

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08ka102-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins and other signals, in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

FIGURE 2-5:

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

6.4.1.1 Data EEPROM Bulk Erase

To erase the entire data EEPROM (bulk erase), the address registers do not need to be configured because this operation affects the entire data EEPROM. The following sequence helps in performing bulk erase:

- 1. Configure NVMCON to Bulk Erase mode.
- 2. Clear NVMIF status bit and enable NVM interrupt (optional).
- 3. Write the key sequence to NVMKEY.
- 4. Set the WR bit to begin erase cycle.
- 5. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

A typical bulk erase sequence is provided in Example 6-3.

6.4.2 SINGLE-WORD WRITE

To write a single word in the data EEPROM, the following sequence must be followed:

- Erase one data EEPROM word (as mentioned in Section 6.4.1 "Erase Data EEPROM") if the PGMONLY bit (NVMCON<12>) is set to '1'.
- 2. Write the data word into the data EEPROM latch.
- 3. Program the data word into the EEPROM:
 - Configure the NVMCON register to program one EEPROM word (NVMCON<5:0> = 0001xx).
 - Clear NVMIF status bit and enable NVM interrupt (optional).
 - Write the key sequence to NVMKEY.
 - Set the WR bit to begin erase cycle.
 - Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).
 - To get cleared, wait until NVMIF is set.

A typical single-word write sequence is provided in Example 6-4.

EXAMPLE 6-3: DATA EEPROM BULK ERASE

// Set up NVMCON to bulk erase the data EEPROM NVMCON = $0 \times 4050;$

// Disable Interrupts For 5 Instructions
asm volatile ("disi #5");

// Issue Unlock Sequence and Start Erase Cycle
__builtin_write_NVM();

EXAMPLE 6-4: SINGLE-WORD WRITE TO DATA EEPROM

<pre>intattribute ((space(eedata))) eeData = 0x1234;</pre>	<pre>// Variable located in EEPROM,declared as a global variable.</pre>
int newData;	// New data to write to EEPROM
unsigned int offset;	
// Set up NVMCON to erase one word of data EEPROM	
NVMCON = 0x4004;	
// Set up a pointer to the EEPROM location to be en	rased
<pre>TBLPAG =builtin_tblpage(&eeData);</pre>	// Initialize EE Data page pointer
<pre>offset =builtin_tbloffset(&eeData);</pre>	// Initizlize lower word of address
builtin_tblwtl(offset, newData);	// Write EEPROM data to write latch
asm volatile ("disi #5");	// Disable Interrupts For 5 Instructions
builtin_write_NVM();	// Issue Unlock Sequence & Start Write Cycle

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
_	T2IP2	T2IP1	T2IP0	—		—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—		—		—	—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared		ared	x = Bit is unknown			
bit 15	Unimplemen	ted: Read as '	כ'						
bit 14-12	T2IP<2:0>: ⊺	imer2 Interrupt	Priority bits						
	111 = Interru	pt is Priority 7(highest priority	interrupt)					
	•								
	•								
		ntin Drinnity (
	000 = Interru	pt is Phonity 1 ot source is dis	abled						
bit 11-0	Unimplemen	ted: Read as '							

REGISTER 8-14: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

NOTES:

19.2.4 RTCC CONTROL REGISTERS

REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0		
RTCEN ⁽²⁾	—	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0		
bit 15 bit a									

