

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	75264
Total RAM Bits	516096
Number of I/O	620
Number of Gates	3000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/agle3000v2-fg896

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash Advantages

Low Power

Flash-based IGLOOe devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOOe devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

IGLOOe devices also have low dynamic power consumption to further maximize power savings; power is even further reduced by the use of a 1.2 V core voltage.

Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOOe device the lowest total system power offered by any FPGA.

Security

The nonvolatile, flash-based IGLOOe devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOOe devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

IGLOOe devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in IGLOOe devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOOe devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOOe devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of the IGLOOe family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The IGLOOe family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOOe device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based IGLOOe FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Flash-based IGLOOe devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOOe devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOOe device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOOe devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

Kana Microsemi

IGLOOe DC and Switching Characteristics

Table 2-12 • Quiescent Supply Current (IDD) Characteristics, No Flash*Freeze Mode¹

	Core Voltage	AGLE600	AGLE3000	Units
ICCA Current ²				
Typical (25°C)	1.2 V	28	89	μΑ
	1.5 V	82	320	μΑ
ICCI or IJTAG Current ³				
VCCI/VJTAG = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	μA
VCCI/VJTAG = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	μΑ
VCCI/VJTAG = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	μA
VCCI/VJTAG = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	μA
VCCI/VJTAG= 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	μA

Notes:

IDD = N_{BANKS} × ICCI + ICCA. JTAG counts as one bank when powered.
 Includes VCC and VPUMP and VCCPLL currents.

3. Values do not include I/O static contribution (PDC6 and PDC7).

Power per I/O Pin

Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings

	VCCI (V)	Static Power PDC6 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL/LVCMOS	3.3	-	16.34
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	-	24.49
3.3 V LVCMOS Wide Range ³	3.3	-	16.34
3.3 V LVCMOS Wide Range – Schmitt trigger ³	3.3	-	24.49
2.5 V LVCMOS	2.5	-	4.71
2.5 V LVCMOS	2.5	-	6.13
1.8 V LVCMOS	1.8	-	1.66
1.8 V LVCMOS – Schmitt trigger	1.8	-	1.78
1.5 V LVCMOS (JESD8-11)	1.5	-	1.01
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	-	0.97
1.2 V LVCMOS ⁴	1.2	-	0.60
1.2 V LVCMOS – Schmitt trigger ⁴	1.2	-	0.53
1.2 V LVCMOS Wide Range ⁴	1.2	-	0.60
1.2 V LVCMOS Wide Range – Schmitt trigger ⁴	1.2	-	0.53
3.3 V PCI	3.3	-	17.76
3.3 V PCI – Schmitt trigger	3.3	-	19.10
3.3 V PCI-X	3.3	-	17.76
3.3 V PCI-X – Schmitt trigger	3.3	-	19.10
Voltage-Referenced	•		
3.3 V GTL	3.3	2.90	7.14
2.5 V GTL	2.5	2.13	3.54
3.3 V GTL+	3.3	2.81	2.91
2.5 V GTL+	2.5	2.57	2.61
HSTL (I)	1.5	0.17	0.79
HSTL (II)	1.5	0.17	.079
SSTL2 (I)	2.5	1.38	3.26
SSTL2 (II)	2.5	1.38	3.26
SSTL3 (I)	3.3	3.21	7.97
SSTL3 (II)	3.3	3.21	7.97
Differential	-	÷	
LVDS	2.5	2.26	0.89
LVPECL	3.3	5.71	1.94

Notes:

1. PDC6 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCCI.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

4. Applicable for IGLOOe V2 devices only.

Table 2-25 •Summary of I/O Timing Characteristics—Software Default Settings
Std. Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI (per standard)

