

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1.5K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka102-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0
—	—			IPL3 ⁽¹⁾	PSV	—	—
bit 7	t 7						bit 0

Legend:	HSC = Hardware Settable/C		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	IPL3: CPU Interrupt Priority Level Status bit ⁽¹⁾
	1 = CPU interrupt priority level is greater than 70 = CPU interrupt priority level is 7 or less
bit 2	PSV: Program Space Visibility in Data Space Enable bit
	1 = Program space is visible in data space
	0 = Program space is not visible in data space
bit 1-0	Unimplemented: Read as '0'

Note 1: User interrupts are disabled when IPL3 = 1.

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware division for 16-bit divisor.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

TABLE 4-4: ICN REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE ⁽¹⁾	CN14IE	CN13IE	CN12IE	CN11IE ⁽¹⁾		CN9IE	CN8IE	CN7IE ⁽¹⁾	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062		CN30IE	CN29IE	_	CN27IE ⁽¹⁾	—	_	CN24IE ⁽¹⁾	CN23IE	CN22IE	CN21IE		-	_	-	CN16IE ⁽¹⁾	0000
CNPU1	0068	CN15PUE ⁽¹⁾	CN14PUE	CN13PUE	CN12PUE	CN11PUE ⁽¹⁾	—	CN9PUE	CN8PUE	CN7PUE ⁽¹⁾	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A		CN30PUE	CN29PUE	_	CN27PUE ⁽¹⁾	—	_	CN24PUE ⁽¹⁾	CN23PUE	CN22PUE	CN21PUE		-	_	-	CN16PUE ⁽¹⁾	0000
CNPD1	0070	CN15PDE ⁽¹⁾	CN14PDE	CN13PDE	CN12PDE	CN11PDE ⁽¹⁾	_	CN9PDE	CN8PDE	CN7PDE ⁽¹⁾	CN6PDE	CN5PDE	CN4PDE	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
CNPD2	0072	_	CN30PDE	CN29PDE		CN27PDE ⁽¹⁾	_	_	CN24PDE ⁽¹⁾	CN23PDE	CN22PDE	CN21PDE	_	_	_	_	CN16PDE ⁽¹⁾	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not implemented in 20-pin devices.

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS		—	—	—	_		_	_		—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	—	—	—			—	—		—	—		INT2EP	INT1EP	INT0EP	0000
IFS0	0084	NVMIF		AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF		—	—	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	—	—			—	—		—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS3	008A		RTCIF	—	—	—			—	—		—	—			—	—	0000
IFS4	008C			CTMUIF	—	—			HLVDIF	—		—	—	CRCIF	U2ERIF	U1ERIF	—	0000
IEC0	0094	NVMIE		AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE		—	_	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	_	_	_	_	_	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC3	009A	_	RTCIE	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IEC4	009C	_	_	CTMUIE	_	_	_	_	HLVDIE	_	_	_	_	CRCIE	U2ERIE	U1ERIE	_	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	_	_	_	_	_	_	_	_	_	_	_	_	4444
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPF1IP2	SPF1IP1	SPF1IP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	NVMIP2	NVMIP1	NVMIP0	_	_	_	_	_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	_	MI2C1P2	MI2C1P1	MI2C1P0	_	SI2C1P2	SI2C1P1	SI2C1P0	4444
IPC5	00AE	_	_	_	_	_	_	_	_	_	_	_	_	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	_	_	_	_	4440
IPC15	00C2	_	_	_	_	_	RTCIP2	RTCIP1	RTCIP0	_	_	_	_	_	_	_	_	0400
IPC16	00C4	_	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	_	_	_	_	4440
IPC18	00C8	_	_	_	_	_	—	_	_	_	_	_	_	_	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC19	00CA	—	_	_	_	_	—	_	—	_	CTMUIP2	CTMUIP1	CTMUIP0	_	—	_	_	0040
INTTREG	00E0	CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IADLE 4-0. IIIVIER REGISTER IVIAF	FABLE 4-6 :	TIMER REGISTER MAP
-----------------------------------	--------------------	--------------------

