

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08ka102t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '000100' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as displayed in Example 5-5.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

; Set up NVMCO	N for row erase operation		
MOV	#0x4058, W0	;	
MOV	W0, NVMCON	;	Initialize NVMCON
; Init pointer	to row to be ERASED		
MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
TBLWTL	WO, [WO]	;	Set base address of erase block
DISI	#5	;	Block all interrupts
			for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	Insert two NOPs after the erase
NOP		;	command is asserted

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

// C example using MPLAB C30	
<pre>intattribute ((space(auto_psv))) progAddr = 0x1234;</pre>	<pre>// Variable located in Pgm Memory, declared as a // global variable</pre>
unsigned int offset;	
//Set up pointer to the first memory location to be written $% \left({{\left({{{\left({{{\left({{{\left({{{c}}} \right)}}} \right.}} \right)}_{0,2}}} \right)} \right)$	
<pre>TBLPAG =builtin_tblpage(&progAddr);</pre>	// Initialize PM Page Boundary SFR
<pre>offset =builtin_tbloffset(&progAddr);</pre>	// Initialize lower word of address
<pre>builtin_tblwtl(offset, 0x0000);</pre>	// Set base address of erase block
	// with dummy latch write
NVMCON = 0x4058;	// Initialize NVMCON
asm("DISI #5"); builtin_write_NVM();	<pre>// Block all interrupts for next 5 instructions // C30 function to perform unlock // sequence and set WR</pre>

6.3 NVM Address Register

As with Flash program memory, the NVM Address Registers, NVMADRU and NVMADR, form the 24-bit Effective Address (EA) of the selected row or word for data EEPROM operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA. These registers are not mapped into the Special Function Register (SFR) space; instead, they directly capture the EA<23:0> of the last table write instruction that has been executed and selects the data EEPROM row to erase. Figure 6-1 depicts the program memory EA that is formed for programming and erase operations. Like program memory operations, the Least Significant bit (LSb) of NVMADR is restricted to even addresses. This is because any given address in the data EEPROM space consists of only the lower word of the program memory width; the upper word, including the uppermost "phantom byte", are unavailable. This means that the LSb of a data EEPROM address will always be '0'.

Similarly, the Most Significant bit (MSb) of NVMADRU is always '0', since all addresses lie in the user program space.

FIGURE 6-1: DATA EEPROM ADDRESSING WITH TBLPAG AND NVM ADDRESS REGISTERS

6.4 Data EEPROM Operations

The EEPROM block is accessed using table read and write operations, similar to those used for program memory. The TBLWTH and TBLRDH instructions are not required for data EEPROM operations, since the memory is only 16 bits wide (data on the lower address is valid only). The following programming operations can be performed on the data EEPROM:

- Erase one, four or eight words
- Bulk erase the entire data EEPROM
- Write one word
- Read one word

Note 1: Unexpected results will be obtained should the user attempt to read the EEPROM while a programming or erase operation is underway.

2: The C30 C compiler includes library procedures to automatically perform the table read and table write operations, manage the Table Pointer and write buffers, and unlock and initiate memory write sequences. This eliminates the need to create assembler macros or time critical routines in C for each application.

The library procedures are used in the code examples detailed in the following sections. General descriptions of each process are provided for users who are not using the C30 compiler libraries.

REGISTER	REGISTER 8-8: IFS4: INTERRUPT FLAG STATUS REGISTER 4										
U-0	U-0	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS				
_	_	CTMUIF	_	_		_	HLVDIF				
bit 15							bit 8				
U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0				
—	—	—	—	CRCIF	U2ERIF	U1ERIF	—				
bit 7							bit 0				
Legend:		HS = Hardwar	e Settable bit								
R = Readab	ole bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-14	Unimpleme	nted: Read as '0	,								
bit 13	CTMUIF: C	TMU Interrupt Fla	ig Status bit								
	1 = Interrupt	1 = Interrupt request has occurred									
		t request has not	occurred								
bit 12-9	Unimpleme	nted: Read as '0									
bit 8	HLVDIF: Hig	gh/Low-Voltage D	etect Interrup	t Flag Status bi	t						
	1 = Interrupt	t request has occ t request has not	occurred								
hit 7-4	Unimpleme	nted: Read as '0	,								
bit 3	CRCIF: CR	C Generator Inter	runt Elan Stat	us hit							
Site	1 = Interrupt	t request has occ	urred								
	0 = Interrupt	t request has not	occurred								
bit 2	U2ERIF: UA	ART2 Error Interru	upt Flag Status	s bit							
	1 = Interrupt	t request has occ	urred								
	0 = Interrupt	t request has not	occurred								
bit 1	U1ERIF: UA	RT1 Error Interru	upt Flag Status	s bit							
	1 = Interrupt	t request has occ	urred								
h:4 0		request has not	, ,								
bit U	Unimpleme	nted: Read as '0	l [*]								

