

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka101-e-p

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2009

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

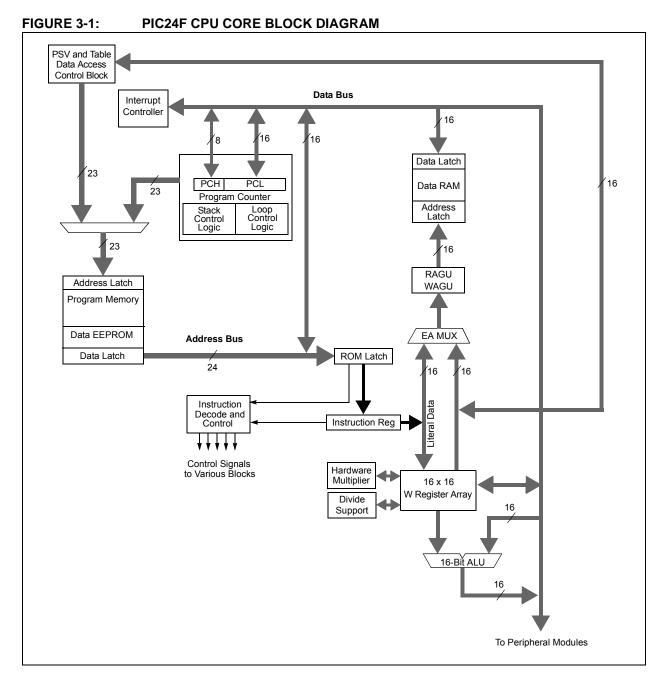
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008-2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.


Printed on recycled paper.

ISBN: 978-1-61341-690-7

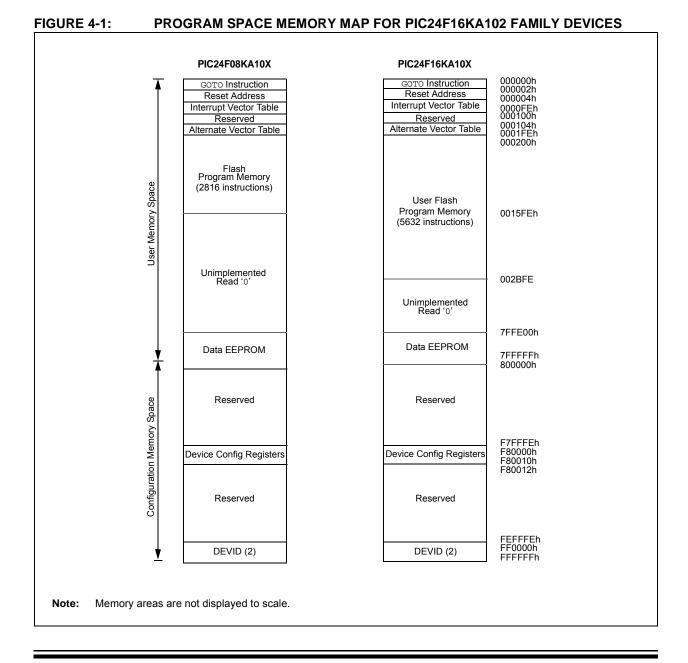
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Table of Contents

1.0	Device Overview	9
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	17
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	45
6.0	Data EEPROM Memory	51
7.0	Resets	57
8.0	Interrupt Controller	
9.0	Oscillator Configuration	
10.0	Power-Saving Features	101
11.0	I/O Ports	113
12.0	Timer1	115
13.0	Timer2/3	117
14.0	Input Capture	123
15.0	Output Compare	125
16.0	Serial Peripheral Interface (SPI)	
17.0		
18.0		
19.0		
20.0		
21.0	High/Low-Voltage Detect (HLVD)	
22.0		
23.0		
24.0	· · · · · · · · · · · · · · · · · · ·	
25.0		
26.0		
27.0	F F F	
28.0		
29.0		
	Packaging Information	
	endix A: Revision History	
	(
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
	ler Response	
Prod	uct Identification System	

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	Repeat Loop Counter Register
CORCON	CPU Control Register

4.0 MEMORY ORGANIZATION


As with Harvard architecture devices, the PIC24F microcontrollers feature separate program and data memory space and busing. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 **Program Address Space**

The program address memory space of the PIC24F devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from a table operation or data space remapping, as described in Section 4.3 "Interfacing Program and Data Memory Spaces".

