

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka101-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2009

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008-2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-690-7

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Pin Diagrams (Continued)

CPU Control Registers 3.2

SR: ALU STATUS REGISTER **REGISTER 3-1:**

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HSC
_	—	—	_	—		—	DC
bit 15							bit 8
R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:	Clearable bit							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 15-9	9	Unimplemented: Read as '0'
bit 8		DC: ALU Half Carry/Borrow bit
		 1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred
		0 = No carry-out from the 4 th or 8 th low-order bit of the result has occurred
bit 7-5		IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
		<pre>111 = CPU interrupt priority level is 7 (15); user interrupts disabled 110 = CPU interrupt priority level is 6 (14) 101 = CPU Interrupt priority level is 5 (13) 100 = CPU interrupt priority level is 4 (12) 011 = CPU interrupt priority level is 3 (11) 010 = CPU interrupt priority level is 2 (10) 001 = CPU interrupt priority level is 1 (9) 000 = CPU interrupt priority level is 0 (8)</pre>
bit 4		RA: REPEAT Loop Active bit
		1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3		N: ALU Negative bit
		1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2		OV: ALU Overflow bit
		 1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation 0 = No overflow has occurred
bit 1		Z: ALU Zero bit
		 1 = An operation, which effects the Z bit, has set it at some time in the past 0 = The most recent operation, which effects the Z bit, has cleared it (i.e., a non-zero result)
bit 0		C: ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit (MSb) of the result occurred
Note 1	1:	The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.
2	2:	The IPL Status bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

REGISTER 3-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0
—	—		—	IPL3 ⁽¹⁾	PSV	—	—
bit 7							bit 0

Legend:	HSC = Hardware Settable/C						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-4	Unimplemented: Read as '0'
bit 3	IPL3: CPU Interrupt Priority Level Status bit ⁽¹⁾
	 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less
bit 2	PSV: Program Space Visibility in Data Space Enable bit
	1 = Program space is visible in data space
	0 = Program space is not visible in data space
bit 1-0	Unimplemented: Read as '0'

Note 1: User interrupts are disabled when IPL3 = 1.

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware division for 16-bit divisor.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

IADLE 4-0. IIIVIER REGISTER IVIAF	FABLE 4-6 :	TIMER REGISTER MAP
-----------------------------------	--------------------	--------------------

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100	Timer1 Register														0000		
PR1	0102	Timer1 Period Register														FFFF		
T1CON	0104	TON - TSIDL TGATE TCKPS1 TCKPS0 - TSYNC TCS -											0000					
TMR2	0106	Timer2 Register													0000			
TMR3HLD	0108						Timer	3 Holding F	Register (for	32-bit time	r operations	s only)						0000
TMR3	010A								Timer3	Register								0000
PR2	010C								Timer2 Per	iod Registe	r							FFFF
PR3	010E								Timer3 Per	iod Registe	r							FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: INPUT CAPTURE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140	Input Capture 1 Register											FFFF					
IC1CON	0142	—	-	ICSIDL	—					ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: OUTPUT COMPARE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180		Output Compare 1 Secondary Register													FFFF		
OC1R	0182		Output Compare 1 Register												FFFF			
OC1CON	0184	_	_	OCSIDL	_	_	—	_	_	_	_	_	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0, H	S R/W-0, HS	R/W-0	U-0	U-0	R/C-0, HS	R/W-0, HS	R/W-0		
TRAPR	IOPUWR	SBOREN		_	DPSLP	СМ	PMSLP		
bit 15	•				-	•	bit 8		
R/W-0, H	S R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS		
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR		
bit 7							bit 0		
Legend: C = Clearable bit HS = Hardware Settable bit									
R = Reada	ble bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15	TRAPR: Trap	Reset Flag bit							
	$1 = A \operatorname{Trap} Co$	onflict Reset ha	s occurred	J					
bit 11			s not occurred	J M Alagana Daga	at Elag bit				
DIL 14	1 = An illega	l oncode deter	uninitialized v	al address mes	de or uninitial	ized W reaiste	r used as an		
	Address	Pointer caused	a Reset						
	0 = An illegal	l opcode or unir	nitialized W Re	eset has not o	ccurred				
bit 13	SBOREN: So	oftware Enable/I	Disable of BO	R bit					
	1 = BOR is tu	rned on in softw	vare						
bit 12 11	0 = BOR IS lu	ted: Deed es '	vare						
bit 10		n Sleen Mode F	laa hit						
bit TO	1 = Deep Slee	en has occurred	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						
	0 = Deep Slee	ep has not occu	irred						
bit 9	CM: Configura	ation Word Mis	match Reset I	Flag bit					
	1 = A Configu	ration Word Mi	smatch has o	ccurred					
	0 = A Configu	ration Word Mi	smatch has n	ot occurred					
bit 8	PMSLP: Prog	gram Memory P	ower During S	Sleep bit					
	0 = Program i	memory bias vo	ltage is powe	red down duri	ng Sleep ng Sleep				
bit 7	EXTR: Extern	al Reset (MCL	R) Pin bit						
	1 = A Master	Clear (pin) Res	et has occurr	ed					
	0 = A Master	Clear (pin) Res	et has not oc	curred					
bit 6	SWR: Softwa	re Reset (Instru	iction) Flag bi	t					
	1 = A RESET	instruction has	been execute	d					
bit E	0 = A RESET	fuero Epoble/	Dischle of W/F	culed					
DIL S		nabled							
	0 = WDT is di	isabled							
bit 4	WDTO: Watcl	hdog Timer Tim	e-out Flag bit						
	1 = WDT time	e-out has occuri	ed						
	0 = WDT time	e-out has not oc	curred						
Note 1:	All of the Reset sta	itus bits may be	set or cleared	d in software. S	Setting one of th	ese bits in softv	vare does not		
	cause a device Re	set.							
2:	If the FWDTEN Co	the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the							

