

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

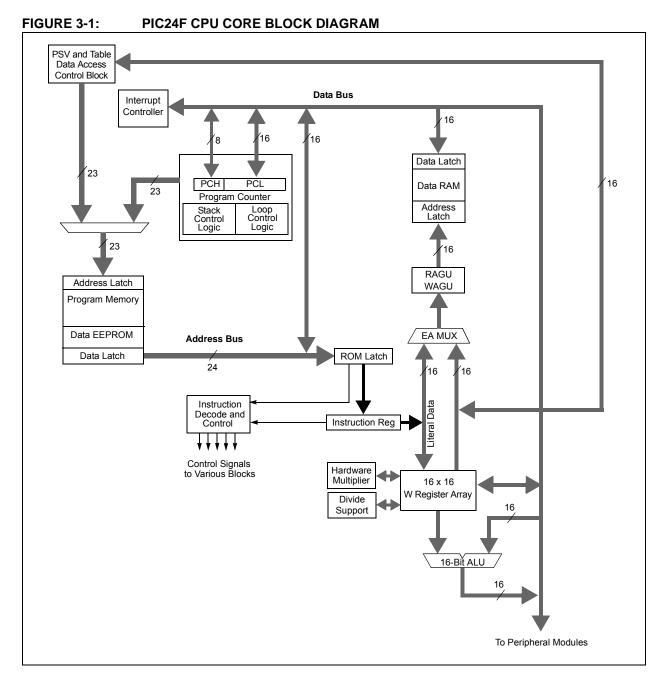
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08ka102-e-ss

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin I	Number				
Function	20-Pin PDIP/SSOP/ SOIC	20-Pin QFN	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	I/O	Input Buffer	Description
T1CK	10	7	12	9	I	ST	Timer1 Clock
T2CK	18	15	26	23	I	ST	Timer2 Clock
T3CK	18	15	26	23	I	ST	Timer3 Clock
U1CTS	12	9	17	14	I	ST	UART1 Clear to Send Input
U1RTS	13	10	18	15	0	_	UART1 Request to Send Output
U1RX	6	3	6	3	I	ST	UART1 Receive
U1TX	11	8	16	13	0		UART1 Transmit Output
Vdd	20	17	13, 28	10, 25	Р	—	Positive Supply for Peripheral Digital Logic and I/O Pins
Vpp	1	18	1	26	Р		Programming Mode Entry Voltage
VREF-	3	20	3	28	I	ANA	A/D and Comparator Reference Voltage (low) Input
VREF+	2	19	2	27	I	ANA	A/D and Comparator Reference Voltage (high) Input
Vss	19	16	8, 27	5, 24	Р	—	Ground Reference for Logic and I/O Pin

TABLE 1-2: PIC24F16KA102 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: ST = Schmitt Trigger input buffer, ANA = Analog level input/output, $I^2C^{TM} = I^2C/SMB$ us input buffer

Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	Repeat Loop Counter Register
CORCON	CPU Control Register

IADLL	- -J.																
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WREG0	0000								Working I	Register 0							
WREG1	0002								Working I	Register 1							
WREG2	0004								Working I	Register 2							
WREG3	0006								Working I	Register 3							
WREG4	0008								Working I	Register 4							
WREG5	000A								Working I	Register 5							
WREG6	000C								Working I	Register 6							
WREG7	000E								Working I	Register 7							
WREG8	0010								Working I	Register 8							
WREG9	0012								Working I	Register 9							
WREG10	0014								Working F	Register 10							
WREG11	0016								Working F	Register 11							
WREG12	0018								Working F	Register 12							
WREG13	001A								Working F	Register 13							
WREG14	001C								Working F	Register 14							
WREG15	001E								Working F	Register 15							
SPLIM	0020							Stack	Pointer Lin	nit Value Re	egister						
PCL	002E							Progra	m Counter	Low Byte R	egister						
PCH	0030	_	_	_	_	_	_	_	_			Progra	m Counter	Register Hig	gh Byte		
TBLPAG	0032	_	_	_	_	_	_	_	_			Table M	lemory Pag	e Address F	Register		
PSVPAG	0034	—	_	_	_	—	—	_	—		F	Program Spa	ace Visibility	Page Addr	ess Registe	er	
RCOUNT	0036							REP	EAT Loop C	Counter Reg	jister						
SR	0042	—	—	_	—	—	—		DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С
CORCON	0044	_	_	_	—	—	—	_	—	_	—		_	IPL3	PSV	—	—
DISICNT	0052	_	_						Disab	le Interrupts	Counter R	egister					