The user access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24F16KA102 family of devices are displayed in Figure 4-1.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200		_	_	_	_		_	_				I2C1 Recei	ve Register				0000
I2C1TRN	0202	_	_	—	—	_	-	_	_				I2C1 Transı	nit Register				00FF
I2C1BRG	0204	_	_	_	_	_	_	_			Ľ	2C1 Baud F	Rate Genera	ator Registe	r			0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					I2C1 Addre	ss Register					0000
I2C1MSK	020C		_	_	_	-		AMSK9	AMSK8	AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in h.5adecimal.

TABLE 4-10: UART REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_		_				UART1 Tra	ansmit Regi	ster				0000
U1RXREG	0226	_	_	_	_	_		_				UART1 Re	eceive Regis	ster				0000
U1BRG	0228							Baud R	ate Genera	ator Prescaler	Register							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	—	_	_	_	_				UART2 Tra	ansmit Regi	ster				0000
U2RXREG	0236	_									0000							
U2BRG	0238							Bau	ud Rate Ge	enerator Prese	caler							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242		_	-	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	—	_	_	_	—	_	_	—	_	_	—	SPIFE	SPIBEN	0000
SPI1BUF	0248							SP	11 Transmit/	Receive Bu	ffer							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	T2IP2	T2IP1	T2IP0	_	_	—	_
bit 15				-			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_		_			_	_
bit 7	·		•	÷	•		bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	T2IP<2:0>: ⊺	imer2 Interrupt	Priority bits				
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	•						
	001 = Interru		ablad				
		pt source is dis					
bit 11-0	Unimplemen	ted: Read as '	0'				

REGISTER 8-14: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0
bit 15					1		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	INT2IP2	INT2IP1	INT2IP0	—	—	—	—
bit 7							bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	o'				
bit 14-12	=	: UART2 Trans		t Driarity bita			
DIL 14-12		pt is Priority 7 (•	•			
	•		nighest phoney	(interrupt)			
	•						
	•						
		pt is Priority 1					
		pt source is dis					
bit 11	-	ted: Read as '					
bit 10-8		>: UART2 Rece	•	•			
	111 = Interru	pt is Priority 7 (highest priority	v interrupt)			
	•						
	•						
	•						
	• 001 = Interru	pt is Priority 1					
		pt is Priority 1 pt source is dis	abled				
bit 7	000 = Interru						
bit 7 bit 6-4	000 = Interru Unimplemen	pt source is dis ited: Read as '	כ'	pits			
	000 = Interru Unimplemen INT2IP<2:0>	pt source is dis	o' upt 2 Priority b				
	000 = Interru Unimplemen INT2IP<2:0>	pt source is dis ited: Read as ' External Intern	o' upt 2 Priority b				
	000 = Interru Unimplemen INT2IP<2:0>	pt source is dis ited: Read as ' External Intern	o' upt 2 Priority b				
	000 = Interru Unimplemen INT2IP<2:0> 111 = Interru • •	pt source is dis ited: Read as f : External Interr pt is Priority 7 (o' upt 2 Priority b				
	000 = Interru Unimplemen INT2IP<2:0>: 111 = Interru • • 001 = Interru	pt source is dis ited: Read as ' External Intern	₀ ' upt 2 Priority b highest priority				

10.2.4.5 Deep Sleep WDT

To enable the DSWDT in Deep Sleep mode, program the Configuration bit, DSWDTEN (FDS<7>). The device Watchdog Timer (WDT) need not be enabled for the DSWDT to function. Entry into Deep Sleep mode automatically resets the DSWDT.

The DSWDT clock source is selected by the DSWDTOSC Configuration bit (FDS<4>). The postscaler options are programmed by the DSWDTPS<3:0> Configuration bits (FDS<3:0>). The minimum time-out period that can be achieved is 2.1 ms and the maximum is 25.7 days. For more details on the FDS Configuration register and DSWDT configuration options, refer to Section 26.0 "Special Features".

10.2.4.6 Switching Clocks in Deep Sleep Mode

Both the RTCC and the DSWDT may run from either SOSC or the LPRC clock source. This allows both the RTCC and DSWDT to run without requiring both the LPRC and SOSC to be enabled together, reducing power consumption.