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Timer1 Per	iod Registe	r							FFFF
T1CON	0104	TON	—	TSIDL	—		_		—	_	TGATE	TCKPS1	TCKPS0		TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Timer	3 Holding F	Register (for	32-bit time	r operations	s only)						0000
TMR3	010A								Timer3	Register								0000
PR2	010C								Timer2 Per	iod Registe	r							FFFF
PR3	010E	Timer3 Period Register FF											FFFF					
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: INPUT CAPTURE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140	Input Capture 1 Register														FFFF		
IC1CON	0142	—	-	ICSIDL	—					ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: OUTPUT COMPARE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180		Output Compare 1 Secondary Register															FFFF
OC1R	0182		Output Compare 1 Register													FFFF		
OC1CON	0184	_	_	OCSIDL	_	_	—	_	_	_	_	_	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	-15.																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								A/D Data	a Buffer 0								xxxx
ADC1BUF1	0302								A/D Data	a Buffer 1								xxxx
ADC1BUF2	0304								A/D Data	a Buffer 2								xxxx
ADC1BUF3	0306								A/D Data	a Buffer 3								xxxx
ADC1BUF4	0308								A/D Data	a Buffer 4								xxxx
ADC1BUF5	030A								A/D Data	a Buffer 5								xxxx
ADC1BUF6	030C								A/D Data	a Buffer 6								xxxx
ADC1BUF7	030E								A/D Data	a Buffer 7								xxxx
ADC1BUF8	0310								A/D Data	a Buffer 8								xxxx
ADC1BUF9	0312								A/D Data	a Buffer 9								xxxx
ADC1BUFA	0314								A/D Data	Buffer 10								xxxx
ADC1BUFB	0316								A/D Data	Buffer 11								xxxx
ADC1BUFC	0318								A/D Data	Buffer 12								xxxx
ADC1BUFD	031A								A/D Data	Buffer 13								xxxx
ADC1BUFE	031C								A/D Data	Buffer 14								xxxx
ADC1BUFF	031E								A/D Data	Buffer 15								xxxx
AD1CON1	0320	ADON	—	ADSIDL	—	—	—	FORM1	FORM0	SSRC2	SSRC1	SSRC0	—	—	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	OFFCAL	—	CSCNA		—	BUFS	_	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	_	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	_	_	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0328	CH0NB	—	—	—	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	—	—	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFG	032C	_	_	_	PCFG12	PCFG11	PCFG10	_	_	—	_	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	_	_	_	CSSL12	CSSL11	CSSL10	_	_	_	_	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000

TABLE 4-15: A/D REGISTER MAP

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: CTMU REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON	033C	CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	0000
CTMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	_	_	_	_	_	_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 8-7: IFS3: INTERRUPT FLAG STATUS REGISTER 3

- RTCIF	U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit	—	RTCIF	—	—	—	—	—	—
	bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—		—	—	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14 **RTCIF:** Real-Time Clock and Calendar Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 13-0 Unimplemented: Read as '0'

REGISTER	8-13: IPC	0: INTERRUPT	PRIORITY	CONTROL R	EGISTER 0		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	T1IP2	T1IP1	T1IP0		OC1IP2	OC1IP1	OC1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0
bit 7				•		•	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as ')'				
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits				
	111 = Interr	rupt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interr 000 = Interr	rupt is Priority 1 rupt source is dis	abled				
bit 11	Unimpleme	ented: Read as 'o)'				
bit 10-8	OC1IP<2:0:	>: Output Compa	re Channel 1	Interrupt Priori	ty bits		
	111 = Interr	rupt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interr 000 = Interr	rupt is Priority 1 rupt source is dis	abled				
bit 7	Unimpleme	ented: Read as 'o)'				
bit 6-4	IC1IP<2:0>	: Input Capture C	hannel 1 Inte	rrupt Priority bi	ts		
	111 = Interr	rupt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interr 000 = Interr	rupt is Priority 1 rupt source is dis	abled				
bit 3	Unimpleme	ented: Read as ')'				
bit 2-0	INT0IP<2:0	>: External Interr	upt 0 Priority	bits			
	111 = Interr	rupt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	• 001 = Interr	rupt is Priority 1					
	000 = Interr	rupt source is dis	abled				