REGISTER 9-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—		_	_	—		—	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled							
bit 14	Unimplemen	ted: Read as '0)'					
bit 12	 ROSSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is disabled in Sleep ROSEL: Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock⁽¹⁾ a = Sustem clock is used as the base clock is the state state and clock is used as the base clock. 							
bit 11-8	RODIV<3:0>: 1111 = Base 1110 = Base 1101 = Base 1100 = Base 1011 = Base 1010 = Base 1000 = Base 0111 = Base 0110 = Base 0101 = Base 0101 = Base 0101 = Base 0011 = Base 0011 = Base 0011 = Base	Reference Osc clock value divi clock value divi	cillator Divisor ded by 32,768 ded by 16,384 ded by 8,192 ded by 4,096 ded by 2,048 ded by 1,024 ded by 512 ded by 512 ded by 256 ded by 128 ded by 44 ded by 32 ded by 4 ded by 2	Select bits				
bit 7-0	Unimplemen	ted: Read as '0)'					

Note 1: The crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

Control princontrols our channel.
 Each output compare channel can use one of two selectable time bases. Refer to the device data sheet for the time bases associated with the module.

REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2 (CONTINUED)

- bit 1 **BUFM:** Buffer Mode Select bit
 - 1 = Buffer is configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>)
 - 0 = Buffer is configured as one 16-word buffer (ADC1BUFn<15:0>)
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples
 - 0 = Always uses MUX A input multiplexer settings
- **Note 1:** When the OFFCAL bit is set, inputs are disconnected and tied to AVss. This sets the inputs of the A/D to zero. Then, the user can perform a conversion. Use of the Calibration mode is not affected by AD1PCFG contents nor channel input selection. Any analog input switches are disconnected from the A/D Converter in this mode. The conversion result is stored by the user software and used to compensate subsequent conversions. This can be done by adding the two's complement of the result obtained with the OFFCAL bit set to all normal A/D conversions.

REGISTER 22-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	—	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	1 = A/D internal RC clock
	0 = Clock derived from system clock
bit 14-13	Unimplemented: Read as '0'
bit 12-8	SAMC<4:0>: Auto-Sample Time bits
	11111 = 31 T AD
	•
	•
	•
	00001 = 1 TAD
	00000 = 0 TAD (not recommended)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	ADCS<5:0>: A/D Conversion Clock Select bits
	111111 = 64 • T CY
	111110 = 63 • T CY
	•
	•
	•
	000001 = 3 • TCY
	000000 = 2 • TCY

ADRC: A/D Conversion Clock Source bit

bit 15

REGISTER 2	22-4: AD1C	HS: A/D INPU	JT SELECT	REGISTER			
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB		_		CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15				•	•		bit 8
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA	—	—	_	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7							bit 0
r							
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
DIT 15	CHUNE: Chai	nnel U Negative	Input Select f	or MUX B Mult	iplexer Setting I	DIT	
	1 = Channel (0 = Channel () negative input	IS AN1 is VP-				
bit 14-12		ted: Read as 'o	, ,				
bit 11-8	CH0SB<3:0>	: Channel 0 Pos	sitive Input Se	lect for MUX B	Multiplexer Set	tina bits	
	1111 = Chan	nel 0 positive in	put is band ga	n reference (Vi	BG)	ang bito	
	1110 = Cha n	nel 0 positive in	put is band ga	p, divided by ty	wo, reference (\	/BG/2)	
	1101 = No ch	annels connect	ed (actual A/D	MUX switch a	ictivates, but in	out floats); used	d for CTMU
	1100 = Chan	nel 0 positive in	put is AN12				
	1011 = Chan	nel 0 positive in nel 0 positive in	put is ANTT				
	1001 = Reser	rved					
	1000 = Rese i	rved					
	0111 = AVDD						
	0110 = AVss	nal O nacitiva in					
	0101 = Chan	nel 0 positive in nel 0 positive in	put is AND				
	0011 = Chan	nel 0 positive in	put is AN3				
	0010 = Chan	nel 0 positive in	put is AN2				
	0001 = Chan	nel 0 positive in	put is AN1				
1. · · · - 7	0000 = Chan	nel 0 positive in	put is AN0			•	
DIT /	CHUNA: Chai	nnel U Negative		or MUX A Mult	iplexer Setting I	DIT	
	\perp = Channel () negative input	IS AIN'I is VP-				
bit 6-4		ted: Read as '0	,				
bit 3-0	CH0SA<3:0>	: Channel 0 Pos	sitive Input Sel	lect for Sample	A bits		
	1111 = Cha ni	nel 0 positive in	put is band ga	p reference (V	BG)		
	1110 = Chan	nel 0 positive in	put is band ga	p, divided by tw	wo, reference (\	/BG/2)	
	1101 = No ch	annels connect	ed (actual A/D	MUX switch a	ictivates but inp	ut floats); used	for CTMU
	1011 = Chan	nel 0 positive in nel 0 positive in	put is AN 12				
	1010 = Cha n	nel 0 positive in	put is AN10				
	1001 = Rese r	rved					
	1000 = Reser	rved					
	0111 = AVDD						
	0101 = Chan	nel 0 positive in	put is AN5				
	0100 = Chan	nel 0 positive in	put is AN4				
	0011 = Chan	nel 0 positive in	put is AN3				
	0010 = Chan	nel 0 positive in	put is AN2				
	0001 = Chan	nel 0 positive in	put IS AN1 put is ΔN0				

