

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08ka102t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all the devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, or even jumping from 20-pin to 28-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex.

1.2 Other Special Features

- Communications: The PIC24F16KA102 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an I²C[™] module that supports both the Master and Slave modes of operation. It also comprises UARTs with built-in IrDA[®] encoders/decoders and an SPI module.
- Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- **10-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24F16KA102 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing and also for precision time measurement and pulse generation.

1.3 Details on Individual Family Members

Devices in the PIC24F16KA102 family are available in 20-pin and 28-pin packages. The general block diagram for all devices is displayed in Figure 1-1.

The devices are different from each other in two ways:

- 1. Flash program memory (8 Kbytes for PIC24F08KA devices, 16 Kbytes for PIC24F16KA devices).
- 2. Available I/O pins and ports (18 pins on two ports for 20-pin devices and 24 pins on two ports for 28-pin devices).
- 3. Alternate SCLx and SDAx pins are available only in 28-pin devices and not in 20-pin devices.

All other features for devices in this family are identical; these are summarized in Table 1-1.

A list of the pin features available on the PIC24F16KA102 family devices, sorted by function, is provided in Table 1-2.

Note: Table 1-1 provides the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams on pages 4, 5 and 6 of the data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

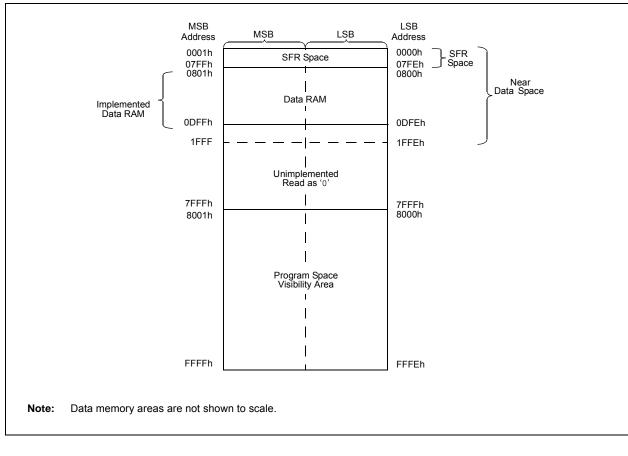
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HSC
—	—	—	_	—	—	—	DC
bit 15							bit 8
R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC

R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-9	Unimplemented: Read as '0'
bit 8	DC: ALU Half Carry/Borrow bit
	1 = A carry-out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-sized data)
	of the result occurred 0 = No carry-out from the 4 th or 8 th low-order bit of the result has occurred
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
DIL 7-5	111 = CPU interrupt priority level is 7 (15); user interrupts disabled
	111 = CPU interrupt priority level is 7 (13), user interrupts disabled 110 = CPU interrupt priority level is 6 (14)
	101 = CPU Interrupt priority level is 5 (13)
	100 = CPU interrupt priority level is 4 (12)
	011 = CPU interrupt priority level is 3 (11) 010 = CPU interrupt priority level is 2 (10)
	010 = CPU interrupt priority level is 2 (10) 001 = CPU interrupt priority level is 1 (9)
	000 = CPU interrupt priority level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress
	0 = REPEAT loop not in progress
bit 3	N: ALU Negative bit
	1 = Result was negative
h :+ 0	0 = Result was non-negative (zero or positive) OV: ALU Overflow bit
bit 2	1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation
	0 = No overflow has occurred
bit 1	Z: ALU Zero bit
	1 = An operation, which effects the Z bit, has set it at some time in the past
	0 = The most recent operation, which effects the Z bit, has cleared it (i.e., a non-zero result)
bit 0	C: ALU Carry/Borrow bit
	1 = A carry-out from the Most Significant bit (MSb) of the result occurred
	0 = No carry-out from the Most Significant bit (MSb) of the result occurred
Note 1:	The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.
2:	The IPL Status bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
	Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

4.2 Data Address Space


The PIC24F core has a separate, 16-bit wide data memory space, addressable as a single linear range. The data space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The data space memory map is displayed in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV) area (see Section 4.3.3 "Reading Data From Program Memory Using Program Space Visibility").