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0		
bit 7 bit 0									

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	RTCEN: RTCC Enable bit ⁽²⁾ 1 = RTCC module is enabled
	0 = RTCC module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	RTCWREN: RTCC Value Registers Write Enable bit
	 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user
bit 12	RTCSYNC: RTCC Value Registers Read Synchronization bit
	1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple, resulting in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid.
	0 = RICVALH, RICVALL or ALCFGRP1 registers can be read without concern over a rollover ripple
bit 11	HALFSEC: Half Second Status bit ⁽³⁾
	 Second half period of a second First half period of a second
bit 10	RTCOE: RTCC Output Enable bit
	1 = RTCC output is enabled0 = RTCC output is disabled
bit 9-8	RTCPTR<1:0>: RTCC Value Register Window Pointer bits
	Points to the corresponding RTCC Value registers when reading the RTCVALH and RTCVALL registers. The RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'.
	<u>RTCVAL<15:8>:</u> 00 = MINUTES 01 = WEEKDAY 10 = MONTH
	11 = Reserved
	<u>RTCVAL<7:0>:</u>
	00 = SECONDS
	01 = HOURS
	11 = YEAR
Note 1:	The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- **3:** This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER	19-3. ALGI	GRET. ALAN			GISTER		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7							bit 0
Legend:]
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
							,
bit 15	ALRMEN: Ala	arm Enable bit					
	1 = Alarm is	enabled (cleare	ed automatica	lly after an ala	arm event whe	never ARPT<7	:0> = 00h and
	CHIME =	= 0)					
bit 14		uisableu					
DIL 14	1 - Chime is		<7.0 bits are	allowed to roll	over from 00h	to EEb	
	0 = Chime is	disabled; ARP	<7:0> bits are	p once they re	ach 00h	101111	
bit 13-10	AMASK<3:0:	>: Alarm Mask (Configuration b	oits			
	0000 = Ever	ry half second	C C				
	0001 = Eve	ry second					
	0010 = Ever	ry 10 seconds					
	0011 = EVel	ry minute					
	0101 = Eve	ry hour					
	0110 = Onc	e a day					
	0111 = Onc	e a week					
	1000 = Onc	e a month	t whon configu	rod for Fobrua	ny 20 th anco o	voru (1 voare)	
	1001 = Onc 101x = Res	erved – do not i	ise		iry 29, 0100 e	very 4 years)	
	11xx = Res	erved – do not ι	ise				
bit 9-8	ALRMPTR<1	:0>: Alarm Valu	ie Register Wi	ndow Pointer b	oits		
	Points to the c	orresponding Ala	arm Value regis	sters when read	ing the ALRMV	ALH and ALRM	VALL registers.
	The ALRMPT	R<1:0> value de	ecrements on e	every read or wr	rite of ALRMVA	LH until it reach	es '00'.
	ALRMVAL<1	<u>5:8>:</u>					
	00 = ALRIVIN	/D					
	10 = ALRMM	INTH					
	11 = Unimple	mented					
	ALRMVAL<7	<u>:0>:</u>					
	00 = ALRMS	EC D					
	10 = ALRMIN	AY					
	11 = Unimple	emented					
bit 7-0	ARPT<7:0>:	Alarm Repeat C	Counter Value	bits			
	11111111 =	Alarm will repe	at 255 more t	imes			
	•						
	•						
	00000000 =	Alarm will not	repeat				
	The counter of	decrements on a	any alarm eve	nt; it is prevent	ted from rolling	over from 00h	to FFh unless
	CHIME = 1.						

REGISTER 19-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

REGISTER 20-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X15	X14	X13	X12	X11	X10	X9	X8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
X7	X6	X5	X4	X3	X2	X1	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, r			nented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared x = Bit is unkno				nown

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

REGISTER 21-1:

U-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 **HLVDEN** HLSIDL bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 VDIR BGVST **IRVST** HLVDL0 ____ HLVDL3 HLVDL2 HLVDL1 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 HLVDEN: High/Low-Voltage Detect Power Enable bit 1 = HLVD is enabled 0 = HLVD is disabled bit 14 Unimplemented: Read as '0' bit 13 HLSIDL: HLVD Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode Unimplemented: Read as '0' bit 12-8 bit 7 VDIR: Voltage Change Direction Select bit 1 = Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>) 0 = Event occurs when voltage equals or falls below trip point (HLVDL<3:0>) BGVST: Band Gap Voltage Stable Flag bit bit 6 1 = Indicates that the band gap voltage is stable 0 = Indicates that the band gap voltage is unstable bit 5 **IRVST:** Internal Reference Voltage Stable Flag bit 1 = Indicates that the internal reference voltage is stable and the High-Voltage Detect logic generates the interrupt flag at the specified voltage range 0 = Indicates that the internal reference voltage is unstable and the High-Voltage Detect logic will not generate the interrupt flag at the specified voltage range, and the HLVD interrupt should not be enabled bit 4 Unimplemented: Read as '0' bit 3-0 HLVDL<3:0>: High/Low-Voltage Detection Limit bits 1111 = External analog input is used (input comes from the HLVDIN pin) 1110 = Trip Point 1⁽¹⁾ 1101 = Trip Point 2⁽¹⁾ 1100 = Trip Point 3⁽¹⁾ 0000 = Trip Point 15⁽¹⁾

HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

TABLE 29-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED)