23.0 COMPARATOR MODULE

Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive refer-
	ence source. For more information on the
	Comparator module, refer to the "PIC24F
	Family Reference Manual", Section 46.
	"Scalable Comparator Module"
	(DS39734).

The comparator module provides two dual input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs, as well as a voltage reference input from either the internal band gap reference, divided by 2 (VBG/2), or the comparator voltage reference generator.

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is displayed in Figure 23-1. Diagrams of the possible individual comparator configurations are displayed in Figure 23-2.

Each comparator has its own control register, CMxCON (Register 23-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 23-2).

FIGURE 23-1: COMPARATOR MODULE BLOCK DIAGRAM

REGISTER 26-9: DEVID: DEVICE ID REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 23							bit 16
R	R	R	R	R	R	R	R
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
bit 15							bit 8
R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7						•	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow		nown	
bit 23-16	Unimplemen	ted: Read as 'd)'				
bit 15-8	FAMID<7:0>:	Device Family	Identifier bits				
	00001011 =	PIC24F16KA10	02 family				
bit 7-0	DEV<7:0>: In	dividual Device	e Identifier bits				

00000011 = PIC24F16KA102 00001010 = PIC24F08KA102 00000001 = PIC24F16KA101 00001000 = PIC24F08KA101

REGISTER 26-10: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—		—	—	—	—	—	—	
bit 23							bit 16	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		—	—	—	—	—	—	
bit 15			•		•		bit 8	
U-0	U-0	U-0	U-0	R	R	R	R	
_		_	_	REV3	REV2	REV1	REV0	
bit 7			•		•		bit 0	
L								
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Minor Revision Identifier bits

28.0 INSTRUCTION SET SUMMARY

Note:	This	chapter	is a	brie	ef	summary	of	the
	PIC2	24F instru	ction	i set	ar	chitecture	an	d is
	not	intended	to	be	а	compreh	ens	sive
	refer	ence sou	rce.					

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 28-1 lists the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register, specified by the value, 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register, where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all of the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter (PC) is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected			
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None			
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None			
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None			
ULNK	ULNK		Unlink Frame Pointer	1	1	None			
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z			
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z			
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z			
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z			
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z			
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N			