REGISTER 10-4: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	I2C1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0

—	—	_				—	OC1MD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

bit 8 I2C1MD: Input Capture 1 Module Disable bit 1 = Input Capture 1 module is disabled. All Input Capture registers are held in Reset and are not writable. 0 = Input Capture 1 module is writable

bit 7-1 Unimplemented: Read as '0'

bit 0 OC1MD: Input Compare 1 Module Disable bit

- 1 = Output Compare 1 module is disabled. All Output Compare registers are held in Reset and are not writable.
- 0 = Output Compare 1 module is writable

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The maximum open-drain voltage allowed is the same as the maximum V_{IH} specification.

11.2 Configuring Analog Port Pins

The use of the AD1PCFG and TRIS register controls the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.3 Input Change Notification

The input change notification function of the I/O ports allows the PIC24F16KA102 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 23 external signals (CN0 through CN22) that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin and the pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately using the CNPD1 and CNPD2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to Vss by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

Note: Pull-ups and pull-downs on change notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0; MOV W0, TRISBB;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
NOP;	//Delay 1 cycle
BTSS PORTB, #13;	//Next Instruction
Equivalent 'C' Code	
TRISB = 0xFF00;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
NOP();	//Delay 1 cycle
if(PORTBbits.RB13 == 1)	// execute following code if PORTB pin 13 is set.
{	
}	

REGISTER 16-1: SPI1STAT: SPI1 STATUS AND CONTROL REGISTER

R/W-0	U-0 R/W-0 U-0 U-0 R-0, HSC R-0, HSC R-0, HSC											
SPIEN		SPISIDL			SPIBEC2	SPIBEC1	SPIBEC0					
bit 15					•		bit 8					
R-0,HSC	R/C-0, HS	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R-0, HSC	R-0, HSC					
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF					
bit 7							bit 0					
Legend:	gend: U = Unimplemented bit, read as '0' HSC = Hardware Settable/Clearable bit											
R = Reada	R = Readable bit $W = Writable bit$ $H = Hardware Settable bit$ $C = Clearable bit$											
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown					
bit 15	SPIEN: SPI1	Enable bit										
	1 = Enables module and configures SCK1, SDO1, SDI1 and SS1 as serial port pins											
	0 = Disables module											
bit 14	Unimplemented: Read as '0'											
bit 13	SPISIDL: Stop in Idle Mode bit											
	1 = Discontinues module operation when device enters Idle mode											
	0 = Continues module operation in Idle mode											
bit 12-11	Unimplemented: Read as '0'											
bit 10-8	SPIBEC<2:0>: SPI1 Buffer Element Count bits (valid in Enhanced Buffer mode)											
	Master mode	<u>):</u> Di transfora ara naj	adiaa									
	Slavo modo:	Fi liansiers are per	nung.									
	Number of S	PI transfers are uni	read.									
bit 7	SRMPT: Shif	t Register (SPI1SR) Empty bit (valio	d in Enhanced B	uffer mode)							
	1 = SPI1 Sh	ift register is empty	and ready to ser	nd or receive	,							
	0 = SPI1 Sh	ift register is not en	npty									
bit 6	SPIROV: Re	ceive Overflow Flag	g bit									
	1 = A new by	yte/word is complete	ely received and	discarded								
	The use	r software has not i	read the previous	data in the SPI	1BUF registe	r.						
L:1 F		now has occurred	hit (maliation Frake		-1 -)							
DIT 5			bit (valid in Enna	anced Buffer mo	de)							
	\perp = Receive	FIFO is empty										
hit 4-2	SISEI <2:0>	SPI1 Buffer Intern	unt Mode hits (va	llid in Enhanced	Buffer mode							
	SISEL<2:0>: SPI1 Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)											
	111 = Interrupt when the SPI1 transmit buffer is full (SPI1BF bit is set) 110 = Interrupt when the last bit is shifted into SPI1SR; as a result, the TX FIFO is empty											
	101 = Interrupt when the last bit is shifted out of SPI1SR; now the transmit is complete											
	100 = Interrupt when one data byte is shifted into the SPI1SR; as a result, the TX FIFO has one open spot											
	011 = Intern	upt when the SPI1	receive buffer is	TUII (SPIRBF bit 3/4 or more full	set)							
	001 = Intern	upt when data is av	ailable in receive	e buffer (SRMP1	「bit is set)							
	000 = Interr	upt when the last d	ata in the receive	buffer is read;	as a result, th	e buffer is emp	ty					
	(SRX	MPT bit is set)										