PIC24F16KA102 family devices implement a total of 768 words of data memory. Should an EA point to a location outside of this area, an all zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all the data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

FIGURE 4-3: DATA SPACE MEMORY MAP FOR PIC24F16KA102 FAMILY DEVICES

TABLE 4-4: ICN REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE ⁽¹⁾	CN14IE	CN13IE	CN12IE	CN11IE ⁽¹⁾		CN9IE	CN8IE	CN7IE ⁽¹⁾	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	CN30IE	CN29IE	_	CN27IE ⁽¹⁾	_	_	CN24IE ⁽¹⁾	CN23IE	CN22IE	CN21IE	_	_	_	_	CN16IE ⁽¹⁾	0000
CNPU1	0068	CN15PUE ⁽¹⁾	CN14PUE	CN13PUE	CN12PUE	CN11PUE ⁽¹⁾	_	CN9PUE	CN8PUE	CN7PUE ⁽¹⁾	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE		CN27PUE ⁽¹⁾	_	_	CN24PUE ⁽¹⁾	CN23PUE	CN22PUE	CN21PUE		_	_		CN16PUE ⁽¹⁾	0000
CNPD1	0070	CN15PDE ⁽¹⁾	CN14PDE	CN13PDE	CN12PDE	CN11PDE ⁽¹⁾	_	CN9PDE	CN8PDE	CN7PDE ⁽¹⁾	CN6PDE	CN5PDE	CN4PDE	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
CNPD2	0072	—	CN30PDE	CN29PDE	_	CN27PDE ⁽¹⁾	_	_	CN24PDE ⁽¹⁾	CN23PDE	CN22PDE	CN21PDE	_	_	_	_	CN16PDE ⁽¹⁾	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not implemented in 20-pin devices.

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	_	_	_	_	_	_	_	_	_	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	-	_		_	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	NVMIF	-	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	_	_	_	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	—	_			—	—			INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS3	008A	—	RTCIF	_	—	_			—	—					—	_	—	0000
IFS4	008C	—	_	CTMUIF	—	_			HLVDIF	—				CRCIF	U2ERIF	U1ERIF	—	0000
IEC0	0094	NVMIE	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE				T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	_	_			—	—			INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC3	009A	—	RTCIE	-	_		_	_	_	_	_	_	_	_	_	_	_	0000
IEC4	009C	_	-	CTMUIE	_		_	_	HLVDIE	_	_	_	_	CRCIE	U2ERIE	U1ERIE	_	0000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0		INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	_			—	—					—	_	—	4444
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	—	NVMIP2	NVMIP1	NVMIP0	_			—	—	AD1IP2	AD1IP1	AD1IP0		U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	—	MI2C1P2	MI2C1P1	MI2C1P0		SI2C1P2	SI2C1P1	SI2C1P0	4444
IPC5	00AE	—	_	_	—	_			—	—					INT1IP2	INT1IP1	INT1IP0	0004
IPC7	00B2	—	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	—	INT2IP2	INT2IP1	INT2IP0		—	_	—	4440
IPC15	00C2	—	_	_	—	_	RTCIP2	RTCIP1	RTCIP0	—					—	_	—	0400
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0		U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	-	—	—	—	4440
IPC18	00C8	_	_	_	—	_	—	—	—	_	_	_	_	—	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC19	00CA	_	_	_	_	_	_	—	_	_	CTMUIP2	CTMUIP1	CTMUIP0	—	_	_	_	0040
INTTREG	00E0	CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

TABLE 8-1: TRAP VECTOR DETAILS

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS

had a more than the second	Vector		AIVT	Inte	rrupt Bit Locat	ions
Interrupt Source	Number	IVT Address	Address	Flag	Enable	Priority
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>
СТМИ	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>
HLVD High/Low-Voltage Detect	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC17<2:0>
NVM – NVM Write Complete	15	000032h	000132h	IFS0<15>	IEC0<15>	IPC3<14:12>
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers (SFRs):

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. The Clock Divider register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC oscillator.