Running the RTCC from LPRC will result in a loss of accuracy in the RTCC of approximately 5 to 10%. If a more accurate RTCC is required, it must be run from the SOSC clock source. The RTCC clock source is selected with the RTCOSC Configuration bit (FDS<5>).

Under certain circumstances, it is possible for the DSWDT clock source to be off when entering Deep Sleep mode. In this case, the clock source is turned on automatically (if DSWDT is enabled), without the need for software intervention. However, this can cause a delay in the start of the DSWDT counters. In order to avoid this delay when using SOSC as a clock source, the application can activate SOSC prior to entering Deep Sleep mode.

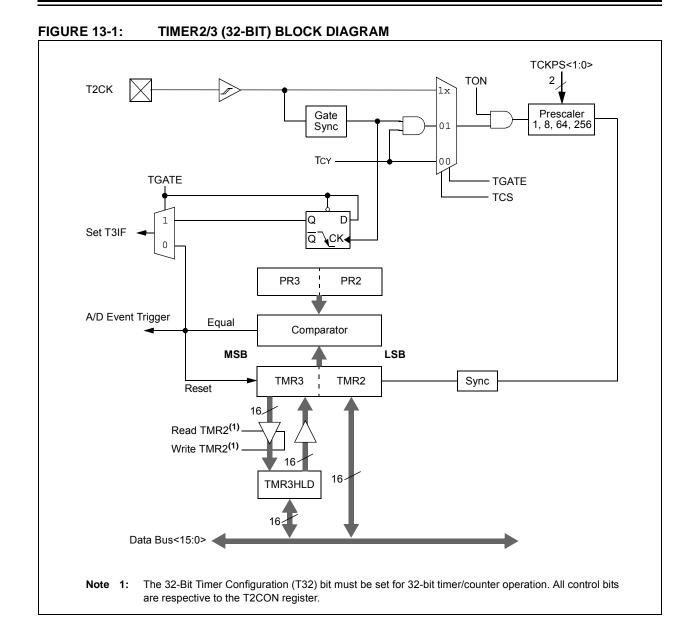
10.2.4.7 Checking and Clearing the Status of Deep Sleep

Upon entry into Deep Sleep mode, the status bit DPSLP (RCON<10>), becomes set and must be cleared by software.

On power-up, the software should read this status bit to determine if the Reset was due to an exit from Deep Sleep mode and clear the bit if it is set. Of the four possible combinations of DPSLP and POR bit states, three cases can be considered:

- Both the DPSLP and POR bits are cleared. In this case, the Reset was due to some event other than a Deep Sleep mode exit.
- The DPSLP bit is clear, but the POR bit is set. This is a normal POR.
- Both the DPSLP and POR bits are set. This means that Deep Sleep mode was entered, the device was powered down and Deep Sleep mode was exited.

10.2.4.8 Power-on Resets (PORs)


VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep functionally looks like a POR, the technique described in Section 10.2.4.7 "Checking and Clearing the Status of Deep Sleep" should be used to distinguish between Deep Sleep and a true POR event.

When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers, RTCC, DSWDT, etc.) is reset.

10.2.4.9 Summary of Deep Sleep Sequence

To review, these are the necessary steps involved in invoking and exiting Deep Sleep mode:

- 1. Device exits Reset and begins to execute its application code.
- 2. If DSWDT functionality is required, program the appropriate Configuration bit.
- 3. Select the appropriate clock(s) for the DSWDT and RTCC (optional).
- 4. Enable and configure the DSWDT (optional).
- 5. Enable and configure the RTCC (optional).
- 6. Write context data to the DSGPRx registers (optional).
- 7. Enable the INT0 interrupt (optional).
- 8. Set the DSEN bit in the DSCON register.
- 9. Enter Deep Sleep by issuing a PWRSV #SLEEP_MODE command.
- 10. Device exits Deep Sleep when a wake-up event occurs.
- 11. The DSEN bit is automatically cleared.
- 12. Read and clear the DPSLP status bit in RCON, and the DSWAKE status bits.
- 13. Read the DSGPRx registers (optional).
- 14. Once all state related configurations are complete, clear the RELEASE bit.
- 15. Application resumes normal operation.