DC CHARACTERISTICS			Standard Op Operating ten	$\begin{array}{ll} \mbox{erating Conditions:} \\ \mbox{nperature} & -40^{\circ}C \leq \\ \mbox{-}40^{\circ}C \leq \end{array}$	1.8V to 3.6V (unles TA \leq +85°C for Indus TA \leq +125°C for Extended	s otherwise stated) strial ended					
Param No.	Typical ⁽¹⁾	Max	Units		Conditions						
Idle Current (Idle Current (IIDLE): Core Off, Clock on Base Current, PMD Bits are Set ⁽²⁾										
DC50		18		-40°C							
DC50a		18		+25°C	1.8V	LPRC (31 kHz)					
DC50b	2	18		+60°C							
DC50c		18	-	+85°C							
DC50d		40	μA	-40°C							
DC50e		40	-	+25°C							
DC50f	4	40	-	+60°C	3.3V						
DC50g	1	40	1	+85°C							
DC50h	1	60	1	+125°C							

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Operating Parameters:

Core is off

• EC mode with the clock input driven with a square wave rail-to-rail

• I/Os are configured as outputs, driven low

• MCLR - VDD

• WDT FSCM are disabled

• SRAM, program and data memory are active

• All PMD bits are set except for the modules being measured

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾	_		_	_	
DI10		I/O Pins	Vss		0.2 Vdd	V	
DI15		MCLR	Vss		0.2 Vdd	V	
DI16		OSCI (XT mode)	Vss	_	0.2 Vdd	V	
DI17		OSCI (HS mode)	Vss	_	0.2 Vdd	V	
DI18		I/O Pins with I ² C™ Buffer	Vss	_	0.3 Vdd	V	SMBus disabled
DI19		I/O Pins with SMBus Buffer	Vss	—	0.8	V	SMBus enabled
	VIH (5)	Input High Voltage ⁽⁴⁾	—	—	-	—	
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	_	Vdd Vdd	V V	
DI25		MCLR	0.8 Vdd	_	Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd	—	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd	_	Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd	_ _	VDD VDD	V V	
DI29		I/O Pins with SMBus	2.1	—	VDD	V	$2.5V \le VPIN \le VDD$
DI30		CNx Pull-up Current	50	250	500	μΑ	VDD = 3.3V, VPIN = VSS
	IIL	Input Leakage Current ^(2,3)					
D150		I/O Ports	—	0.050	±0.100	μΑ	Vss ≤ VPIN ≤ VDD, Pin at high-impedance
DI51		VREF+, VREF-, AN0, AN1	_	0.300	±0.500	μΑ	$Vss \le VPIN \le VDD,$ Pin at high-impedance
DI55		MCLR	_	—	±5.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSCI	_	_	±5.0	μA	$Vss \le VPIN \le VDD,$ XT and HS modes

TABLE 29-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: Refer to Table 1-2 for I/O pin buffer types.
- 5: VIH requirements are met when internal pull-ups are enabled.

TABLE 29-22: AC SPECIFICATIONS

Symbol	Characteristics	Min	Тур	Max	Units
TLW	BCLKx High Time	20	Tcy/2	_	ns
THW	BCLKx Low Time	20	(TCY * BRGx) + TCY/2	—	ns
TBLD	BCLKx Falling Edge Delay from UxTX	-50	—	50	ns
Твно	BCLKx Rising Edge Delay from UxTX	Tcy/2 - 50	—	Tcy/2 + 50	ns
TWAK	Min. Low on UxRX Line to Cause Wake-up	—	1	—	μS
Тстѕ	Min. Low on UxCTS Line to Start Transmission	Тсү	—	—	ns
TSETUP	Start bit Falling Edge to System Clock Rising Edge Setup Time	3	—	—	ns
TSTDELAY	Maximum Delay in the Detection of the Start bit Falling Edge	—	—	TCY + TSETUP	ns

TABLE 29-23: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

A/D CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
Clock Parameters								
AD50	Tad	A/D Clock Period	75	_	—	ns	Tcy = 75 ns, AD1CON3 is in the default state	
AD51	TRC	A/D Internal RC Oscillator Period	_	250	—	ns		
	Conversion Rate							
AD55	TCONV	Conversion Time	_	12	—	TAD		
AD56	FCNV	Throughput Rate	_	_	500	ksps	$AVDD \ge 2.7V$	
AD57	TSAMP	Sample Time	_	1	—	TAD		
AD58	TACQ	Acquisition Time	750	_	—	ns	(Note 2)	
AD59	Tswc	Switching Time from Convert to Sample			(Note 3)			
AD60	TDIS	Discharge Time	0.5	_	—	TAD		
	Clock Parameters							
AD61	TPSS	Sample Start Delay from Setting Sample bit (SAMP)	2		3	TAD		

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD).

3: On the following cycle of the device clock.

