

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka102-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin I	Number				
Function	20-Pin PDIP/SSOP/ SOIC	20-Pin QFN	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	I/O	Input Buffer	Description
T1CK	10	7	12	9	Ι	ST	Timer1 Clock
T2CK	18	15	26	23	I	ST	Timer2 Clock
T3CK	18	15	26	23	I	ST	Timer3 Clock
U1CTS	12	9	17	14	I	ST	UART1 Clear to Send Input
U1RTS	13	10	18	15	0	_	UART1 Request to Send Output
U1RX	6	3	6	3	I	ST	UART1 Receive
U1TX	11	8	16	13	0	_	UART1 Transmit Output
Vdd	20	17	13, 28	10, 25	Р	—	Positive Supply for Peripheral Digital Logic and I/O Pins
VPP	1	18	1	26	Р	_	Programming Mode Entry Voltage
VREF-	3	20	3	28	I	ANA	A/D and Comparator Reference Voltage (low) Input
VREF+	2	19	2	27	I	ANA	A/D and Comparator Reference Voltage (high) Input
Vss	19	16	8, 27	5, 24	Р	_	Ground Reference for Logic and I/O Pin

TABLE 1-2: PIC24F16KA102 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: ST = Schmitt Trigger input buffer, ANA = Analog level input/output, $I^2C^{TM} = I^2C/SMB$ us input buffer

Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

4.0 MEMORY ORGANIZATION

As with Harvard architecture devices, the PIC24F microcontrollers feature separate program and data memory space and busing. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 **Program Address Space**

The program address memory space of the PIC24F devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from a table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

The user access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24F16KA102 family of devices are displayed in Figure 4-1.

4.2 Data Address Space

The PIC24F core has a separate, 16-bit wide data memory space, addressable as a single linear range. The data space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The data space memory map is displayed in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV) area (see Section 4.3.3 "Reading Data From Program Memory Using Program Space Visibility").

PIC24F16KA102 family devices implement a total of 768 words of data memory. Should an EA point to a location outside of this area, an all zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all the data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

FIGURE 4-3: DATA SPACE MEMORY MAP FOR PIC24F16KA102 FAMILY DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WREG0	0000		Working Register 0														
WREG1	0002		Working Register 1														
WREG2	0004								Working	Register 2							
WREG3	0006								Working	Register 3							
WREG4	0008								Working	Register 4							
WREG5	000A								Working	Register 5							
WREG6	000C								Working	Register 6							
WREG7	000E								Working	Register 7							
WREG8	0010								Working	Register 8							
WREG9	0012								Working	Register 9							
WREG10	0014								Working F	Register 10							
WREG11	0016								Working F	Register 11							
WREG12	0018								Working F	Register 12							
WREG13	001A								Working F	Register 13							
WREG14	001C								Working F	Register 14							
WREG15	001E								Working F	Register 15							
SPLIM	0020							Stack	Pointer Lin	nit Value Re	egister						
PCL	002E							Progra	m Counter	Low Byte R	legister						
PCH	0030	_	_	_	-	_	_	_	_			Progra	m Counter	Register Hig	gh Byte		
TBLPAG	0032	—	—	_	—	_	—	_	—			Table N	lemory Pag	e Address I	Register		
PSVPAG	0034	_	_	_	-	_	_	_	_		F	Program Spa	ace Visibility	Page Add	ress Regist	er	
RCOUNT	0036							REP	EAT Loop (Counter Reg	gister						
SR	0042		_	DC IPL2 IPL1 IPL0 RA N OV Z									Z	С			
CORCON	0044	—	—	—											_		
DISICNT	0052	_	_						Disab	le Interrupts	Counter R	egister					

TABLE 4-3: **CPU CORE REGISTERS MAP**

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All

xxxx

7.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Resets, refer to the *"PIC24F Family Reference Manual"*, Section 40. "Reset with Programmable Brown-out Reset" (DS39728).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- Low-Power BOR/Deep Sleep BOR
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

Figure 7-1 displays a simplified block diagram of the Reset module.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on a Power-on Reset (POR) and unchanged by all other Resets.

Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A POR will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer (WDT) and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value, after a device Reset, will be meaningful.