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾

SWDTEN bit setting.

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
_	NVMIP2	NVMIP1	NVMIP0	_	_	_	_				
bit 15					·		bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0				
bit 7							bit 0				
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
L:1 4 F			o'								
DIT 15	Unimplemen	ited: Read as	0.								
bit 14-12	NVMIP<2:0>	: NVM Interrupt	t Priority bits	(interrupt)							
	•	<pre>111 = Interrupt is Priority / (nignest priority interrupt)</pre>									
	•	•									
	•	•									
	001 = Interru 000 = Interru	ipt is Priority 1 ipt source is dis	abled								
bit 11-7	Unimplemer	nted: Read as '	0'								
bit 6-4	AD1IP<2:0>:	A/D Conversion	on Complete Ir	nterrupt Priority	bits						
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	• $0.01 = \text{Interrupt is Priority 1}$										
	000 = Interru	ipt source is dis	abled								
bit 3	Unimplemer	nted: Read as '	0'								
bit 2-0	U1TXIP<2:0:	>: UART1 Trans	smitter Interru	ot Priority bits							
	111 = Interru	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•										
	•										
	•	untin Duinuiti 4									
	001 = Interru	ipi is priority 1 Int source is dis	abled								
	000 = Interrupt source is disabled										

REGISTER 8-16: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

10.2.2 IDLE MODE

Idle mode has these features:

- The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- · A WDT time-out

On wake-up from Idle, the clock is re-applied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.4 DEEP SLEEP MODE

In PIC24F16KA102 family devices, Deep Sleep mode is intended to provide the lowest levels of power consumption available without requiring the use of external switches to completely remove all power from the device. Entry into Deep Sleep mode is completely under software control. Exit from Deep Sleep mode can be triggered from any of the following events:

- POR event
- MCLR event
- RTCC alarm (If the RTCC is present)
- External Interrupt 0
- Deep Sleep Watchdog Timer (DSWDT) time-out

In Deep Sleep mode, it is possible to keep the device Real-Time Clock and Calendar (RTCC) running without the loss of clock cycles.

The device has a dedicated Deep Sleep Brown-out Reset (DSBOR) and a Deep Sleep Watchdog Timer Reset (DSWDT) for monitoring voltage and time-out events. The DSBOR and DSWDT are independent of the standard BOR and WDT used with other power-managed modes (Sleep, Idle and Doze).

10.2.4.1 Entering Deep Sleep Mode

Deep Sleep mode is entered by setting the DSEN bit in the DSCON register, and then executing a Sleep command (PWRSAV #SLEEP_MODE), within one instruction cycle, to minimize the chance that Deep Sleep will be spuriously entered.

If the PWRSAV command is not given within one instruction cycle, the DSEN bit will be cleared by the hardware and must be set again by the software before entering Deep Sleep mode. The DSEN bit is also automatically cleared when exiting the Deep Sleep mode.

Note:	To re-enter Deep Sleep after a Deep Sleep
	wake-up, allow a delay of at least 3 TCY
	after clearing the RELEASE bit.