TABLE 4-3: **CPU CORE REGISTERS MAP**

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All

xxxx

IABLE 4	-15:	A/D RE	GISIER															
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								A/D Data	a Buffer 0								xxxx
ADC1BUF1	0302								A/D Data	a Buffer 1								xxxx
ADC1BUF2	0304								A/D Data	a Buffer 2								xxxx
ADC1BUF3	0306								A/D Data	a Buffer 3								xxxx
ADC1BUF4	0308								A/D Data	a Buffer 4								xxxx
ADC1BUF5	030A								A/D Data	a Buffer 5								xxxx
ADC1BUF6	030C								A/D Data	a Buffer 6								xxxx
ADC1BUF7	030E								A/D Data	a Buffer 7								xxxx
ADC1BUF8	0310								A/D Data	a Buffer 8								xxxx
ADC1BUF9	0312								A/D Data	a Buffer 9								xxxx
ADC1BUFA	0314								A/D Data	Buffer 10								xxxx
ADC1BUFB	0316								A/D Data	Buffer 11								xxxx
ADC1BUFC	0318								A/D Data	Buffer 12								xxxx
ADC1BUFD									A/D Data									xxxx
ADC1BUFE	031C								A/D Data	Buffer 14								xxxx
ADC1BUFF	031E			1				1	A/D Data						1		1	xxxx
AD1CON1	0320	ADON		ADSIDL	_	_	_	FORM1	FORM0	SSRC2	SSRC1	SSRC0	—	—	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	OFFCAL	—	CSCNA	—	—	BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	—	_	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0328	CH0NB	_	—	—	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	_	—	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFG	032C	—	_	—	PCFG12	PCFG11	PCFG10	_	—	_	_	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	—	_		CSSL12	CSSL11	CSSL10		—		_	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000

TABLE 4-15: A/D REGISTER MAP

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: CTMU REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON	033C	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	0000
CTMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0					—	_	_	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: CLOCK CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	SBOREN	_	_	DPSLP	_	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1)
OSCCON	0742	-	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	—	CF	_	SOSCEN	OSWEN	(Note 2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	—	—	3140
OSCTUN	0748	—		_		_	_		—	_	-	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	—	_	0000
HLVDCON	0756	HLVDEN	_	HLSIDL	_	_	_	_	_	VDIR	BGVST	IRVST	_	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on configuration fuses and by type of Reset.

TABLE 4-21: DEEP SLEEP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets ⁽¹⁾
DSCON	0758	DSEN	_	_	_	_	—	_	_	—				_	_	DSBOR	RELEASE	0000
DSWAKE	075A	_	_	_			_	_	DSINT0	DSFLT	_	_	DSWDT	DSRTCC	DSMCLR	_	DSPOR	0000
DSGPR0	075C							Deep S	leep Genera	al Purpose I	Register 0							0000
DSGPR1	075E							Deep S	leep Genera	al Purpose I	Register 1							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Deep Sleep registers are only reset on a VDD POR event.