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 29-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTE	RISTICS		Standard Op Operating ter	perating Conditions: 1 mperature -40°C ≤ -40°C ≤	1.8V to 3.6V (unless TA \leq +85°C for Indus TA \leq +125°C for Extended	otherwise stated) strial ended		
Parameter No.	Typical ⁽¹⁾	Max	Units Conditions					
IDD Current ⁽²⁾				•				
DC20		330		-40°C				
DS20a		330	1	+25°C				
DC20b	195	330	μA	+60°C	1.8V			
DC20c		330]	+85°C				
DC20d		500		+125°C		0.5 MIPS,		
DC20e		590		-40°C		Fosc = 1 MHz		
DC20f		590		+25°C				
DC20g	365	645	μA	+60°C	3.3V			
DC20h		720	1	+85°C				
DC20i		800	1	+125°C				
DC22		600		-40°C				
DC22a		600	1	+25°C				
DC22b	363	600	μA	+60°C	1.8V			
DC22c		600		+85°C				
DC22d		800	1	+125°C		1 MIPS,		
DC22e		1100		-40°C		Fosc = 2 MHz		
DC22f		1100		+25°C				
DC22g	695	1100	μA	+60°C	3.3V			
DC22h		1100]	+85°C				
DC22i		1500		+125°C				
DC23		18		-40°C				
DC23a		18]	+25°C				
DC23b	11	18	mA	+60°C	3.3V	16 MIPS, EOSC = 32 MHz		
DC23c		18		+85°C		1 030 - 32 WH 12		
DC23d		18		+125°C				
DC27		3.40		-40°C				
DC27a		3.40		+25°C				
DC27b	2.25	3.40	mA	+60°C	2.5V			
DC27c		3.40		+85°C				
DC27d		3.40		+125°C		FRC (4 MIPS),		
DC27e		4.60		-40°C		Fosc = 8 MHz		
DC27f		4.60		+25°C				
DC27g	3.05	4.60	mA	+60°C	3.3V			
DC27h		4.60		+85°C]			
DC27i		5.40		+125°C				

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Operating Parameters:

• EC mode with clock input driven with a square wave rail-to-rail

· I/Os are configured as outputs, driven low

• MCLR – VDD

WDT FSCM is disabled

• SRAM, program and data memory are active

• All PMD bits are set except for modules being measured

FIGURE 29-5: EXTERNAL CLOCK TIMING

TABLE 29-19: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode) ⁽²⁾	DC 4		32 8	MHz MHz	EC ECPLL	
		Oscillator Frequency ⁽²⁾	0.2 4 4 31		4 25 8 33	MHz MHz MHz kHz	XT HS HSPLL SOSC	
OS20	Tosc	Tosc = 1/Fosc	—			—	See Parameter OS10 for Fosc value	
OS25	Тсү	Instruction Cycle Time ⁽³⁾	62.5	_	DC	ns		
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc		_	ns	EC	
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—		20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽⁴⁾	—	6	10	ns		
OS41	TckF	CLKO Fall Time ⁽⁴⁾	_	6	10	ns		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: Refer to Figure 29-1 for the minimum voltage at a given frequency.
- 3: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- 4: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

TABLE 29-22: AC SPECIFICATIONS

Symbol	Characteristics	Min	Тур	Max	Units
TLW	BCLKx High Time	20	Tcy/2	_	ns
THW	BCLKx Low Time	20	(TCY * BRGx) + TCY/2	—	ns
TBLD	BCLKx Falling Edge Delay from UxTX	-50	—	50	ns
Твно	BCLKx Rising Edge Delay from UxTX	Тсү/2 – 50	—	Tcy/2 + 50	ns
TWAK	Min. Low on UxRX Line to Cause Wake-up	—	1	—	μS
TCTS	Min. Low on UxCTS Line to Start Transmission	Тсү	—	—	ns
TSETUP	Start bit Falling Edge to System Clock Rising Edge Setup Time	3	—	—	ns
TSTDELAY	Maximum Delay in the Detection of the Start bit Falling Edge	—	—	TCY + TSETUP	ns

TABLE 29-23: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

A/D CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
	Clock Parameters								
AD50	Tad	A/D Clock Period	75	_	—	ns	Tcy = 75 ns, AD1CON3 is in the default state		
AD51	TRC	A/D Internal RC Oscillator Period	_	250	—	ns			
		Conver	sion Ra	te					
AD55	TCONV	Conversion Time	_	12	—	TAD			
AD56	FCNV	Throughput Rate	_	_	500	ksps	$AVDD \ge 2.7V$		
AD57	TSAMP	Sample Time	_	1	—	TAD			
AD58	TACQ	Acquisition Time	750	_	—	ns	(Note 2)		
AD59	Tswc	Switching Time from Convert to Sample			(Note 3)				
AD60	TDIS	Discharge Time	0.5	_	—	TAD			
		Clock P	aramete	ers					
AD61	TPSS	Sample Start Delay from Setting Sample bit (SAMP)	2		3	TAD			

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD).

3: On the following cycle of the device clock.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	ILLIMETER	S		
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X20)	X1			0.45	
Contact Pad Length (X20)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X20)	Х			0.60
Contact Pad Length (X20)	Y			1.95
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.45		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sygney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/02/11