The sequence to enter Deep Sleep mode is:

- If the application requires the Deep Sleep WDT, enable it and configure its clock source (see Section 10.2.4.5 "Deep Sleep WDT" for details).
- If the application requires Deep Sleep BOR, enable it by programming the DSBOREN Configuration bit (FDS<6>).
- If the application requires wake-up from Deep Sleep on RTCC alarm, enable and configure the RTCC module (see Section 19.0 "Real-Time Clock and Calendar (RTCC)" for more information).
- 4. If needed, save any critical application context data by writing it to the DSGPR0 and DSGPR1 registers (optional).
- 5. Enable Deep Sleep mode by setting the DSEN bit (DSCON<15>).
- 6. Enter Deep Sleep mode by issuing 3 NOP commands, and then a PWRSAV #0 instruction.

Any time the DSEN bit is set, all bits in the DSWAKE register will be automatically cleared.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.4 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as the PMD bits are used. Most peripheral modules have an enable bit; exceptions include capture, compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

REGISTER	IU-J. FIVIL		AL MODULE	DISABLE K	LOISTERS			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	
—	—	—	—	—	CMPMD	RTCCMD	—	
bit 15							bit 8	
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
CRCMD			_	—	_	—		
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable b	bit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own	
bit 15-11	Unimplemer	nted: Read as 'o	י)					
bit 10	CMPMD: Co	mparator Modul	e Disable bit					
	1 = Compara writable.	ator module is o	disabled. All Co	mparator Mod	ule registers a	re held in Rese	et and are not	
	0 = Compara	ator module is e	nabled					
bit 9	RTCCMD: R	TCC Module Dis	sable bit					
	 1 = RTCC module is disabled. All RTCC module registers are held in Reset and are not writable. 0 = RTCC module is enabled 							
bit 8	Unimplemer	nted: Read as '	י)					
bit 7	CRCMD: CR	C Module Disat	ole bit					
	1 = CRC mo 0 = CRC mo	dule is disabled dule is enabled	. All CRC registe	ers are held in	Reset and are	not writable.		
bit 6-0	Unimplemer	nted: Read as ')'					

NOTES:

17.0 INTER-INTEGRATED CIRCUIT (I²C[™])

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Inter-Integrated Circuit, refer to the *"PIC24F Family Reference Manual"*, Section 24. "Inter-Integrated Circuit™ (I²C™)" (DS39702).

The Inter-Integrated Circuit (I²C) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial data EEPROMs, display drivers, A/D Converters, etc.

The I^2C module supports these features:

- Independent master and slave logic
- 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Automatic clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications
- · Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address
- Automatic SCL

Figure 17-1 illustrates a block diagram of the module.

17.1 Pin Remapping Options

The I²C module is tied to a fixed pin. To allow flexibility with peripheral multiplexing, the I2C1 module in 28-pin devices can be reassigned to the alternate pins, designated as SCL1 and SDA1 during device configuration.

Pin assignment is controlled by the I2C1SEL Configuration bit. Programming this bit (= 0) multiplexes the module to the SCL1 and SDA1 pins.

17.2 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDA1 and SCL1.
- Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDA1 and SCL1.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDA1 and SCL1.

REGISTER 17-1: I2C1CON: I2C1 CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master; applicable during master receive)
	Value that will be transmitted when the software initiates an Acknowledge sequence.
	1 = Sends NACK during Acknowledge
	0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit
	(when operating as I ² C master; applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDA1 and SCL1 pins and transmits ACKDT data bit; hardware is clear at the end of the master Acknowledge sequence
	0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	1 = Enables Receive mode for I^2C ; hardware is clear at the end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Stop condition on SDA1 and SCL1 pins; hardware is clear at end of master Stop sequence 0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDA1 and SCL1 pins; hardware is clear at end of master Repeated Start sequence
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Start condition on SDA1 and SCL1 pins; hardware is clear at end of master Start sequence 0 = Start condition is not in progress

23.0 COMPARATOR MODULE

Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive refer-
	ence source. For more information on the
	Comparator module, refer to the "PIC24F
	Family Reference Manual", Section 46.
	"Scalable Comparator Module"
	(DS39734).

The comparator module provides two dual input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs, as well as a voltage reference input from either the internal band gap reference, divided by 2 (VBG/2), or the comparator voltage reference generator.

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is displayed in Figure 23-1. Diagrams of the possible individual comparator configurations are displayed in Figure 23-2.

Each comparator has its own control register, CMxCON (Register 23-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 23-2).

FIGURE 23-1: COMPARATOR MODULE BLOCK DIAGRAM

REGISTER 26-4: FOSC: OSCILLATOR CONFIGURATION REGISTER								
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
FCKSM1	FCKSM0	SOSCSEL	POSCFREQ1	POSCFREQ0	OSCIOFNC	POSCMD1	POSCMD0	
bit 7							bit 0	
Logondi								
D - Deedel	hla hit		anabla bit		anted bit read			
R = Readable bit P = Programmable bit U = Unimplemented bit, read as U								
-n = Value a	at POR	'1' = Bit is se	et	'0' = Bit is clea	red	x = Bit is unkr	nown	
bit 7-6	FCKSM<1:0>	Clock Switch	ning and Monitor	Selection Confi	guration bits			
	1x = Clock sv	vitching is disa	bled, Fail-Safe	Clock Monitor is	disabled			
	01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled							
	00 = Clock switching is enabled, Fail-Sate Clock Monitor is enabled							
bit 5	SOSCSEL: S	econdary Osc	illator Select bit					
	1 = Secondar	y oscillator is o	configured for hi	gh-power operat	tion			
	0 = Secondar	y oscillator is o	configured for lo	w-power operati	on			
bit 4-3	POSCFREQ<	<1:0>: Primary	Oscillator Frequ	uency Range Co	onfiguration bit	S		
	11 = Primary	oscillator/exte	rnal clock input	frequency is gre	ater than 8 Mł	Ηz		
	10 = Primary	oscillator/exte	rnal clock input	frequency is bet	ween 100 kHz	and 8 MHz		
	01 = Primary	oscillator/exte	rnal clock input	rrequency is less	s than 100 kHz	Z		
1.11.0		a, do not use	o e					
bit 2	OSCIOFNC:	CLKO Enable	Configuration bi	t				
	1 = CLKO ou	Itput signal act	ive on the OSC	O pin; primary o	scillator must	be disabled or	configured for	
	the External Clock mode (EC) for the CLKO to be active (POSCIMD<1:0> = 11 of 00) $\alpha = CLKO$ output is disabled							
h:+ 1 0			a Seilleter Configu	ration hita				
DIL 1-0		0>: Primary O	scillator Conligu	ration bits				
	11 = Primary	Uscillator mod						
		llator mode is	selected					
	00 = External	Clock mode is	s selected					

NOTES:

AC CHA		STICS		Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
				$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions			
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS				
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS				
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS				
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS				
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS				
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS				
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be			
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF			
			1 MHz mode ⁽²⁾	—	100	ns				
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be			
	Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF				
			1 MHz mode ⁽²⁾	—	300	ns				
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns				
		Setup Time	400 kHz mode	100	—	ns				
			1 MHz mode ⁽²⁾	TBD	—	ns				
IM26	THD:DAT	Data Input	100 kHz mode	0	—	ns				
		Hold Time	400 kHz mode	0	0.9	μS				
			1 MHz mode ⁽²⁾	TBD	—	ns				
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns				
		From Clock	400 kHz mode	—	1000	ns				
			1 MHz mode ⁽²⁾	—		ns				
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be			
			400 kHz mode	1.3		μS	free before a new			
			1 MHz mode ⁽²⁾	TBD		μS	transmission can start			
IM50	Св	Bus Capacitive L	oading	—	400	pF				

TABLE 29-30: I²C[™] BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Legend: TBD = To Be Determined

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 17.3 "Setting Baud Rate When Operating as a Bus Master" for details.

2: Maximum pin capacitance = 10 pF for all I^2C pins (for 1 MHz mode only).

FIGURE 29-17: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 0)

TABLE 29-36: SPIX MASTER MODE TIMING REQUIREMENTS (CKE = 0)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	_		ns	
SP11	TscH	SCKx Output High Time ⁽²⁾	TCY/2	—		ns	
SP20	TscF	SCKx Output Fall Time ⁽³⁾	—	10	25	ns	
SP21	TscR	SCKx Output Rise Time ⁽³⁾	—	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—	10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

20-Lead Plastic Quad Flat, No Lead Package (MQ) - 5x5 mm Body [QFN] With 0.40mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensior	n Limits	MIN	NOM	MAX
Contact Pitch	0.65 BSC			
Optional Center Pad Width	W2			3.35
Optional Center Pad Length	T2			3.35
Contact Pad Spacing	C1		4.50	
Contact Pad Spacing	C2		4.50	
Contact Pad Width (X20)	X1			0.40
Contact Pad Length (X20)	Y1			0.55
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2139A