The FRC Oscillator Tune register (Register 9-3) allows the user to fine tune the FRC oscillator over a range of approximately $\pm 5.25\%$. Each bit increment or decrement changes the factory calibrated frequency of the FRC oscillator by a fixed amount.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0, HSC	R-0, HSC	R-0, HSC	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
_	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0, HSC	U-0	R-0, HSC ⁽²⁾	U-0	R/CO-0, HS	U-0	R/W-0	R/W-0
CLKLOCK	—	LOCK	—	CF	—	SOSCEN	OSWEN
bit 7							bit 0

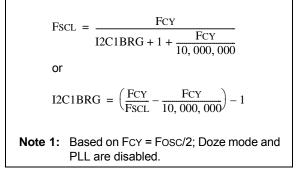
Legend:	CO = Clearable Only bit		
SO = Settable Only bit	HS = Hardware Settable bit	HSC = Hardware Settable/	Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

- bit 14-12 **COSC<2:0>:** Current Oscillator Selection bits
 - 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)
 - 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (SOSC)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
 - 010 = Primary Oscillator (XT, HS, EC)
 - 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)
 - 000 = 8 MHz FRC Oscillator (FRC)
- bit 11 Unimplemented: Read as '0'

bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽¹⁾

- 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = 8 MHz FRC Oscillator (FRC)
- Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.
 - 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.


REGISTER 16-1: SPI1STAT: SPI1 STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC				
SPIEN	_	SPISIDL			SPIBEC2	SPIBEC1	SPIBEC0				
bit 15							bit 8				
R-0,HSC	R/C-0, HS	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R-0, HSC	R-0, HSC				
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF				
bit 7							bit (
Legend:		U = Unimplemente	d bit, read as '0'	HSC = Hardwa	re Settable/Cle	earable bit					
R = Reada	ble bit	W = Writable bit		H = Hardware	Settable bit	C = Clearable	e bit				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown				
bit 15	SPIEN: SPI1			1 CDI1 and CO	<u>.</u>	+ n:no					
	 1 = Enables 0 = Disables 	module and configi	lies SCK1, SDU	1, SDIT and SS	r as senai por	t pins					
bit 14		nted: Read as '0'									
bit 13	-	op in Idle Mode bit									
		ues module opera	ion when device	enters Idle mod	le						
		s module operation									
bit 12-11	Unimplemen	nted: Read as '0'									
bit 10-8	SPIBEC<2:0	>: SPI1 Buffer Eler	ment Count bits (valid in Enhanc	ed Buffer mod	e)					
	<u>Master mode:</u> Number of SPI transfers are pending.										
		-	naing.								
	Slave mode: Number of S	PI transfers are un	read.								
bit 7		t Register (SPI1SR		d in Enhanced B	uffer mode)						
		ift register is empty			,						
		ift register is not en									
bit 6	SPIROV: Receive Overflow Flag bit										
	 1 = A new byte/word is completely received and discarded The user software has not read the previous data in the SPI1BUF register. 										
		r software has not i flow has occurred	read the previous	data in the SPI	1BUF register	- -					
bit 5			hit (valid in Enha	anced Buffer mo	de)						
bit 0		SRXMPT: Receive FIFO Empty bit (valid in Enhanced Buffer mode) 1 = Receive FIFO is empty									
		FIFO is not empty									
bit 4-2	SISEL<2:0>:	SPI1 Buffer Interr	upt Mode bits (va	lid in Enhanced	Buffer mode)						
		upt when the SPI1									
		upt when the last b									
		upt when the last b upt when one data b				•	e open spot				
		upt when the SPI1					o opon opor				
		upt when the SPI1									
	001 = Interrupt when data is available in receive buffer (SRMPT bit is set)										
	000 = Interrupt when the last data in the receive buffer is read; as a result, the buffer is empty (SRXMPT bit is set)										

17.3 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator (BRG) reload value, use Equation 17-1.

EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE⁽¹⁾

TABLE 17-1: I²C[™] CLOCK RATES⁽¹⁾

17.4 Slave Address Masking

The I2C1MSK register (Register 17-3) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2C1MSK register causes the slave module to respond whether the corresponding address bit value is '0' or '1'. For example, when I2C1MSK is set to '00100000', the slave module will detect both addresses: '0000000' and '00100000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the IPMIEN bit (I2C1CON<11>).