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	HC = Hardware Clearable bit					
C = Clearable bit	HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

bit 14 UTXINV: IrDA[®] Encoder Transmit Polarity Inversion bit

	,
	<u>If IREN = 0:</u>
	1 = UxTX Idle '0'
	0 = UxTX Idle '1'
	<u>If IREN = 1:</u>
	1 = UxTX Idle '1'
	0 = UxTX Idle '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: Transmit Break bit
	1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: Transmit Enable bit
	1 = Transmit is enabled, UxTX pin is controlled by UARTx
	0 = Transmit is disabled, any pending transmission is aborted and buffer is reset. UxTX pin is controlled by the PORT register.
bit 9	UTXBF: Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer;

19.3 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will either be added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.
- 3. a) If the oscillator is faster than ideal (negative result form Step 2), the RCFGCAL register value must be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower than ideal (positive result from Step 2), the RCFGCAL register value must be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

Divide the number of error clocks, per minute by 4, to get the correct calibration value and load the RCFGCAL register with the correct value. (Each 1-bit increment in the calibration adds or subtracts 4 pulses).

EQUATION 19-1:

(Ideal Frequency⁺ – Measured Frequency) * 60 = Clocks per Minute

† Ideal Frequency = 32,768 Hz

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off, or immediately after the rising edge of the seconds pulse.

Note:	It is up to the user to include in the error
	value, the initial error of the crystal; drift
	due to temperature and drift due to crystal
	aging.

19.4 Alarm

- · Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>)
- One-time alarm and repeat alarm options available

19.4.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As displayed in Figure 19-2, the interval selection of the alarm is configured through the AMASK bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPT bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated, up to 255 times, by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPT bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPT bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

19.4.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note: Changing any of the registers, other than the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and the CHIME bit be changed when RTCSYNC = 0.

REGISTER 23-1: CMxCON: COMPARATOR x CONTROL REGISTERS

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R-0					
CON	COE	CPOL	CLPWR		_	CEVT	COUT					
bit 15					·		bit 8					
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0					
EVPOL1	EVPOL0	<u> </u>	CREF	<u> </u>	_	CCH1	CCH0					
bit 7	t / bi											
Legend:												
R = Readable bit $W = Writable bit$ $U = Unimplemented bit read as '0'$												
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15	CON: Compa	rator Enable bit										
	1 = Compara	tor is enabled										
	0 = Compara	tor is disabled										
bit 14	COE: Compa	rator Output En	able bit									
	1 = Compara0 = Compara	tor output is pre	ernal only									
bit 13	CPOL: Comp	arator Output P	olarity Select	bit								
	1 = Compara	tor output is inv	erted									
	0 = Compara	tor output is no	t inverted									
bit 12	CLPWR: Con	nparator Low-P	ower Mode Se	elect bit								
	1 = Comparat	or operates in I or does not ope	Low-Power mo erate in Low-P	ode ower mode								
bit 11-10	Unimplemen	ted: Read as '0	,									
bit 9	CEVT: Compa	arator Event bit										
	1 = Compara	tor event define	ed by EVPOL≪	<1:0> has occu	rred; subseque	ent triggers and	interrupts are					
	disabled	until the bit is cl	eared									
hit 8	COUT: Comp	arator Output b	it									
bito	When CPOL :	= 0:										
	1 = VIN+ > VI	N-										
	0 = VIN + < VI	N-										
	$\frac{\text{VVnen CPOL}}{1 = \text{VIN} + < \text{VI}}$	<u>= 1:</u> N-										
	0 = VIN + > VI	N-										
bit 7-6	EVPOL<1:0>	: Trigger/Event/	Interrupt Pola	rity Select bits								
	11 = Trigger/e	event/interrupt i	s generated o	n any change o	f the comparat	or output (while	e CEVT = 0)					
		= 0 (non-invert	s generated of ed polarity):	n transition of tr	ne comparator	output:						
	High-to-	low transition of	nly.									
	If CPOL = 1 (inverted polarity):											
	LOW-tO-r	lign transition o	niy. s denerated o	n transition of th	ne comparator	output:						
		= 0 (non-invert	ed polarity):			output.						
	Low-to-h	high transition o	nly.									
	If CPOL	= <u>1 (inverted p</u>	<u>olarity):</u>									
	Hign-to-	iow transition of	11y. Jeneration is d	isahlad								
	00 = Trigger/event/interrupt generation is disabled											