FIGURE 7-1: RESET SYSTEM BLOCK DIAGRAM

R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI		_		_	_	—
bit 15	·						bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—	—	—	INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ALTIVT: Enat	ole Alternate Int	errupt Vector	Table bit			
	1 = Use Alter	nate Interrupt V	ector Table				
	0 = Use stand	lard (default) ve	ector table				
bit 14	DISI: DISI In	struction Status	s bit				
	1 = DISI Inst	ruction is active	e ctivo				
hit 13-3		ted: Read as '	ריי ז'				
bit 70 0		rnal Interrunt 2	Edge Detect I	Polarity Select	hit		
Dit 2	1 = Interrupt (on negative edd	ie		bit		
	0 = Interrupt of	on positive edge	9				
bit 1	INT1EP: Exte	rnal Interrupt 1	Edge Detect I	Polarity Select	bit		
	1 = Interrupt of	on negative edg	je				
	0 = Interrupt o	on positive edge	9				
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect I	Polarity Select	bit		
	1 = Interrupt o	on negative edg	je				
	v = memupt of	n positive eage	5				

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER2

REGISTER	R 8-12: IEC4	: INTERRUPT	ENABLE C	ONTROL REC	GISTER 4		
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
_	—	CTMUIE	_	—		—	HLVDIE
bit 15		· · ·			•		bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
	_	—	—	CRCIE	U2ERIE	U1ERIE	_
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-14	Unimplemer	nted: Read as '0	,				
bit 13	CTMUIE: CT	MU Interrupt En	able bit				
	1 = Interrupt	request is enable	ed				
h:+ 40 0		request is not er	,				
DIC 12-9	Unimplemen						
DIT 8	HLVDIE: Hig	n/Low-voltage D	etect interrup	t Enable bit			
	1 = Interrupt 0 = Interrupt	request is not er	eu nabled				
bit 7-4	Unimplemer	nted: Read as '0	,				
bit 3	CRCIE: CRC	Generator Inter	rupt Enable b	it			
	1 = Interrupt	request is enable	ed				
	0 = Interrupt	request is not er	abled				
bit 2	U2ERIE: UA	RT2 Error Interru	ipt Enable bit				
	1 = Interrupt	request is enable	ed				
	0 = Interrupt	request is not er	abled				
bit 1	U1ERIE: UA	RT1 Error Interru	ipt Enable bit				
	1 = Interrupt	request is enable	ed Vabled				
bit Ω		ted. Bead as 'n	,				
	ommplemen	ited. Itedu do U					

REGISTER	8-13: IPC	0: INTERRUPT	PRIORITY	CONTROL R	EGISTER 0						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	T1IP2	T1IP1	T1IP0		OC1IP2	OC1IP1	OC1IP0				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0				
bit 7				•		•	bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimpleme	ented: Read as ')'								
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits								
	111 = Interr	rupt is Priority 7 (highest priorit	y interrupt)							
	•										
	•										
	001 = Interr 000 = Interr	rupt is Priority 1 rupt source is dis	abled								
bit 11	Unimpleme	ented: Read as 'o)'								
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits										
	111 = Interr	rupt is Priority 7 (highest priorit	y interrupt)							
	•										
	•										
	001 = Interr 000 = Interr	rupt is Priority 1 rupt source is dis	abled								
bit 7	Unimpleme	ented: Read as 'o)'								
bit 6-4	IC1IP<2:0>	: Input Capture C	hannel 1 Inte	rrupt Priority bi	ts						
	111 = Interr	rupt is Priority 7 (highest priorit	y interrupt)							
	•										
	•										
	001 = Interr 000 = Interr	rupt is Priority 1 rupt source is dis	abled								
bit 3	Unimpleme	ented: Read as ')'								
bit 2-0	INT0IP<2:0	>: External Interr	upt 0 Priority	bits							
	111 = Interr	rupt is Priority 7 (highest priorit	y interrupt)							
	•										
	•										
	• 001 = Interr	rupt is Priority 1									
	000 = Interr	rupt source is dis	abled								

REGISTER 8-15: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	<u>U-0</u>	R/W-1	R/W-0	R/W-0
	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	כ'				
bit 14-12	U1RXIP<2:0>	-: UART1 Rece	iver Interrupt I	Priority bits			
	111 = Interru	pt is Priority 7(highest priority	v interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	כי				
bit 10-8	SPI1IP<2:0>:	SPI1 Event In	terrupt Priority	bits			
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	כ'				
bit 6-4	SPF1IP<2:0>	: SPI1 Fault In	terrupt Priority	bits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	כי				
bit 2-0	T3IP<2:0>: ⊺	imer3 Interrupt	Priority bits				
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Prioritv 1					
	000 = Interru	pt source is dis	abled				

REGISTER 8-18: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	INT1IP2	INT1IP1	INT1IP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-3 Unimplemented: Read as '0'

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- •
- •

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

REGISTER 10-4: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	I2C1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0

—	—	_				—	OC1MD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

bit 8 I2C1MD: Input Capture 1 Module Disable bit 1 = Input Capture 1 module is disabled. All Input Capture registers are held in Reset and are not writable. 0 = Input Capture 1 module is writable

bit 7-1 Unimplemented: Read as '0'

bit 0 OC1MD: Input Compare 1 Module Disable bit

- 1 = Output Compare 1 module is disabled. All Output Compare registers are held in Reset and are not writable.
- 0 = Output Compare 1 module is writable

