memory are active

• All PMD bits are set except for modules being measured

TABLE 29-11: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	¹ Sym Characteristic		Min	Typ ⁽¹⁾	Max Units Condi		Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000 (2)	—	—	E/W		
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VміN = Minimum operating voltage	
D133A	Tiw	Self-Timed Write Cycle Time	—	2	—	ms		
D134	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated	
D135	IDDP	Supply Current During Programming	—	10	—	mA		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

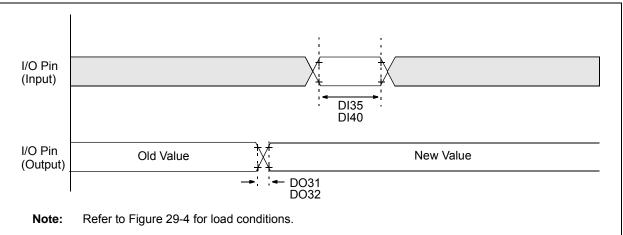

2: Self-write and block erase.

TABLE 29-12: DC CHARACTERISTICS: DATA EEPROM MEMORY

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Sym Characteristic		Typ ⁽¹⁾	Мах	Units	Conditions	
		Data EEPROM Memory						
D140	Epd	Cell Endurance	100,000	_	—	E/W		
D141	VPRD	VDD for Read	VMIN	_	3.6	V	VMIN = Minimum operating voltage	
D143A	Tiwd	Self-Timed Write Cycle Time	—	4	—	ms		
D143B	Tref	Number of Total Write/Erase Cycles Before Refresh	—	10M	—	E/W		
D144	TRETDD	Characteristic Retention	40	—	_	Year	Provided no other specifications are violated	
D145	Iddpd	Supply Current During Programming	—	7		mA		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

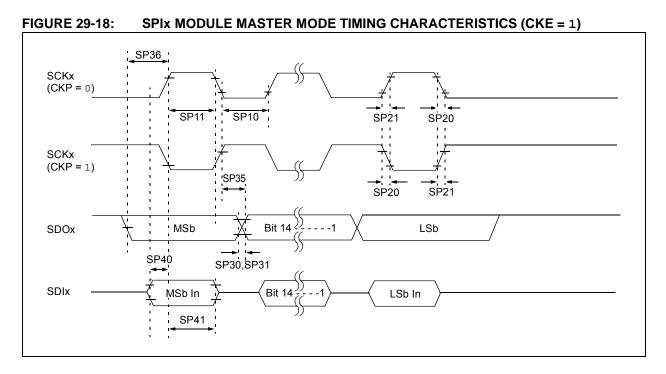


TABLE 29-25: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions					
DO31	TIOR	Port Output Rise Time	—	10	25	ns		
DO32	TIOF	Port Output Fall Time	—	10	25	ns		
DI35	Tinp	INTx pin High or Low Time (output)	20	—	—	ns		
DI40	Trbp	CNx High or Low Time (input)	2	—	—	Тсү		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 29-37: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min	Min Typ ⁽¹⁾ Max		Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	_	_	ns	
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2	—	_	ns	
SP20	TscF	SCKx Output Fall Time ⁽³⁾	—	10	25	ns	
SP21	TscR	SCKx Output Rise Time ⁽³⁾	—	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—	10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	-	30	ns	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.