TABLE 29-25: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
DO31	TIOR	Port Output Rise Time	—	10	25	ns		
DO32	TIOF	Port Output Fall Time	—	10	25	ns		
DI35	Tinp	INTx pin High or Low Time (output)	20	—	—	ns		
DI40	Trbp	CNx High or Low Time (input)	2	—	—	Тсү		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 29-39: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 1)

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
SP70	TscL	SCKx Input Low Time	30	_		ns	
SP71	TscH	SCKx Input High Time	30	_	_	ns	
SP72	TscF	SCKx Input Fall Time ⁽²⁾	—	10	25	ns	
SP73	TscR	SCKx Input Rise Time ⁽²⁾	—	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾	—	10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾	—	10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		30	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{\mathrm{SSx}}\downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	_	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	_	50	ns	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

20-Lead SOIC (.300")

28-Lead SOIC (.300")

20-Lead QFN

28-Lead QFN

Example

Example

Example

Example

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

APPENDIX A: REVISION HISTORY

Revision A (November 2008)

Original data sheet for the PIC24F16KA102 family of devices.

Revision B (March 2009)

Section 29.0 "Electrical Characteristics" was revised and minor text edits were made throughout the document.

Revision C (October 2011)

- · Changed all instances of DSWSRC to DSWAKE.
- Corrected Example 5-2.
- Corrected Example 5-4.
- Corrected Example 6-1.
- Corrected Example 6-3.
- Added a comment to Example 6-5.
- Corrected Figure 9-1 to connect the SOSCI and SOSCO pins to the Schmitt trigger correctly.
- Added register descriptions for PMD1, PMD2, PMD3 and PMD4.
- Added note that RTCC will run in Reset.
- Corrected time values of ADCS (AD1CON3<5:0>).
- Corrected CH0SB and CH0SA (AD1CHS<11:8> and AD1CHS<3:0>) to correctly reference AVDD and AN3.
- Added description of PGCF15 and PGCF14 (AD1PCFG<15:14>).
- Edited Figure 22-2 to correctly reference RIC and the A/D capacitance.
- Changed all references from CTEDG1 to CTED1.
- Changed all references from CTEDG2 to CTED2.
- Changed description of CMIDL: it used to say it disables all comparators in Idle, now only disables interrupts in Idle mode.
- Changed all references of RTCCKSEL to RTCOSC.
- Changed all references of DSLPBOR to DSBOREN.
- Changed all references of DSWCKSEL to DSWDTOSC
- Imported Figure 40-9 from PIC24F FRM, Section 40.
- Added spec for BOR hysteresis.
- Edited Note 1 for Table 29-5 to further describe LPBOR.
- Edited max values of DC20d and DC20e on Table 29-6.
- Edited typical value for DC61-DC61c in Table 29-8.
- Edited Note 2 of Table 29-8.
- Added Note 5 to Table 29-9.
- Added Table 29-15.
- Added AD08 and AD09 in Table 29-26.
- Added Note 3 to Table 29-26.

- Imported Figure 40.10 from PIC24F FRM, Section 40.
- Deleted TVREG spec.
- Imported Figure 15-5 from PIC24F FRM, Section 15.
- Imported Table 15-4 from PIC24F FRM, Section 15.
- Imported Figure 16-22 from PIC24F FRM, Section 16.
- Imported Table 16-9 from PIC24F FRM, Section 16.
- Imported Figure 16-23 from PIC24F FRM, Section 16.
- Imported Table 16-10 from PIC24F FRM, Section 16.
- Imported Figure 21-24 from PIC24F FRM. Section 21.
- Imported Figure 21-25 from PIC24F FRM, Section 21.
- Imported Table 21-5 from PIC24F FRM, Section 21.
- Imported Figure 23-17 from PIC24F FRM, Section 23.
- Imported Table 23-3 from PIC24F FRM, Section 23.
- Imported Figure 23-18 from PIC24F FRM, Section 23.
- Imported Table 23-4 from PIC24F FRM, Section 23.
- Imported Figure 23-19 from PIC24F FRM, Section 23.
- Imported Table 23-5 from PIC24F FRM, Section 23.
- Imported Figure 23-20 from PIC24F FRM, Section 23.
- Imported Table 23-6 from PIC24F FRM, Section 23.
- Imported Figure 24-33 from PIC24F FRM, Section 24.
- Imported Table 24-6 from PIC24F FRM, Section 24.
- Imported Figure 24-34 from PIC24F FRM, Section 24.
- Imported Table 24-7 from PIC24F FRM, Section 24.
- Imported Figure 24-35 from PIC24F FRM, Section 24.
- Imported Table 24-8 from PIC24F FRM, Section 24.
- Imported Figure 24-36 from PIC24F FRM, Section 24.
- Imported Table 24-9 from PIC24F FRM, Section 24.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support