EXAMPLE 15-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

Tcy = 2 * Tosc = 62.5 ns

PWM Period = 1/PWM Frequency = $1/52.08 \text{ kHz} = 19.2 \mu \text{s}$

PWM Period = (PR2 + 1) • Tcy • (Timer 2 Prescale Value)

19.2 µs = (PR2 + 1) • 62.5 ns • 1

PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:

PWM Resolution = $log_{10}(FCY/FPWM)/log_{10}2)$ bits

= (log₁₀(16 MHz/52.08 kHz)/log₁₀2) bits

= 8.3 bits

Note 1: Based on Tcy = 2 * Tosc; Doze mode and PLL are disabled.

TABLE 15-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)⁽¹⁾

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

						-	
PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

20.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Programmable Cyclic Redundancy Check, refer to the "PIC24F Family Reference Manual", Section 30. "Programmable Cyclic Redundancy Check (CRC)" (DS39714).

The programmable Cyclic Redundancy Check (CRC) module in PIC24F devices is a software-configurable CRC checksum generator. The CRC algorithm treats a message as a binary bit stream and divides it by a fixed binary number.

The remainder from this division is considered the checksum. As in division, the CRC calculation is also an iterative process. The only difference is that these operations are done on modulo arithmetic based on mod2. For example, division is replaced with the XOR operation (i.e., subtraction without carry). The CRC algorithm uses the term, polynomial, to perform all of its calculations.

The divisor, dividend and remainder that are represented by numbers are termed as polynomials with binary coefficients.

The programmable CRC generator offers the following features:

- · User-programmable polynomial CRC equation
- Interrupt output
- Data FIFO

The module implements a software-configurable CRC generator. The terms of the polynomial and its length can be programmed using the CRCXOR (X<15:1>) bits and the CRCCON (PLEN<3:0>) bits, respectively. Consider the CRC equation:

EQUATION 20-1: CRC

$$x^{16} + x^{12} + x^5 + 1 \\$$

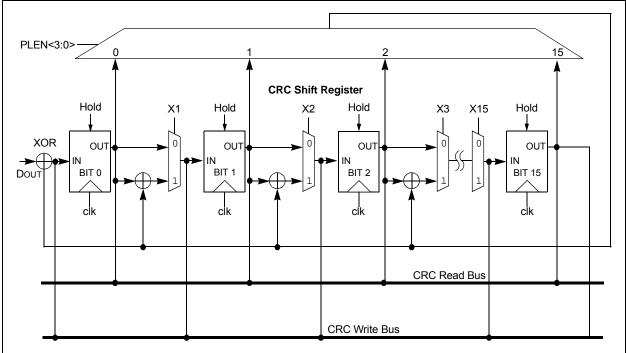

To program this polynomial into the CRC generator, the CRC register bits should be set as provided in Table 20-1.

TABLE 20-1: EXAMPLE CRC SETUP

Bit Name	Bit Value
PLEN<3:0>	1111
X<15:1>	00010000010000

The value of X<15:1>, the 12^{th} bit and the 5^{th} bit are set to '1', as required by the equation. The 0 bit required by the equation is always XORed. For a 16-bit polynomial, the 16^{th} bit is also always assumed to be XORed; therefore, the X<15:1> bits do not have the 0 bit or the 16^{th} bit.

The topology of a standard CRC generator is displayed in Figure 20-2.

FIGURE 20-1: CRC SHIFTER DETAILS

© 2008-2011 Microchip Technology Inc.

REGISTER 22-1: AD1CON1: A/D CONTROL REGISTER
--

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
ADON ⁽¹⁾	—	ADSIDL	—	—	—	FORM1	FORM0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HSC	R/W-0, HSC
SSRC2	SSRC1	SSRC0	—		ASAM	SAMP	DONE
bit 7							bit 0

Legend:		HSC = Hardware Setta	ble/Clearable bit	
R = Readal	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15		/D Operating Mode bit ⁽¹⁾		
		Converter module is operatin Converter is off	g	
bit 14	Unimple	mented: Read as '0'		
bit 13	ADSIDL:	Stop in Idle Mode bit		
		ontinue module operation wh inue module operation in Idle		
bit 12-10	Unimple	mented: Read as '0'		
bit 9-8	FORM<1	:0>: Data Output Format bits	i	
	10 = Frac 01 = Sigr	ned fractional (sddd dddd d stional (dddd dddd dd00 (ned integer (ssss sssd dd	0000) dd dddd)	
h:+ 7 5		ger (0000 00dd dddd ddd		
bit 7-5	111 = Int 110 = CT 101 = Re 100 = Re 011 = Re 010 = Tir 001 = Ac	MU event ends sampling an eserved eserved eserved ner3 compare ends sampling	and starts conversion (auto-co d starts conversion g and starts conversion ids sampling and starts conver	
bit 4-3	Unimple	mented: Read as '0'		
bit 2	ASAM: A	/D Sample Auto-Start bit		
		pling begins immediately afte pling begins when SAMP bit	er last conversion completes; S is set	SAMP bit is auto-set
bit 1	1 = A/D s	/D Sample Enable bit ample/hold amplifier is samp ample/hold amplifier is holdii		
bit 0	DONE: A 1 = A/D c	/D Conversion Status bit conversion is done conversion is not done	-	
Note 1:		C1BUEn registers will not ret	ain their values once the ADO	N hit is cleared. Read out the