R/P-1	R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FWDTEN	WINDIS		FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
oit 7							bit
egend:							
Readal	ble bit	P = Program	nable bit	U = Unimplen	nented bit. rea	d as '0'	
n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		labdaa Timar C	nabla bit				
IC 7		choog Timer E	nable bit				
	1 = WDT is ena	abled (control	is placed on the	e SWDTEN bit))		
it 6	WINDIS: Wind	owed Watchdo	ng Timer Disabl	e hit	,		
it o	1 = Standard V	VDT is selected	d: windowed W	DT disabled			
	0 = Windowed	WDT is enable	ed				
it 5	Unimplemente	ed: Read as '0	,				
it 4	FWPSA: WDT	Prescaler bit					
	1 = WDT preso	caler ratio of 1:	128				
	0 = WDT prese	caler ratio of 1:	32				
it 3-0	WDTPS<3:0>:	Watchdog Tin	ner Postscale S	elect bits			
	1111 = 1:32,7 6	68					
	1110 = 1:16,38	84					
	1101 = 1:8,192	2					
	1 1 0 0 = 1:4,090	9 9					
	1011 = 1.2,040 1010 = 1.1024	4					
	1001 = 1:512						
	1000 = 1:256						
	0111 = 1:128						
	0110 = 1:64						
	0101 = 1:32						
	0100 - 1.10 0011 = 1.8						
	0010 = 1:4						
	0001 = 1:2						
	0000 = 1:1						

REGISTER 26-5: FWDT: WATCHDOG TIMER CONFIGURATION REGISTER

R/P-1	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1	
DEBUG	—	_	—	—	—	FICD1	FICD0	
bit 7							bit 0	
Legend:								
R = Readable bit P = Programmable bit			nable bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 7	DEBUG: Back	ground Debugg	ger Enable bit					
	1 = Backgroun	d debugger is o	disabled					
	0 = Backgroun	d debugger fun	ctions are ena	bled				
bit 6-2	Unimplemented: Read as '0'							
bit 1-0	bit 1-0 FICD<1:0:> ICD Pin Select bits							
11 = PGC1/PGD1 are used for programming and debugging the device								

10 = PGC2/PGD2 are used for programming and debugging the device

REGISTER 26-7: FICD: IN-CIRCUIT DEBUGGER CONFIGURATION REGISTER

01 = PGC3/PGD3 are used for programming and debugging the device

00 = Reserved; do not use

REGISTER 26-9: DEVID: DEVICE ID REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_	—	—	—	—	—	—		
bit 23							bit 16		
R	R	R	R	R	R	R	R		
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0		
bit 15							bit 8		
R	R	R	R	R	R	R	R		
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0		
bit 7						•	bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 23-16	Unimplemen	ted: Read as 'd)'						
bit 15-8	FAMID<7:0>:	Device Family	Identifier bits						
	00001011 =	PIC24F16KA10	02 family						
bit 7-0	bit 7-0 DEV<7:0>: Individual Device Identifier bits								