REGISTER	10-5. PIVIL	J. FERIFIER			EGISTERS			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	
—	—	—	—	—	CMPMD	RTCCMD	—	
bit 15							bit 8	
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
CRCMD	—	—			—	—		
bit 7							bit 0	
Legend:								
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'								
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own	
bit 15-11	Unimplemer	nted: Read as '0)'					
bit 10	CMPMD: Co	mparator Modul	e Disable bit					
	1 = Compara writable.	ator module is o	lisabled. All Co	mparator Modu	ule registers a	re held in Rese	et and are not	
	0 = Compara	ator module is e	nabled					
bit 9	RTCCMD: R	TCC Module Dis	sable bit					
	1 = RTCC m 0 = RTCC m	odule is disable odule is enabled	d. All RTCC moo I	dule registers a	are held in Res	set and are not v	writable.	
bit 8	Unimplemer	ted: Read as 'd)'					
bit 7	CRCMD: CR	C Module Disat	ole bit					
	1 = CRC mod 0 = CRC mod	dule is disabled. dule is enabled	All CRC registe	ers are held in	Reset and are	not writable.		
bit 6-0	Unimplemer	nted: Read as 'o)'					

Each output compare channel can use one of two selectable time bases. Refer to the device data sheet for the time bases associated with the module.

26.0 SPECIAL FEATURES

- **Note:** This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Watchdog Timer, High-Level Device integration and Programming Diagnostics, refer to the individual sections of the *"PIC24F Family Reference Manual"* provided below:
 - Section 9. "Watchdog Timer (WDT)" (DS39697)
 - Section 36. "High-Level Integration with Programmable High/ Low-Voltage Detect (HLVD)" (DS39725)
 - Section 33. "Programming and Diagnostics" (DS39716)

PIC24F16KA102 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

26.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped, starting at program memory location, F80000h. A complete list is provided in Table 26-1. A detailed explanation of the various bit functions is provided in Register 26-1 through Register 26-8.

The address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using table reads and table writes.

TABLE 26-1: CONFIGURATION REGISTERS LOCATIONS

Configuration Register	Address				
FBS	F80000				
FGS	F80004				
FOSCSEL	F80006				
FOSC	F80008				
FWDT	F8000A				
FPOR	F8000C				
FICD	F8000E				
FDS	F80010				

REGISTER 26-1: FBS: BOOT SEGMENT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	—	BSS2	BSS1	BSS0	BWRP
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-4 Unimplemented: Read as '0'

- bit 3-1 BSS<2:0>: Boot Segment Program Flash Code Protection bits
 - 111 = No boot program Flash segment
 - 011 = Reserved
 - 110 = Standard security, boot program Flash segment starts at 200h, ends at 000AFEh
 - 010 = High-security boot program Flash segment starts at 200h, ends at 000AFEh
 - 101 = Standard security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾
 - 001 = High-security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾
 - 100 = Reserved
 - 000 = Reserved

bit 0 BWRP: Boot Segment Program Flash Write Protection bit

- 1 = Boot segment may be written
- 0 = Boot segment is write-protected

Note 1: This selection should not be used in PIC24F08KA1XX devices.

TABLE 29-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)

DC CHARACTER	RISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: } 1.8V \mbox{ to } 3.6V \mbox{ (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions				
IDD Current ⁽²⁾								
DC31		28	μΑ	-40°C	1.8V			
DC31a	0	28		+25°C				
DC31b	0	28		+60°C				
DC31c		28		+85°C				
DC31d		55		-40°C		LPRC (31 kHz)		
DC31e		55	μΑ	+25°C	3.3V			
DC31f	15	55		+60°C				
DC31g		55	7	+85°C				
DC31h		250		+125°C				

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Operating Parameters:

• EC mode with clock input driven with a square wave rail-to-rail

• I/Os are configured as outputs, driven low

• MCLR - VDD

• WDT FSCM is disabled

• SRAM, program and data memory are active

• All PMD bits are set except for modules being measured

TABLE 29-37: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	_	_	ns		
SP11	TscH	SCKx Output High Time ⁽²⁾	TCY/2	—	—	ns		
SP20	TscF	SCKx Output Fall Time ⁽³⁾	—	10	25	ns		
SP21	TscR	SCKx Output Rise Time ⁽³⁾	—	10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—	10	25	ns		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	10	25	ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	30	ns		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		—	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—		ns		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С	7.20			
Contact Pad Width (X20)	X1	0			
Contact Pad Length (X20)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS		
Dimensio	Dimension Limits			MAX		
Number of Pins	Ν	28				
Pitch	е	0.65 BSC				
Overall Height	Α	0.80 0.90 1.00				
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	3.65 3.70 4.20				
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	3.65 3.70 4.20				
Contact Width	b	0.23 0.30 0.35				
Contact Length	L	0.50 0.55 0.70				
Contact-to-Exposed Pad	К	0.20 – –				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sygney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/02/11