TABLE 4-22: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	PGMONLY	_	_	_	_	_	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000 (1)
NVMKEY	0766	—	—	-	—	—		-		NVMKEY7	NVMKEY6	NVMKEY5	NVMKEY4	NVMKEY3	NVMKEY2	NVMKEY1	NVMKEY0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-23: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	—	_	T3MD	T2MD	T1MD	_	_	_	I2C1MD	U2MD	U1MD		SPI1MD	_	_	ADC1MD	0000
PMD2	0772	_	-		—	—		_	IC1MD	_		_	_	_	_	_	OC1MD	0000
PMD3	0774	_	-		—	—	CMPMD	RTCCMD	_	CRCPMD		_	_	_	_	_	_	0000
PMD4	0776	—	Ι	_		_	_	—	—	_	_	_	EEMD	REFOMD	CTMUMD	HLVDMD		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER	8-4: INICC	JNZ: INTERR	UPI CONTI	ROL REGIST	EKZ		
R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	_	—	—	—	_
bit 15							bit
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	_		—	INT2EP	INT1EP	INT0EP
bit 7							bit
Legend:		HSC = Hardw	are Settable/C				
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 14 bit 13-3	1 = Use Alterr 0 = Use stand DISI: DISI In: 1 = DISI inst 0 = DISI inst	Ne Alternate Internate Internate Interrupt V lard (default) ve struction Status ruction is active ruction is not ac ted: Read as '0	ector Table ector table s bit ective				
bit 2	•	rnal Interrupt 2		Dolority Soloot	hit		
Dit 2	1 = Interrupt c	on negative edge	je		Dit		
bit 1	1 = Interrupt c	rnal Interrupt 1 on negative edg on positive edge	je	Polarity Select	bit		
bit 0	1 = Interrupt c	rnal Interrupt 0 on negative edg on positive edge	je	Polarity Select	bit		

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER2

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NVMIE	0-0	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE
bit 15		ADTIL	UTTAL	UIIXIL	SITTL	SITTL	bit
							bit
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	—	_	_	T1IE	OC1IE	IC1IE	INTOIE
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15		Interrupt Enab	le hit				
		request is enab					
		equest is not e					
bit 14	Unimplemen	ted: Read as ')'				
bit 13	AD1IE: A/D C	Conversion Con	nplete Interrupt	Enable bit			
		equest is enab equest is not e					
bit 12	-	RT1 Transmitter		ole bit			
		equest is enab	-				
	0 = Interrupt r	equest is not e	nabled				
bit 11		RT1 Receiver Ir	-	bit			
	•	equest is enab					
	-	equest is not e					
bit 10		Transfer Comp	•	-nable bit			
		equest is enab equest is not e					
bit 9	-	Fault Interrupt					
		equest is enab					
		equest is not e					
bit 8	T3IE: Timer3	Interrupt Enabl	e bit				
		equest is enab					
		equest is not e					
bit 7		Interrupt Enabl					
		equest is enab equest not is e					
bit 6-4	Unimplemen	ted: Read as ')'				
bit 3	T1IE: Timer1	Interrupt Enabl	e bit				
		equest is enab equest is not e					
bit 2		ut Compare Ch		pt Enable bit			
	•	equest is enab		•			
		equest is not e					
bit 1	IC1IE: Input C	Capture Channe	el 1 Interrupt E	nable bit			
		equest is enab equest is not e					
bit 0	•	nal Interrupt 0					
		equest is enab					
	±	oquoot io onuo	ica				

REGISTER 8-11: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIE	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	_
bit 7							bit 0
Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14 RTCIE: Real-Time Clock and Calendar Interrupt Enable bit

1 = Interrupt request is enabled

- 0 = Interrupt request is not enabled
- bit 13-0 Unimplemented: Read as '0'