Note 1: Values of ADC1BUFn registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.

REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

 bit 3-2
 EDG1SEL<1:0>: Edge 1 Source Select bits

 11 = CTED1 pin
 10 = CTED2 pin

 01 = OC1 module
 00 = Timer1 module

 bit 1
 EDG2STAT: Edge 2 Status bit

 1 = Edge 2 event has occurred
 0 = Edge 2 event has not occurred

 bit 0
 EDG1STAT: Edge 1 Status bit

 1 = Edge 1 event has occurred
 0 = Edge 1 event has not occurred

REGISTER 25-2: CTMUICON: CTMU CURRENT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 15			•				bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—			—	—
bit 7							bit 0
Logond							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10	ITRIM<5:0>: Current Source Trim bits
	011111 = Maximum positive change from nominal current
	011110
	•
	000001 = Minimum positive change from nominal current
	000000 = Nominal current output specified by IRNG<1:0>
	111111 = Minimum negative change from nominal current
	•
	•
	100010
	100000 = Maximum negative change from nominal current
bit 9-8	IRNG<1:0>: Current Source Range Select bits
	11 = 100 × Base current
	10 = 10 × Base current
	01 = Base current level (0.55 μA nominal)
	00 = Current source is disabled
bit 7-0	Unimplemented: Read as '0'

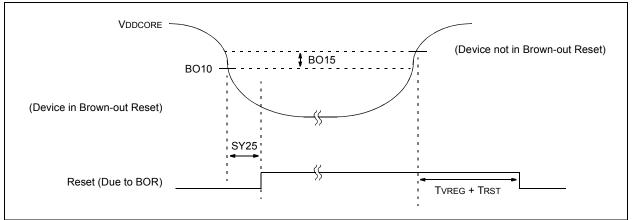
Assembly Mnemonic		Assembly Syntax Description		# of Words	# of Cycles	Status Flags Affected			
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None			
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None			
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None			
ULNK	ULNK		Unlink Frame Pointer	1	1	None			
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z			
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z			
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z			
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z			
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z			
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N			

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

29.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24F16KA102 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24F16KA102 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.


Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +175°C
Voltage on VDD with respect to Vss	0.3V to +5.0V
Voltage on any combined analog and digital pin, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital only pin with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on MCLR/VPP pin with respect to Vss	0.3V to +9.0V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽¹⁾	250 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽¹⁾	200 mA

Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 29-1).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 29-3: BROWN-OUT RESET CHARACTERISTICS

TABLE 29-5:BOR TRIP POINTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Sym	Sym Characteristic			Тур	Max	Units	Conditions	
DC19	VBOR	BOR Voltage on VDD Transition	BOR = 00	_	_	—	_	LPBOR ⁽¹⁾	
			BOR = 01	2.92	3	3.08	V		
			BOR = 10	2.63	2.7	2.77	V		
			BOR = 11	1.75	1.82	1.85	V		
DC14	VBHYS	BOR Hysteresis			5		mV		

Note 1: LPBOR re-arms the POR circuit, but does not cause a BOR. LPBOR can be used to ensure a POR after the supply voltage rises to a safe operating level. It does not stop code execution after the supply voltage falls below a chosen trip point.