00000011 = PIC24F16KA102 00001010 = PIC24F08KA102 00000001 = PIC24F16KA101 00001000 = PIC24F08KA101

REGISTER 26-10: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—		—	—			—	—	
bit 23							bit 16	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		—	—	—	—	—	—	
bit 15			•				bit 8	
U-0	U-0	U-0	U-0	R	R	R	R	
_		_	_	REV3	REV2	REV1	REV0	
bit 7			•			•	bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 23-4 Unimplemented: Read as '0'

bit 3-0 REV<3:0>: Minor Revision Identifier bits

DC CH	ARACTI	ERISTICS	Standard Op Operating te	perating C mperature	onditions: -40°C ≤ -40°C ≤	1.8V to 3 ≤ TA ≤ +8 ≤ TA ≤ +1	5°C for Industrial 25°C for Extended
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾	_		_	_	
DI10		I/O Pins	Vss		0.2 Vdd	V	
DI15		MCLR	Vss		0.2 Vdd	V	
DI16		OSCI (XT mode)	Vss	_	0.2 Vdd	V	
DI17		OSCI (HS mode)	Vss	_	0.2 Vdd	V	
DI18		I/O Pins with I ² C™ Buffer	Vss	_	0.3 Vdd	V	SMBus disabled
DI19		I/O Pins with SMBus Buffer	Vss	—	0.8	V	SMBus enabled
	VIH (5)	Input High Voltage ⁽⁴⁾	—	—	-	—	
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	_	Vdd Vdd	V V	
DI25		MCLR	0.8 Vdd	_	Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd	—	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd	_	Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd	_ _	VDD VDD	V V	
DI29		I/O Pins with SMBus	2.1	—	VDD	V	$2.5V \le VPIN \le VDD$
DI30		CNx Pull-up Current	50	250	500	μΑ	VDD = 3.3V, VPIN = VSS
	IIL	Input Leakage Current ^(2,3)					
D150		I/O Ports	—	0.050	±0.100	μΑ	Vss ≤ VPIN ≤ VDD, Pin at high-impedance
DI51		VREF+, VREF-, AN0, AN1	_	0.300	±0.500	μΑ	$Vss \le VPIN \le VDD,$ Pin at high-impedance
DI55		MCLR	_	—	±5.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSCI	_	_	±5.0	μA	$Vss \le VPIN \le VDD,$ XT and HS modes

TABLE 29-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: Refer to Table 1-2 for I/O pin buffer types.
- 5: VIH requirements are met when internal pull-ups are enabled.

DC CHA	RACTER	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions				
-	Vol	Output Low Voltage					
DO10		All I/O Pins	—	—	0.4	V	IOL = 4.0 mA, VDD = 3.6V
			—	—	0.4	V	IOL = 3.5 mA, VDD = 2.0V
DO16		OSC2/CLKO	—	—	0.4	V	IOL = 8.0 mA, VDD = 3.6V
			—	—	0.4	V	IOL = 4.5 mA, VDD = 1.8V
	Vон	Output High Voltage					
DO20		All I/O Pins	3	—	—	V	Iон = -3.0 mA, Vdd = 3.6V
			1.8	—	—	V	IOH = -1.0 mA, VDD = 2.0V
DO26		OSC2/CLKO	3	—	—	V	Іон = -2.5 mA, Vdd = 3.6V
			1.8	—	—	V	ІОН = -1.0 mA, VDD = 2.0V

TABLE 29-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

29.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24F16KA102 family AC characteristics and timing parameters.

TABLE 29-17: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended
	Operating voltage VDD range as described in Section 29.1 "DC Characteristics".

FIGURE 29-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 29-18: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO pin	_	_	15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_		400	pF	In l ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 29-19: SPIX MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 0)

TABLE 29-38: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 0)

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
SP70	TscL	SCKx Input Low Time	30	_		ns	
SP71	TscH	SCKx Input High Time	30	_	_	ns	
SP72	TscF	SCKx Input Fall Time ⁽²⁾	—	10	25	ns	
SP73	TscR	SCKx Input Rise Time ⁽²⁾	—	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾	—	10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾	—	10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		30	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20		—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	
SP50	TssL2scH, TssL2scL	\overline{SSx} to SCKx \uparrow or SCKx Input	120		_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	_	50	ns	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS					
Dimension Lim	nits	MIN	NOM	MAX		
Number of Pins	N		20			
Pitch	е	1.27 BSC				
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	12.80 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	_	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2