U-0							
	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0
bit 7							bit
Legend:							
R = Readat	ole bit	W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
							-
bit 15	Unimpleme	nted: Read as '0	,				
bit 14-12	T1IP<2:0>:	Timer1 Interrupt I	Priority bits				
	111 = Interro	upt is Priority 7 (h	nighest priority	interrupt)			
	•						
	•						
	• 001 - Interr	upt is Priority 1					
		upt source is disa	abled				
bit 11		nted: Read as '0					
bit 10-8	-	·: Output Compar		nterrunt Priorit	v hits		
		upt is Priority 7 (h		-			
	111 Intony		inghoot phone;	internapt)			
	•						
	•						
	•						
		upt is Priority 1	bled				
hit 7	000 = Interre	upt source is disa					
	000 = Interro Unimpleme	upt source is disa nted: Read as '0	3	runt Drineit, / bit	-		
	000 = Interr Unimpleme IC1IP<2:0>:	upt source is disa nted: Read as '0 Input Capture Cl	, hannel 1 Inter		S		
	000 = Interr Unimpleme IC1IP<2:0>:	upt source is disa nted: Read as '0	, hannel 1 Inter		s		
	000 = Interr Unimpleme IC1IP<2:0>:	upt source is disa nted: Read as '0 Input Capture Cl	, hannel 1 Inter		S		
	000 = Intern Unimpleme IC1IP<2:0>: 111 = Intern • •	upt source is disa nted: Read as '0 Input Capture Cl upt is Priority 7 (h	, hannel 1 Inter		S		
	000 = Intern Unimpleme IC1IP<2:0>: 111 = Intern • • • 001 = Intern	upt source is disa nted: Read as '0 Input Capture Cl upt is Priority 7 (h upt is Priority 1	, hannel 1 Inter nighest priority		S		
bit 6-4	000 = Intern Unimpleme IC1IP<2:0>: 111 = Intern • • 001 = Intern 000 = Intern	upt source is disa nted: Read as '0 Input Capture Cl upt is Priority 7 (h upt is Priority 1 upt source is disa	, hannel 1 Inter nighest priority abled		s		
bit 6-4 bit 3	000 = Intern Unimpleme IC1IP<2:0>: 111 = Intern • • 001 = Intern 000 = Intern Unimpleme	upt source is disa nted: Read as '0 Input Capture Cl upt is Priority 7 (h upt is Priority 1 upt source is disa nted: Read as '0	, hannel 1 Inter nighest priority abled	r interrupt)	S		
bit 6-4 bit 3	000 = Intern Unimpleme IC1IP<2:0>: 111 = Intern • • 001 = Intern 000 = Intern Unimpleme INT0IP<2:0>	upt source is disa nted: Read as '0 Input Capture Cl upt is Priority 7 (h upt is Priority 1 upt source is disa nted: Read as '0 >: External Interr	, hannel 1 Inter highest priority abled , upt 0 Priority b	v interrupt)	S		
bit 6-4 bit 3	000 = Intern Unimpleme IC1IP<2:0>: 111 = Intern • • 001 = Intern 000 = Intern Unimpleme INT0IP<2:0>	upt source is disa nted: Read as '0 Input Capture Cl upt is Priority 7 (h upt is Priority 1 upt source is disa nted: Read as '0	, hannel 1 Inter highest priority abled , upt 0 Priority b	v interrupt)	S		
bit 6-4 bit 3	000 = Intern Unimpleme IC1IP<2:0>: 111 = Intern • • 001 = Intern 000 = Intern Unimpleme INT0IP<2:0>	upt source is disa nted: Read as '0 Input Capture Cl upt is Priority 7 (h upt is Priority 1 upt source is disa nted: Read as '0 >: External Interr	, hannel 1 Inter highest priority abled , upt 0 Priority b	v interrupt)	S		
bit 7 bit 6-4 bit 3 bit 2-0	000 = Intern Unimpleme IC1IP<2:0>: 111 = Intern • • 001 = Intern 000 = Intern Unimpleme INT0IP<2:0>	upt source is disa nted: Read as '0 Input Capture Cl upt is Priority 7 (h upt is Priority 1 upt source is disa nted: Read as '0 >: External Interr	, hannel 1 Inter highest priority abled , upt 0 Priority b	v interrupt)	S		
bit 6-4 bit 3	000 = Intern Unimpleme IC1IP<2:0>: 111 = Intern 001 = Intern 000 = Intern Unimpleme INT0IP<2:0> 111 = Intern 001 = Intern	upt source is disa nted: Read as '0 Input Capture Cl upt is Priority 7 (h upt is Priority 1 upt source is disa nted: Read as '0 >: External Interr	, hannel 1 Inter highest priority abled , upt 0 Priority b highest priority	v interrupt)	S		

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enabled bit <u>If FSCM is enabled (FCKSM1 = 1):</u> 1 = Clock and PLL selections are locked 0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit <u>If FSCM is disabled (FCKSM1 = 0):</u> Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	Unimplemented: Read as '0'
bit 5	LOCK: PLL Lock Status bit ⁽²⁾ 1 = PLL module is in lock or PLL module start-up timer is satisfied 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit 1 = FSCM has detected a clock failure 0 = No clock failure has been detected
bit 2	Unimplemented: Read as '0'
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit 1 = Enable secondary oscillator 0 = Disable secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit 1 = Initiate an oscillator switch to clock source specified by NOSC<2:0> bits 0 = Oscillator switch is complete

- Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.
 - 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

NOTES:

EXAMPLE 15-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

Tcy = 2 * Tosc = 62.5 ns

PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2μ s

PWM Period = (PR2 + 1) • Tcy • (Timer 2 Prescale Value)

19.2 µs = (PR2 + 1) • 62.5 ns • 1

PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:

PWM Resolution = $log_{10}(FCY/FPWM)/log_{10}2)$ bits

= (log₁₀(16 MHz/52.08 kHz)/log₁₀2) bits

= 8.3 bits

Note 1: Based on Tcy = 2 * Tosc; Doze mode and PLL are disabled.

TABLE 15-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)⁽¹⁾

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

19.3 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will either be added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.
- 3. a) If the oscillator is faster than ideal (negative result form Step 2), the RCFGCAL register value must be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower than ideal (positive result from Step 2), the RCFGCAL register value must be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

Divide the number of error clocks, per minute by 4, to get the correct calibration value and load the RCFGCAL register with the correct value. (Each 1-bit increment in the calibration adds or subtracts 4 pulses).

EQUATION 19-1:

(Ideal Frequency⁺ – Measured Frequency) * 60 = Clocks per Minute

† Ideal Frequency = 32,768 Hz

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off, or immediately after the rising edge of the seconds pulse.

Note:	
	value, the initial error of the crystal; drift
	due to temperature and drift due to crystal
	aging.

19.4 Alarm

- · Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>)
- One-time alarm and repeat alarm options available

19.4.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As displayed in Figure 19-2, the interval selection of the alarm is configured through the AMASK bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPT bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated, up to 255 times, by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPT bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPT bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

19.4.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note: Changing any of the registers, other than the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and the CHIME bit be changed when RTCSYNC = 0.

TABLE 29-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions				Conditions	
DC10	Vdd	Supply Voltage	1.8	_	3.6	V		
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5	_	_	V		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	0.7	V		
DC17	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_		V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

TABLE 29-4: HIGH/LOW–VOLTAGE DETECT CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial

 $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended

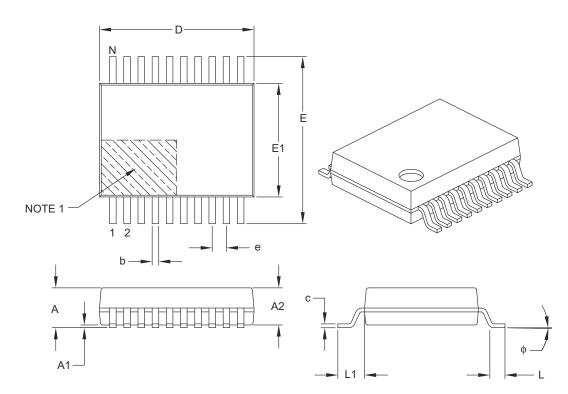
Param No.	Symbol	Charact	aracteristic		Тур	Max	Units	Conditions
DC18	Vhlvd	HLVD Voltage on VDD	HLVDL<3:0> = 0000	_	1.85	1.94	V	
		Transition	HLVDL<3:0> = 0001	1.81	1.90	2.00	V	
			HLVDL<3:0> = 0010	1.85	1.95	2.05	V	
			HLVDL<3:0> = 0011	1.90	2.00	2.10	V	
			HLVDL<3:0> = 0100	1.95	2.05	2.15	V	
			HLVDL<3:0> = 0101	2.06	2.17	2.28	V	
			HLVDL<3:0> = 0110	2.12	2.23	2.34	V	
			HLVDL<3:0> = 0111	2.24	2.36	2.48	V	
			HLVDL<3:0> = 1000	2.31	2.43	2.55	V	
			HLVDL<3:0> = 1001	2.47	2.60	2.73	V	
			HLVDL<3:0> = 1010	2.64	2.78	2.92	V	
			HLVDL<3:0> = 1011	2.74	2.88	3.02	V	
			HLVDL<3:0> = 1100	2.85	3.00	3.15	V	
			HLVDL<3:0> = 1101	2.96	3.12	3.28	V	
			HLVDL<3:0> = 1110	3.22	3.39	3.56	V	