Note: As a result of changes in the I²C protocol, the addresses in Table 17-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Required		I2C1B	Actual	
System FscL	FCY	(Decimal)	(Hexadecimal)	FSCL
100 kHz	16 MHz	157	9D	100 kHz
100 kHz	8 MHz	78	4E	100 kHz
100 kHz	4 MHz	39	27	99 kHz
400 kHz	16 MHz	37	25	404 kHz
400 kHz	8 MHz	18	12	404 kHz
400 kHz	4 MHz	9	9	385 kHz
400 kHz	2 MHz	4	4	385 kHz
1 MHz	16 MHz	13	D	1.026 MHz
1 MHz	8 MHz	6	6	1.026 MHz
1 MHz	4 MHz	3	3	0.909 MHz

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled;

TABLE 17-2: I²C[™] RESERVED ADDRESSES⁽¹⁾

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	x	Cbus Address
0000 010	x	Reserved
0000 011	x	Reserved
0000 1xx	x	HS Mode Master Code
1111 1xx	x	Reserved
1111 0xx	x	10-Bit Slave Upper Byte ⁽³⁾

Note 1: The address bits listed here will never cause an address match, independent of the address mask settings.

- 2: The address will be Acknowledged only if GCEN = 1.
- 3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

REGISTER 17-3: I2C1MSK: I2C1 SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—				—		AMSK9	AMSK8
bit 15		-	-				bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Mask for Address Bit x Select bits

1 = Enable masking for bit x of incoming message address; bit match is not required in this position
 0 = Disable masking for bit x; bit match is required in this position

REGISTER 17-4: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
—	—	—	SMBUSDEL	OC1TRIS ^(2,3)	RTSECSEL1 ^(1,3)	RTSECSEL0 ^(1,3)	—
bit 7							bit 0

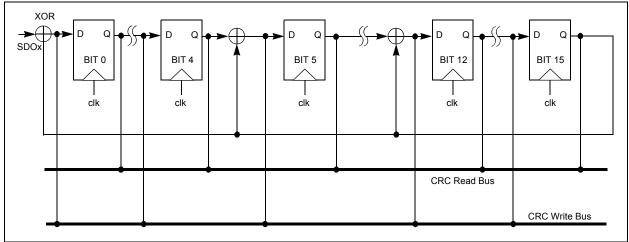
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	s 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4 SMBUSDEL: SMBus SDA Input Delay Select bit

1 = The I^2C module is configured for a longer SMBus input delay (nominal 300 ns delay)

0 = The 1²C module is configured for a legacy input delay (nominal 150 ns delay)


bit 0 Unimplemented: Read as '0'

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit needs to be set.

2: To enable the actual OC1 output, the OCPWM1 module has to be enabled.

3: Bits<3:1> are described in related chapters.

20.1 User Interface

20.1.1 DATA INTERFACE

To start serial shifting, a value of '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8-level deep when PLEN<3:0> > 7 and 16-deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte.

For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data<5:0> = crc_input<5:0>
data<7:6> = bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of the VWORD bits (CRCCON<12:8>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD<4:0> > 0. When the Most Significant bit (MSb) is shifted out, the VWORD bits decrement by one. The serial shifter continues shifting until the VWORD bits reach zero. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When the VWORD bits reach 8 (or 16), the CRCFUL bit will be set. When the VWORD bits reach 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO.

To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

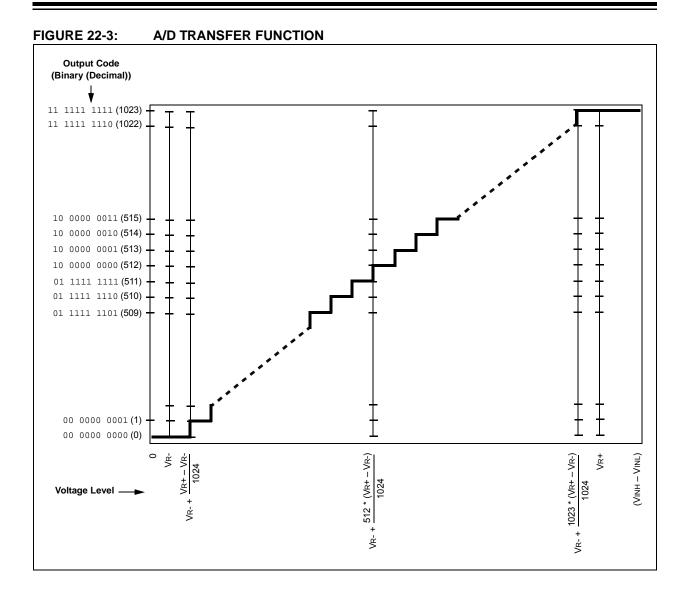
If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (see **Section 20.1.2 "Interrupt Operation"**).

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

20.1.2 INTERRUPT OPERATION

When the VWORD<4:0> bits make a transition from a value of '1' to '0', an interrupt will be generated.

20.2 Operation in Power Save Modes


20.2.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

20.2.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	—	—	_	—	—	—						
bit 15	·						bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0					
bit 7							bit (
Legend:												
R = Readab	le bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15-8	Unimplemen	ted: Read as '0)'									
bit 7		CVREN: Comparator Voltage Reference Enable bit										
	1 = CVREF circuit is powered on											
	0 = CVREF circuit is powered down											
bit 6	CVROE: Comparator VREF Output Enable bit											
	1 = CVREF voltage level is output on CVREF pin											
6.4 <i>F</i>	0 = CVREF voltage level is disconnected from CVREF pin											
bit 5	CVRR: Comparator VREF Range Selection bit											
	 1 = CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size 0 = CVRSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size 											
bit 4		•				F						
	CVRSS: Comparator VREF Source Selection bit 1 = Comparator reference source, CVRSRC = VREF+ – VREF-											
	0 = Comparator reference source, CVRsRc = AVDD – AVss											
bit 3-0	CVR3:CVR0: Comparator VREF Value Selection $0 \le CVR<3:0> \le 15$ bits											
	When CVRR = 1 and CVRSS = 0: CVREF = (CVR<3:0>/24) * (CVRSRC)											
		R<3:0>/24) * (C	VRSRC)									
	CVREF = (CVI <u>When CVRR</u>	R<3:0>/24) * (C <u>= 0 and CVRS</u> CVRSRC) + (CV	<u>S = 0:</u>	(CVRSRC)								
	CVREF = (CVI When CVRR CVREF = 1/4 (When CVRR	<u>= 0 and CVRS</u> CVRSRC) + (CV = 1 and CVRS	<u>S = 0:</u> /R<3:0>/32) * (<u>S = 1:</u>									
	CVREF = (CVI When CVRR CVREF = 1/4 (When CVRR CVREF = ((CV	<u>= 0 and CVRS</u> CVRSRC) + (CV <u>= 1 and CVRS</u> (R<3:0>/24) * (0	<u>S = 0:</u> /R<3:0>/32) * (<u>S = 1:</u> CVRSRC)) + VR									
	CVREF = (CVI When CVRR CVREF = 1/4 (<u>When CVRR</u> CVREF = ((CV When CVRR	<u>= 0 and CVRS</u> CVRSRC) + (CV = 1 and CVRS	<u>S = 0:</u> /R<3:0>/32) * (<u>S = 1:</u> CVRSRC)) + VR <u>S = 1:</u>	EF-								

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-0	R/P-1	R/P-1
MCLRE ⁽²) BORV1 ⁽³⁾	BORV0 ⁽³⁾	I2C1SEL ⁽¹⁾	PWRTEN	_	BOREN1	BOREN0
bit 7	·						bit 0
Legend:							
R = Reada	able bit	P = Program	nable bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	MCLRE: MCL	 R Pin Enable b	_{it} (2)				
2		is enabled; RA		isabled			
		pin is enabled;					
bit 6-5	BORV<1:0>:	Brown-out Rese	et Enable bits ⁽³)			
		ut Reset is set t	o the lowest vo	oltage			
	10 = Brown-o u						
		ut Reset is set t /er Brown-out F					
bit 4		ernate I2C1 Pin		00110 2.0 V			
DIL 4		ocation for SCL					
		cation for SCL1					
bit 3	PWRTEN: Po	wer-up Timer E	nable bit				
	0 = PWRT is c	disabled					
	1 = PWRT is e	enabled					
bit 2	Unimplement	ted: Read as '0	,				
bit 1-0	BOREN<1:0>	: Brown-out Re	set Enable bits				
				re; SBOREN bit			
			•			Sleep; SBOREN	l bit is disabled
				SBOREN bit se re; SBOREN bi	0		
Note 1:	Applies only to 2			-,			
	The MCLRE fuse	•	nanged when u	sing the Vpp-B:	ased ICSP™ i	mode entry. Thi	s prevents a
	user from accide						
3.	Refer to Section	29.0 Electrical	Characteristics	for the BOR w	oltanes		

3: Refer to Section 29.0, Electrical Characteristics for the BOR voltages.

TABLE 29-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $				
Parameter No.	Typical ⁽¹⁾	Max	Units Conditions				
IDD Current ⁽²⁾	•		•	•			
DC31		28		-40°C		LPRC (31 kHz)	
DC31a		28	μΑ	+25°C	1.8V		
DC31b	8	28		+60°C			
DC31c		28		+85°C			
DC31d		55		-40°C			
DC31e		55		+25°C			
DC31f	15	55	μA	+60°C	3.3V		
DC31g		55		+85°C			
DC31h		250		+125°C			

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Operating Parameters:

• EC mode with clock input driven with a square wave rail-to-rail

• I/Os are configured as outputs, driven low

• MCLR - VDD

• WDT FSCM is disabled

• SRAM, program and data memory are active

• All PMD bits are set except for modules being measured

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments
300	TRESP	Response Time ^{*(1)}		150	400	ns	
301	Тмс2о∨	Comparator Mode Change to Output Valid [*]	_	—	10	μS	

TABLE 29-26: COMPARATOR TIMINGS

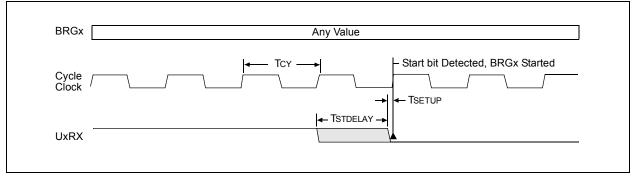
*

Parameters are characterized but not tested.

Note 1: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 29-27: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
VR310	TSET	Settling Time ⁽¹⁾	_		10	μS	


Note 1: Settling time is measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.

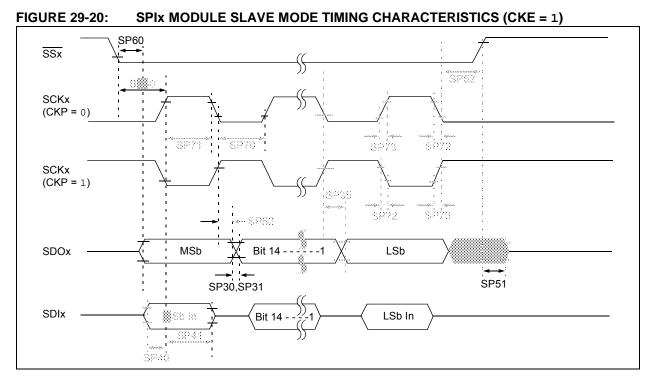

AC CHARACTERISTICS			Standard Op (unless othe Operating ter	rwise s	t ated) e -40°	ons: 2.0V to 3.6V $C \le TA \le +85^{\circ}C$ (Industrial) $C \le TA \le +125^{\circ}C$ for Extended	
Param No.	Symbol	Charact	eristic	Min	Max	Units	Conditions
IS10	TLO:SCL	SCL Clock Low Time	100 kHz mode	4.7		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3		μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	_	μS	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	_	μS	
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	100	ns	
IS21 TF	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode		1000	ns	CB is specified to be from
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾		300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	
		Setup Time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	100		ns	
IS26	THD:DAT	Data Input	100 kHz mode	0	_	ns	
		Hold Time	400 kHz mode	0	0.9	μS	-
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS40	TAA:SCL	Output Valid From	100 kHz mode	0	3500	ns	
		Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free before a new transmission
			400 kHz mode	1.3		μS	can start
			1 MHz mode ⁽¹⁾	0.5		μS	
IS50	Св	Bus Capacitive Loa	ading	_	400	pF	

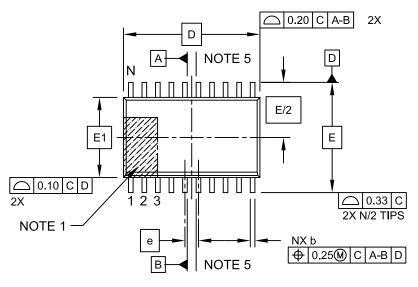
TABLE 29-32: I²C[™] BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins (for 1 MHz mode only).

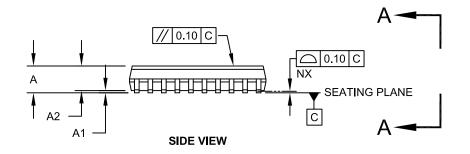
FIGURE 29-13: START BIT EDGE DETECTION

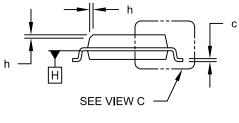
TABLE 29-39: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 1)

AC CHARACTERISTICS		Standard Ope (unless other Operating tem					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
SP70	TscL	SCKx Input Low Time	30	_	—	ns	
SP71	TscH	SCKx Input High Time	30	_	_	ns	
SP72	TscF	SCKx Input Fall Time ⁽²⁾		10	25	ns	
SP73	TscR	SCKx Input Rise Time ⁽²⁾	—	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾		10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾	—	10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	_	30	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow \text{to SCKx} \downarrow \text{or SCKx} \uparrow \text{Input}$	120	_	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10		50	ns	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	_	_	ns	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns	


Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.


3: Assumes 50 pF load on all SPIx pins.


20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

http://www.microchip.com/packaging EXPOSED D2 D PAD е E2 2 2 1 1 Ν Ν NOTE 1 TOP VIEW BOTTOM VIEW А AAAAA 99

20-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x0.9 mm Body [QFN]

For the most current package drawings, please see the Microchip Packaging Specification located at

	Units	1	MILLIMETER	S	
Dimens	sion Limits	MIN	NOM	MAX	
Number of Pins	N	20			
Pitch	е		0.65 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	A3 0.20 REF			
Overall Width	E 5.00 BSC				
Exposed Pad Width	E2	3.15 3.25 3.35			
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.15	3.25	3.35	
Contact Width	b	0.25	0.30	0.35	
Contact Length	L	0.35 0.40 0.45			
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

A3

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

A1

- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-139B

D

Data EEPROM
Bulk Erase55
Erasing54
Operations53
Programming
Reading Data EEPROM56
Single-Word Write55
Data Memory
Address Space31
Memory Map31
Near Data Space32
Organization, Alignment32
SFR Space
Software Stack41
Space Width31
DC Characteristics
Brown-out Reset Trip Points
Comparator Specifications
Comparator Voltage Reference Specifications230
CTMU Current Source Specifications
Data EEPROM Memory
High/Low-Voltage Detect
I/O Pin Input Specifications
I/O Pin Output Specifications
Idle Current IIDLE
Internal Voltage References
Operating Current IDD
Power-Down Current IPD
Program Memory
Temperature and Voltage Specifications
Thermal Operating Conditions
Deep Sleep
Checking, Clearing Status
Entering
Sequence
Exiting
I/O Pins
POR
Sequence Summary104
WDT
Deep Sleep BOR (DSBOR)
Development Support
Device Features (Summary)
Doze Mode
E

Electrical Characteristics	
Absolute Maximum Ratings	215
V/F Graphs (Industrial, Extended)	216
V/F Graphs (Industrial)	216
Equations	
A/D Conversion Clock Period	
Baud Rate Reload Calculation	141
Calculating the PWM Period	
Calculation for Maximum PWM Resolution	126
CRC	
Device and SPI Clock Speed Relationship	
UART Baud Rate with BRGH = 0	
UART Baud Rate with BRGH = 1	
Errata	8

Examples Baud Rate Error Calculation (BRG) 148 PWM Frequencies, Resolutions at 16 MIPS 127 PWM Frequencies, Resolutions at 4 MIPS 127 PWM Period, Duty Cycle Calculations 127 F Flash and Data EEPROM Programming Control Registers 51 Flash and Data EEPROM Programming **Control Registers** NVM Address Registers (NVMADRU, Flash Program Memory Control Registers 46 Enhanced ICSP Operation 46 Programming Algorithm 48 Programming Operations 46 н High/Low-Voltage Detect (HLVD) 171 L I/O Ports Input Change Notification 114 Open-Drain Configuration 114 Parallel (PIO)113 I²C Clock Rates 141 Communicating as Master in Single Master Environment 139 Pin Remapping Options 139

In-Circuit Debugger	202
In-Circuit Serial Programming (ICSP)	202
Input Capture	
Instruction Set	
Opcode Symbols	208
Overview	209
Summary	207
Inter-Integrated Circuit. See I ² C.	
Internet Address	275
Interrupts	
Alternate Interrupt Vector Table (AIVT)	63
Control and Status Registers	
Implemented Vectors	65
Interrupt Service Routine (ISR)	90
Interrupt Vector Table (IVT)	63
Reset Sequence	63
Setup and Service Procedures	90
Trap Service Routine (TSR)	90
Trap Vectors	65
Vector Table	64

Reserved Addresses 141

Slave Address Masking 141