TABLE 29-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTEI	RISTICS		Standard Ope Operating temp		.8V to 3.6V (unless TA \leq +85°C for Indu TA \leq +125°C for Ext	Istrial	
Parameter No. Typical ⁽¹⁾ Max			Units	Conditions			
IDD Current ⁽²⁾							
DC20		330		-40°C			
DS20a		330		+25°C			
DC20b	195	330	μΑ	+60°C	1.8V		
DC20c		330		+85°C			
DC20d		500		+125°C		0.5 MIPS,	
DC20e		590		-40°C		Fosc = 1 MHz	
DC20f	1	590		+25°C			
DC20g	365	645	μΑ	+60°C	3.3V		
DC20h	1 [720	1 F	+85°C			
DC20i	1	800		+125°C			
DC22		600		-40°C			
DC22a		600		+25°C			
DC22b	363	600	μΑ	+60°C	1.8V		
DC22c		600 +85°C					
DC22d		800		+125°C		1 MIPS,	
DC22e		1100		-40°C		Fosc = 2 MHz	
DC22f		1100		+25°C			
DC22g	695	1100	μΑ	+60°C	3.3V		
DC22h		1100		+85°C			
DC22i		1500		+125°C			
DC23		18		-40°C			
DC23a		18		+25°C			
DC23b	11	18	mA	+60°C	3.3V	16 MIPS,	
DC23c		18		+85°C		Fosc = 32 MHz	
DC23d	1 1	18	1	+125°C			
DC27		3.40		-40°C			
DC27a	1 [3.40	1	+25°C			
DC27b	2.25	3.40	mA	+60°C	2.5V		
DC27c	1 [3.40	7	+85°C			
DC27d	1 [3.40	1 F	+125°C		FRC (4 MIPS),	
DC27e		4.60		-40°C		Fosc = 8 MHz	
DC27f	1 [4.60	1 F	+25°C			
DC27g	3.05	4.60	mA	+60°C	3.3V		
DC27h	1 [4.60	1	+85°C			
DC27i	1 [5.40	7	+125°C			

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Operating Parameters:

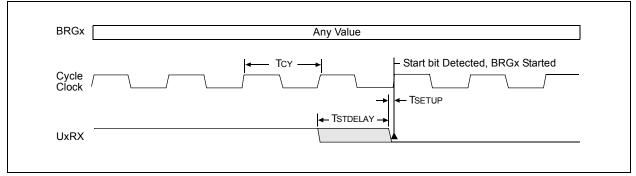
• EC mode with clock input driven with a square wave rail-to-rail

· I/Os are configured as outputs, driven low

• MCLR – VDD

WDT FSCM is disabled

• SRAM, program and data memory are active


• All PMD bits are set except for modules being measured

AC CHA	RACTERIS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{(Industrial)} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Charact	eristic	Min	Max	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	
		Setup Time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	100	—	ns	
IS26	THD:DAT	Data Input	100 kHz mode	0	—	ns	
		Hold Time	400 kHz mode	0	0.9	μS	-
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS40	TAA:SCL	Output Valid From	100 kHz mode	0	3500	ns	
		Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free before a new transmission
			400 kHz mode	1.3	—	μS	can start
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS50	Св	Bus Capacitive Loa	ading	_	400	pF	

TABLE 29-32: I²C[™] BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

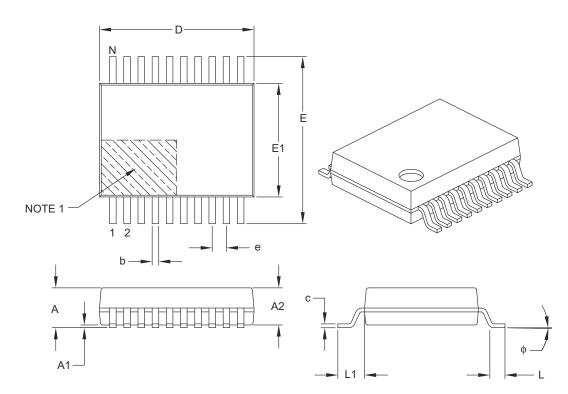

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins (for 1 MHz mode only).

FIGURE 29-13: START BIT EDGE DETECTION

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

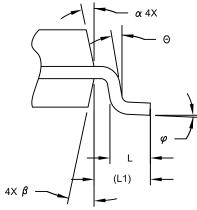
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

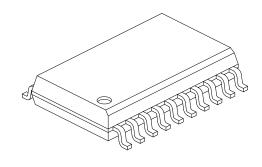
	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	20			
Pitch	е	0.65 BSC			
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	_	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90	7.20	7.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	ф	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	20			
Pitch	е	1.27 BSC			
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	12.80 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.20	-	0.33	
Lead Width	b	0.31	_	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2