TABLE 29-22: AC SPECIFICATIONS

Symbol	Characteristics	Min	Тур	Max	Units
TLW	BCLKx High Time	20	Tcy/2		ns
THW	BCLKx Low Time	20	(TCY * BRGx) + TCY/2	—	ns
TBLD	BCLKx Falling Edge Delay from UxTX	-50	—	50	ns
Твно	BCLKx Rising Edge Delay from UxTX	Тсү/2 – 50	—	TCY/2 + 50	ns
Twak	Min. Low on UxRX Line to Cause Wake-up	—	1	—	μS
TCTS	Min. Low on UxCTS Line to Start Transmission	Тсү	—	_	ns
TSETUP	Start bit Falling Edge to System Clock Rising Edge Setup Time	3	—	—	ns
TSTDELAY	Maximum Delay in the Detection of the Start bit Falling Edge	—	_	TCY + TSETUP	ns

TABLE 29-23: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

A/D CH	A/D CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
		Clock P	aramete	ers					
AD50	Tad	A/D Clock Period	75	_	—	ns	Tcy = 75 ns, AD1CON3 is in the default state		
AD51	TRC	A/D Internal RC Oscillator Period	_	250	—	ns			
		Conver	sion Ra	ite					
AD55	TCONV	Conversion Time		12		TAD			
AD56	FCNV	Throughput Rate	—	—	500	ksps	$AVDD \ge 2.7V$		
AD57	TSAMP	Sample Time	_	1	—	TAD			
AD58	TACQ	Acquisition Time	750	_	—	ns	(Note 2)		
AD59	Tswc	Switching Time from Convert to Sample	-	_	(Note 3)				
AD60	TDIS	Discharge Time	0.5			TAD			
		Clock P	aramete	ers					
AD61	TPSS	Sample Start Delay from Setting Sample bit (SAMP)	2		3	TAD			


Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD).

3: On the following cycle of the device clock.

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

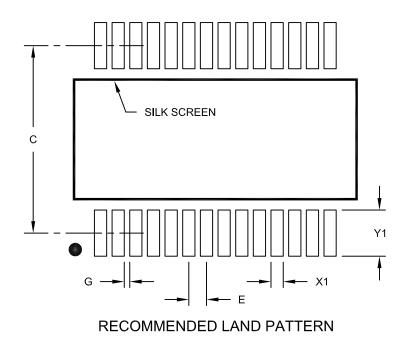
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensio	Dimension Limits		NOM	MAX	
Number of Pins	Ν	20			
Pitch	е	0.65 BSC			
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90	7.20	7.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	ф	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

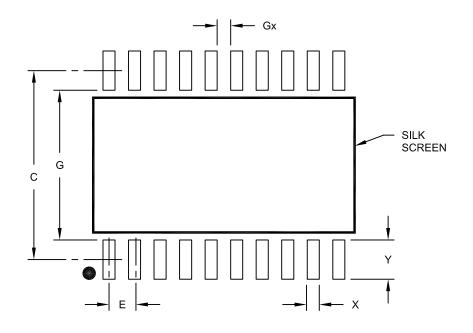
Microchip Technology Drawing C04-072B

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Units MILLIN		IMETERS	
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

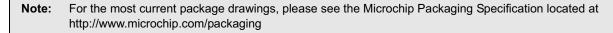
Microchip Technology Drawing No. C04-2073A

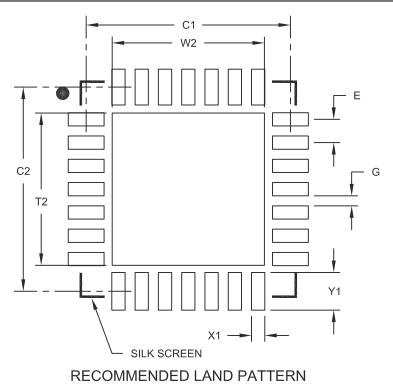
20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units MILLIMETERS			s
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X20)	Х			0.60
Contact Pad Length (X20)	Y			1.95
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.45		


Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			4.25	
Optional Center Pad Length	T2			4.25	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.37	
Contact Pad Length (X28)	Y1			1.00	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

NOTES: