

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VQFN Exposed Pad
Supplier Device Package	20-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka101-i-mq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_	_	_	_		_	_	I2C1 Receive Register							0000	
I2C1TRN	0202	_	_	—	—	_	-	_	I2C1 Transmit Register							00FF		
I2C1BRG	0204	_	_	_	_	_	_	_	— I2C1 Baud Rate Generator Register							0000		
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_	I2C1 Address Register							0000			
I2C1MSK	020C		_	_	_	-		AMSK9	AMSK8	AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in h.5adecimal.

TABLE 4-10: UART REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	UEN0 WAKE LPBACK ABAUD RXINV BRGH PDSEL1 PDSEL0 STSEL						0000		
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR FERR OERR URXDA (0110	
U1TXREG	0224	_	_	_	_	_		_	UART1 Transmit Register							0000		
U1RXREG	0226	_	_	_	_	_		_		UART1 Receive Register							0000	
U1BRG	0228							Baud R	ate Genera	ator Prescaler	Register							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	—	_	_	_	_	UART2 Transmit Register							0000		
U2RXREG	0236	_	_	—	_	—	_	_	UART2 Receive Register							0000		
U2BRG	0238							Bau	ud Rate Ge	enerator Prese	caler							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242		_	-	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	—	_	_	_	—	_	_	—	_	_	—	SPIFE	SPIBEN	0000
SPI1BUF	0248	SPI1 Transmit/Receive Buffer										0000						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into an 8K word page (in PIC24F08KA1XX devices) and a 16K word page (in PIC24F16KA1XX devices) of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

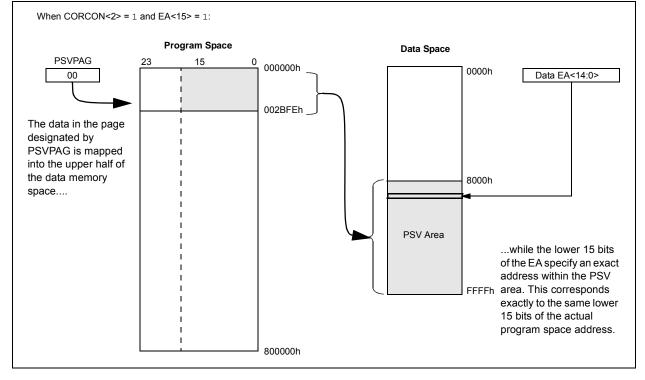
Program space access through the data space occurs if the MSb of the data space, EA, is '1', and PSV is enabled by setting the PSV bit in the CPU Control (CORCON<2>) register. The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits.

By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads from this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space locations used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

6.4.1 ERASE DATA EEPROM

The data EEPROM can be fully erased, or can be partially erased, at three different sizes: one word, four words or eight words. The bits, NVMOP<1:0> (NVMCON<1:0>), decide the number of words to be erased. To erase partially from the data EEPROM, the following sequence must be followed:

- 1. Configure NVMCON to erase the required number of words: one, four or eight.
- 2. Load TBLPAG and WREG with the EEPROM address to be erased.
- 3. Clear NVMIF status bit and enable NVM interrupt (optional).
- 4. Write the key sequence to NVMKEY.
- 5. Set the WR bit to begin erase cycle.
- 6. Either poll the WR bit or wait for the NVM interrupt (NVMIF set).

EXAMPLE 6-2: SINGLE-WORD ERASE

A typical erase sequence is provided in Example 6-2. This example shows how to do a one-word erase. Similarly, a four-word erase and an eight-word erase can be done. This example uses 'C' library procedures to manage the Table Pointer (builtin_tblpage and builtin_tbloffset) and the Erase Page Pointer (builtin_tblwt1). The memory unlock sequence (builtin_write_NVM) also sets the WR bit to initiate the operation and returns control when complete.

```
int __attribute__ ((space(eedata))) eeData = 0x1234; // Variable located in EEPROM
    unsigned int offset;

    // Set up NVMCON to erase one word of data EEPROM
    NVMCON = 0x4058;

    // Set up a pointer to the EEPROM location to be erased
    TBLPAG = __builtin_tblpage(&eeData); // Initialize EE Data page pointer
    offset = __builtin_tbloffset(&eeData); // Initialize lower word of address
    __builtin_tblwtl(offset, 0); // Write EEPROM data to write latch
    asm volatile ("disi #5"); // Disable Interrupts For 5 Instructions
    __builtin_write_NVM(); // Issue Unlock Sequence & Start Write Cycle
```

REGISTER 8-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC
—	—	—	—	—	—	—	DC ⁽¹⁾
bit 15							bit 8

R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settable/0	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-9 Unimplemented: Read as '0'

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	 111 = CPU interrupt priority level is 7 (15); user interrupts disabled 110 = CPU interrupt priority level is 6 (14) 101 = CPU interrupt priority level is 5 (13) 100 = CPU interrupt priority level is 4 (12)
	011 = CPU interrupt priority level is 3 (11)
	010 = CPU interrupt priority level is 2 (10)
	001 = CPU interrupt priority level is 1 (9)
	000 = CPU interrupt priority level is 0 (8)

Note 1: See Register 3-1 for the description of these bits, which are not dedicated to interrupt control functions.

- **2:** The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU interrupt priority level. The value in parentheses indicates the interrupt priority level if IPL3 = 1.
- **3:** The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

Note: Bit 8 and Bits 4 through 0 are described in Section 3.0 "CPU".

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
NVMIE	0-0	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE						
bit 15		ADTIL	UTTAL	UIIXIL	SITTL	SITTL	bit						
							bit						
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
T2IE	—	—	_	T1IE	OC1IE	IC1IE	INTOIE						
bit 7							bit						
Legend:													
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own						
bit 15		Interrunt Enab	le hit										
	NVMIE: NVM Interrupt Enable bit 1 = Interrupt request is enabled												
		equest is not e											
bit 14	Unimplemen	ted: Read as ')'										
bit 13	AD1IE: A/D C	Conversion Con	nplete Interrupt	Enable bit									
		equest is enab equest is not e											
bit 12	-	RT1 Transmitter		ole bit									
		equest is enab	-										
	0 = Interrupt r	equest is not e	nabled										
bit 11	U1RXIE: UART1 Receiver Interrupt Enable bit												
	1 = Interrupt request is enabled												
	 Interrupt request is not enabled SPI1IE: SPI1 Transfer Complete Interrupt Enable bit 												
bit 10		•	•	-nable bit									
		equest is enab equest is not e											
bit 9	-	Fault Interrupt											
		equest is enab											
		equest is not e											
bit 8	T3IE: Timer3	Interrupt Enabl	e bit										
		equest is enab											
		equest is not e											
bit 7		Interrupt Enabl											
		equest is enab equest not is e											
bit 6-4	Unimplemen	ted: Read as ')'										
bit 3	T1IE: Timer1	Interrupt Enabl	e bit										
		equest is enab equest is not e											
bit 2		ut Compare Ch		pt Enable bit									
	•	equest is enab		•									
		equest is not e											
bit 1	IC1IE: Input C	Capture Channe	el 1 Interrupt E	nable bit									
		equest is enab equest is not e											
bit 0	•	nal Interrupt 0											
		-											
	±	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled 											

REGISTER 10-4: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

· · · · · · · · · · · · · · · · · · ·							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	—	—	—	I2C1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0

—	—	_	—	—	—	—	OC1MD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

bit 8 I2C1MD: Input Capture 1 Module Disable bit 1 = Input Capture 1 module is disabled. All Input Capture registers are held in Reset and are not writable. 0 = Input Capture 1 module is writable

bit 7-1 Unimplemented: Read as '0'

bit 0 OC1MD: Input Compare 1 Module Disable bit

- 1 = Output Compare 1 module is disabled. All Output Compare registers are held in Reset and are not writable.
- 0 = Output Compare 1 module is writable

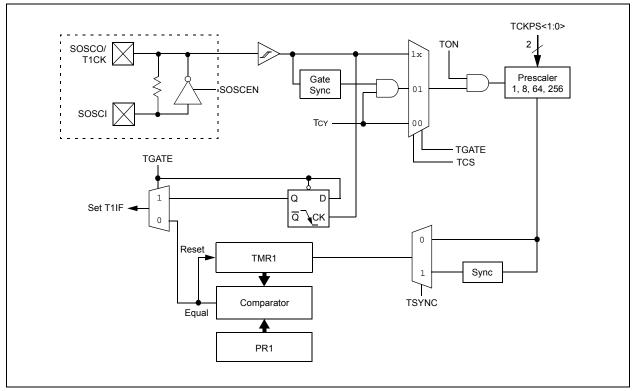
REGISTER 10-6: PMD4: PERIPHERAL MODULE DISABLE REGISTER 4									
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—		—	—	—	—		
bit 15							bit 8		
r									
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
—	—	—	EEMD	REFOMD	CTMUMD	HLVDMD	—		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown		
bit 15-5	Unimplemer	nted: Read as '	כ'						
bit 4	EEMD: EEPI	ROM Memory M	lodule Disable b	bit					
		EEPROM memo I memory is dis	ory Flash panel, abled	minimizing cur	rent consumpti	ion			
bit 3	REFOMD: R	eference Oscilla	ator Module Disa	able bit					
	1 = Reference are not v		dule is disabled.	All Reference	Oscillator regi	sters are held i	n Reset and		
	0 = Referen	ce Oscillator mo	odule is enabled						
bit 2	CTMUMD: C	CTMUMD: CTMU Module Disable bit							
	 1 = CTMU module is disabled. All CTMU registers are held in Reset and are not writable. 0 = CTMU module is enabled 								
bit 1	HLVDMD: HI	HLVDMD: HLVD Module Disable bit							
	 1 = HLVD module is disabled. All HLVD registers are held in Reset and are not writable. 0 = HLVD module is enabled 								
bit 0	Unimplemer	nted: Read as 'o	כי						

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC), or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 presents a block diagram of the 16-bit Timer1 module.

To configure Timer1 for operation:

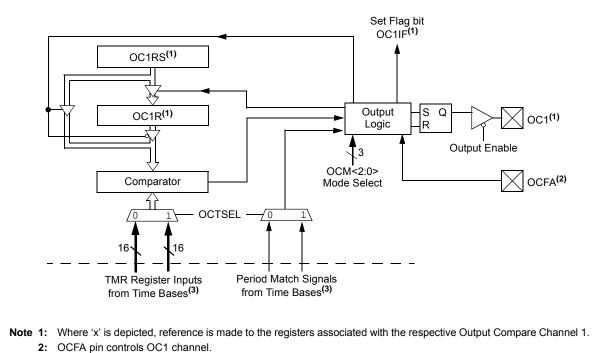

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

NOTES:

Control princontrols our channel.
 Each output compare channel can use one of two selectable time bases. Refer to the device data sheet for the time bases associated with the module.

REGISTER 15-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	—	—	—	-	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	SMBUSDEL ⁽³⁾	OC1TRIS ⁽²⁾	RTSECSEL1 ^(1,4)	RTSECSEL0 ^(1,4)	_
bit 7							bit 0
Logondy							

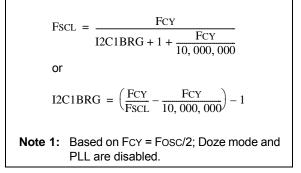
Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	is 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

- bit 3 OC1TRIS: OC1 Output Tri-State Select bit⁽²⁾
 - 1 = OC1 output will not be active on the pin; OCPWM1 can still be used for internal triggers
 - 0 = OC1 output will be active on the pin based on the OCPWM1 module settings

bit 0 Unimplemented: Read as '0'


Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

- 2: To enable the actual OC1 output, the OCPWM1 module has to be enabled.
- 3: Bit 4 is described in Section 17.0 "Inter-Integrated Circuit (I2C[™])".
- 4: Bits 2 and 1 are described in Section 19.0 Real-Time Clock and Calendar (RTCC).

17.3 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator (BRG) reload value, use Equation 17-1.

EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE⁽¹⁾

TABLE 17-1: I²C[™] CLOCK RATES⁽¹⁾

17.4 Slave Address Masking

The I2C1MSK register (Register 17-3) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2C1MSK register causes the slave module to respond whether the corresponding address bit value is '0' or '1'. For example, when I2C1MSK is set to '00100000', the slave module will detect both addresses: '0000000' and '00100000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the IPMIEN bit (I2C1CON<11>).

Note: As a result of changes in the I²C protocol, the addresses in Table 17-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Required		I2C1B	RG Value	Actual
System FscL	FCY	(Decimal)	(Hexadecimal)	FSCL
100 kHz	16 MHz	157	9D	100 kHz
100 kHz	8 MHz	78	4E	100 kHz
100 kHz	4 MHz	39	27	99 kHz
400 kHz	16 MHz	37	25	404 kHz
400 kHz	8 MHz	18	12	404 kHz
400 kHz	4 MHz	9	9	385 kHz
400 kHz	2 MHz	4	4	385 kHz
1 MHz	16 MHz	13	D	1.026 MHz
1 MHz	8 MHz	6	6	1.026 MHz
1 MHz	4 MHz	3	3	0.909 MHz

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled;

TABLE 17-2: I²C[™] RESERVED ADDRESSES⁽¹⁾

Slave Address	R/W Bit	Description				
0000 000	0	General Call Address ⁽²⁾				
0000 000	1	Start Byte				
0000 001	x	Cbus Address				
0000 010	x	Reserved				
0000 011	x	Reserved				
0000 1xx	x	HS Mode Master Code				
1111 1xx	x	Reserved				
1111 0xx	x	10-Bit Slave Upper Byte ⁽³⁾				

Note 1: The address bits listed here will never cause an address match, independent of the address mask settings.

- 2: The address will be Acknowledged only if GCEN = 1.
- 3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

19.2.5 RTCVAL REGISTER MAPPINGS

REGISTER 19-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15 bit 8									

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| YRTEN3 | YRTEN2 | YRTEN2 | YRTEN1 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

Legend:

Ecgenia.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

- bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.
- bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 19-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit
	Contains a value of '0' or '1'.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit

bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.

bit 7-6 Unimplemented: Read as '0'

- bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
- bit 3-0 DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER	26-5: FWDT	T: WATCHDO	OG TIMER CO	ONFIGURATI	ON REGISTE	ER				
R/P-1	R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1			
FWDTEN	WINDIS	—	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0			
bit 7							bit			
Legend:										
R = Readab	ole bit	P = Program	mable bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 7	FWDTEN: Wat	chdog Timer E	Enable bit							
	1 = WDT is ena 0 = WDT is dis	abled		e SWDTEN bit))					
bit 6	WINDIS: Winde	owed Watchdo	og Timer Disab	le bit						
	1 = Standard W 0 = Windowed			/DT disabled						
bit 5	Unimplemented: Read as '0'									
bit 4	FWPSA: WDT Prescaler bit									
	1 = WDT prescaler ratio of 1:128 0 = WDT prescaler ratio of 1:32									
bit 3-0	WDTPS<3:0>: Watchdog Timer Postscale Select bits									
	1111 = 1:32,76 1110 = 1:16,38 1101 = 1:8,192 1100 = 1:4,096	34 2 3								
	1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256									
	0111 = 1:128 0110 = 1:64 0101 = 1:32									
	0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2									
	0000 = 1:1									

REGISTER 26-5: FWDT: WATCHDOG TIMER CONFIGURATION REGISTER

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	СОМ	f	$f = \overline{f}$	1	1	N, Z
	СОМ	f,WREG	WREG = \overline{f}	1	1	N, Z
	СОМ	Ws,Wd	$Wd = \overline{Ws}$	1	1	N, Z
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, Z
01	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CP0	CP0	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
Cro	CPO	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
012	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow	1	1	C, DC, N, OV, Z
	012		$(Wb - Ws - \overline{C})$			
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if \neq	1	1 (2 or 3)	None
DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f –1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
JUDD		f,WREG	$WREG = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB					
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,#lit5,Wd	Wd = Wb - lit5 - (C)	1	1	C, DC, N, OV, Z
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV, Z
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	f,WREG	WREG = WREG – $f - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None
TBLRDH			Read Prog<23:16> to Wd<7:0>		2	

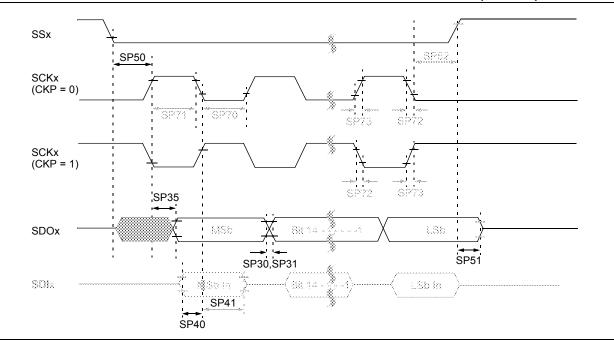

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol TLO:SCL	Characteristic		Min ⁽¹⁾	Max	Units	Conditions		
IM10		Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)		μs			
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs			
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be		
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	—	100	ns			
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be		
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	—	300	ns			
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	_	ns			
			400 kHz mode	100	_	ns			
			1 MHz mode ⁽²⁾	TBD	—	ns			
IM26	Thd:dat	Data Input Hold Time	100 kHz mode	0	_	ns			
			400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽²⁾	TBD	—	ns			
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode	—	3500	ns			
			400 kHz mode		1000	ns			
			1 MHz mode ⁽²⁾	—	—	ns			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be		
			400 kHz mode	1.3	_	μs	free before a new		
			1 MHz mode ⁽²⁾	TBD	_	μs	transmission can start		
IM50	Св	Bus Capacitive Lo	bading	_	400	pF			

TABLE 29-30: I²C[™] BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Legend: TBD = To Be Determined

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 17.3 "Setting Baud Rate When Operating as a Bus Master" for details.

2: Maximum pin capacitance = 10 pF for all I^2C pins (for 1 MHz mode only).

FIGURE 29-19: SPIX MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 0)

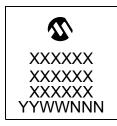
TABLE 29-38: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 0)

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	—	_	ns		
SP71	TscH	SCKx Input High Time	30	_	_	ns		
SP72	TscF	SCKx Input Fall Time ⁽²⁾		10	25	ns		
SP73	TscR	SCKx Input Rise Time ⁽²⁾		10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾	_	10	25	ns		
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾	_	10	25	ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	_	ns		
SP50	TssL2scH, TssL2scL	\overline{SSx} to SCKx \uparrow or SCKx Input	120	_	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	_	50	ns		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_	_	ns		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.


20-Lead SOIC (.300")

28-Lead SOIC (.300")

20-Lead QFN

28-Lead QFN

Example

Example

Example

Example

APPENDIX A: REVISION HISTORY

Revision A (November 2008)

Original data sheet for the PIC24F16KA102 family of devices.

Revision B (March 2009)

Section 29.0 "Electrical Characteristics" was revised and minor text edits were made throughout the document.

Revision C (October 2011)

- · Changed all instances of DSWSRC to DSWAKE.
- Corrected Example 5-2.
- Corrected Example 5-4.
- Corrected Example 6-1.
- Corrected Example 6-3.
- Added a comment to Example 6-5.
- Corrected Figure 9-1 to connect the SOSCI and SOSCO pins to the Schmitt trigger correctly.
- Added register descriptions for PMD1, PMD2, PMD3 and PMD4.
- Added note that RTCC will run in Reset.
- Corrected time values of ADCS (AD1CON3<5:0>).
- Corrected CH0SB and CH0SA (AD1CHS<11:8> and AD1CHS<3:0>) to correctly reference AVDD and AN3.
- Added description of PGCF15 and PGCF14 (AD1PCFG<15:14>).
- Edited Figure 22-2 to correctly reference RIC and the A/D capacitance.
- Changed all references from CTEDG1 to CTED1.
- Changed all references from CTEDG2 to CTED2.
- Changed description of CMIDL: it used to say it disables all comparators in Idle, now only disables interrupts in Idle mode.
- Changed all references of RTCCKSEL to RTCOSC.
- Changed all references of DSLPBOR to DSBOREN.
- Changed all references of DSWCKSEL to DSWDTOSC
- Imported Figure 40-9 from PIC24F FRM, Section 40.
- Added spec for BOR hysteresis.
- Edited Note 1 for Table 29-5 to further describe LPBOR.
- Edited max values of DC20d and DC20e on Table 29-6.
- Edited typical value for DC61-DC61c in Table 29-8.
- Edited Note 2 of Table 29-8.
- Added Note 5 to Table 29-9.
- Added Table 29-15.
- Added AD08 and AD09 in Table 29-26.
- Added Note 3 to Table 29-26.

- Imported Figure 40.10 from PIC24F FRM, Section 40.
- Deleted TVREG spec.
- Imported Figure 15-5 from PIC24F FRM, Section 15.
- Imported Table 15-4 from PIC24F FRM, Section 15.
- Imported Figure 16-22 from PIC24F FRM, Section 16.
- Imported Table 16-9 from PIC24F FRM, Section 16.
- Imported Figure 16-23 from PIC24F FRM, Section 16.
- Imported Table 16-10 from PIC24F FRM, Section 16.
- Imported Figure 21-24 from PIC24F FRM. Section 21.
- Imported Figure 21-25 from PIC24F FRM, Section 21.
- Imported Table 21-5 from PIC24F FRM, Section 21.
- Imported Figure 23-17 from PIC24F FRM, Section 23.
- Imported Table 23-3 from PIC24F FRM, Section 23.
- Imported Figure 23-18 from PIC24F FRM, Section 23.
- Imported Table 23-4 from PIC24F FRM, Section 23.
- Imported Figure 23-19 from PIC24F FRM, Section 23.
- Imported Table 23-5 from PIC24F FRM, Section 23.
- Imported Figure 23-20 from PIC24F FRM, Section 23.
- Imported Table 23-6 from PIC24F FRM, Section 23.
- Imported Figure 24-33 from PIC24F FRM, Section 24.
- Imported Table 24-6 from PIC24F FRM, Section 24.
- Imported Figure 24-34 from PIC24F FRM, Section 24.
- Imported Table 24-7 from PIC24F FRM, Section 24.
- Imported Figure 24-35 from PIC24F FRM, Section 24.
- Imported Table 24-8 from PIC24F FRM, Section 24.
- Imported Figure 24-36 from PIC24F FRM, Section 24.
- Imported Table 24-9 from PIC24F FRM, Section 24.