I/O Standard	다 Drive Strength (mA)	Equivalent Software Default Drive Strength Option ¹ (mA)	E Slew Rate	ر Capacitive Load (pF)	External Resistor (Ω)	с б tpouт (ns)	top (ns)	touv (ns)	р (ns)	tevs (ns)	о в teouт (ns)	2 t _{ZL} (ns)	b t _{zH} (ns)	2 t _{LZ} (ns)	e t _{Hz} (ns)	5 tzLS (ns)	د t _{zHS} (ns)	5 Units
3.3 V LVCMOS	12	12	riigii	Ũ		0.07	2.12	0.10	1.00	1.01	0.00	2.17	1.00	2.7 1	0.00	0.70	0.20	110
3.3 V LVCMOS Wide Range ^{1, 2}	100 µA	12	High	5	_	0.97	2.96	0.18	1.42	1.84	0.66	2.98	2.28	3.86	4.36	6.58	5.87	ns
2.5 V LVCMOS	12	12	High	5	-	.097	2.15	0.18	1.31	1.41	0.66	2.20	1.85	2.78	2.98	5.80	5.45	ns
1.8 V LVCMOS	12	12	High	5	-	0.97	2.37	0.18	1.27	1.59	0.66	2.42	2.03	3.07	3.57	6.02	5.62	ns
1.5 V LVCMOS	12	12	High	5	-	0.97	2.69	0.18	1.47	1.77	0.66	2.75	2.30	3.24	3.67	6.35	5.89	ns
3.3 V PCI	Per PCI spec	-	High	10	25 ³	0.97	2.38	0.18	0.96	1.42	0.66	2.43	1.80	2.72	3.08	6.03	5.39	ns
3.3 V PCI-X	Per PCI-X spec	_	High	10	25 ³	0.97	2.38	0.19	0.92	1.34	0.66	2.43	1.80	2.72	3.08	6.03	5.39	ns
3.3 V GTL	20 ⁴	-	High	10	25	0.97	1.78	0.19	2.35	_	0.66	1.80	1.78	-	-	5.39	5.38	ns
2.5 V GTL	20 ⁴	-	High	10	25	0.97	1.85	0.19	1.98	-	0.66	1.89	1.82	-	-	5.49	5.42	ns
3.3 V GTL+	35	-	High	10	25	0.97	1.80	0.19	1.32	-	0.66	1.84	1.77	-	-	5.44	5.36	ns
2.5 V GTL+	33	-	High	10	25	0.97	1.92	0.19	1.26	-	0.66	1.96	1.80	-	-	5.56	5.40	ns
HSTL (I)	8	1	High	20	50	0.97	2.67	0.18	1.72	1	0.66	2.72	2.67	-	-	6.32	6.26	ns
HSTL (II)	15	1	High	20	25	0.97	2.55	0.18	1.72	1	0.66	2.60	2.34	-	-	6.20	5.93	ns
SSTL2 (I)	15	1	High	30	50	0.97	1.86	0.19	1.12	1	0.66	1.90	1.68	-	_	5.50	5.28	ns
SSTL2 (II)	18	Ι	High	30	25	0.97	1.89	0.19	1.12	I	0.66	1.93	1.62	-	-	5.53	5.22	ns
SSTL3 (I)	14	-	High	30	50	0.97	2.00	0.19	1.06	-	0.66	2.04	1.67	-	-	5.64	5.27	ns
SSTL3 (II)	21	_	High	30	25	0.97	1.81	0.19	1.06	_	0.66	1.85	1.55	-	_	5.45	5.14	ns
LVDS	24	_	High	-	-	0.97	1.73	0.19	1.62	-	-	-	-	-	-	_	-	ns
LVPECL	24	-	High	-	-	0.97	1.65	0.18	1.42	_	-	-	-	-	-	-	-	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

3. Resistance is used to measure I/O propagation delays as defined in PCI Specifications. See Figure 2-12 on page 2-49 for connectivity. This resistor is not required during normal operation.

4. Output drive strength is below JEDEC specification.

5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

static Microsemi.

IGLOOe DC and Switching Characteristics

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic is a general purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is supported as part of the 3.3 V LVTTL support.

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	IH	VOL	VOH	IOL	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	132	127	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	268	181	10	10

 Table 2-34 •
 Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-7 • AC Loading

Table 2-35 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	1.4	-	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

 Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

 Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Unit s
4 mA	Std.	0.97	4.90	0.18	1.08	1.34	0.66	5.00	3.99	2.27	2.16	8.60	7.59	ns
8 mA	Std.	0.97	4.05	0.18	1.08	1.34	0.66	4.13	3.45	2.53	2.65	7.73	7.05	ns
12 mA	Std.	0.97	3.44	0.18	1.08	1.34	0.66	3.51	3.05	2.71	2.95	7.11	6.64	ns
16 mA	Std.	0.97	3.27	0.18	1.08	1.34	0.66	3.34	2.96	2.74	3.04	6.93	6.55	ns
24 mA	Std.	0.97	3.18	0.18	1.08	1.34	0.66	3.24	2.97	2.79	3.36	6.84	6.56	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.97	2.85	0.18	1.08	1.34	0.66	2.92	2.27	2.27	2.27	6.51	5.87	ns
8 mA	Std.	0.97	2.39	0.18	1.08	1.34	0.66	2.44	1.88	2.53	2.76	6.03	5.47	ns
12 mA	Std.	0.97	2.12	0.18	1.08	1.34	0.66	2.17	1.69	2.71	3.08	5.76	5.28	ns
16 mA	Std.	0.97	2.08	0.18	1.08	1.34	0.66	2.12	1.65	2.75	3.17	5.72	5.25	ns
24 mA	Std.	0.97	2.10	0.18	1.08	1.34	0.66	2.14	1.60	2.80	3.49	5.74	5.20	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-44 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
100 µA	4 mA	Std.	1.55	8.14	0.26	1.66	2.14	1.10	8.14	6.46	3.80	3.79	13.93	12.25	ns
100 µA	8 mA	Std.	1.55	6.68	0.26	1.66	2.14	1.10	6.68	5.57	4.25	4.69	12.47	11.36	ns
100 µA	12 mA	Std.	1.55	5.65	0.26	1.66	2.14	1.10	5.65	4.91	4.55	5.25	11.44	10.69	ns
100 µA	16 mA	Std.	1.55	5.36	0.26	1.66	2.14	1.10	5.36	4.76	4.61	5.41	11.14	10.55	ns
100 µA	24 mA	Std.	1.55	5.20	0.26	1.66	2.14	1.10	5.20	4.78	4.69	6.00	10.99	10.56	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-45 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zнs}	Units
100 µA	4 mA	Std.	1.55	4.65	0.26	1.66	2.14	110	4.65	3.64	3.80	4.00	10.44	9.43	ns
100 µA	8 mA	Std.	1.55	3.85	0.26	1.66	2.14	1.10	3.85	2.99	4.25	4.91	9.64	8.77	ns
100 µA	12 mA	Std.	1.55	3.40	0.26	1.66	2.14	1.10	3.40	2.68	4.55	5.49	9.19	8.46	ns
100 µA	16 mA	Std.	1.55	3.33	0.26	1.66	2.14	1.10	3.33	2.62	4.62	5.65	9.11	8.41	ns
100 µA	24 mA	Std.	1.55	3.36	0.26	1.66	2.14	1.10	3.36	2.54	4.71	6.24	9.15	8.32	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

3. Software default selection highlighted in gray.

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

Timing Characteristics

1.5 V DC Core Voltage

Table 2-71 • 3.3 V PCI/PCI-X – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.97	2.38	0.18	0.96	1.42	0.66	2.43	1.80	2.72	3.08	6.03	5.39	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-72 • 3.3 V PCI/PCI-X – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.76	0.26	1.19	1.63	1.10	2.79	2.16	3.29	3.97	8.58	7.94	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class II		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA⁴
18 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI - 0.43	18	18	169	124	10	10

Table 2-101 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-20 • AC Loading

Table 2-102 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input HIGH (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-103 • SSTL 2 Class II – Applies to 1.5 V DC Core Voltage

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V,
```

Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{ZHS}	Units
Std.	0.98	1.94	0.19	1.15	0.67	1.97	1.66			5.60	5.29	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-104 • SSTL 2 Class II – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.20	0.26	1.39	1.10	2.24	1.97			8.05	7.78	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-138 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	1.61	ns
t _{SUD}	Data Setup Time for the Core Register	1.17	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	1.29	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.87	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.89	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.24	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.46	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.46	ns
t _{CKMPWH}	Clock Minimum Pulse Width HIGH for the Core Register	0.95	ns
t _{CKMPWL}	Clock Minimum Pulse Width LOW for the Core Register	0.95	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Global Resource Characteristics

AGLE600 Clock Tree Topology

Clock delays are device-specific. Figure 2-39 is an example of a global tree used for clock routing. The global tree presented in Figure 2-39 is driven by a CCC located on the west side of the AGLE600 device. It is used to drive all D-flip-flops in the device.

Figure 2-39 • Example of Global Tree Use in an AGLE600 Device for Clock Routing

Figure 2-40 • Peak-to-Peak Jitter Definition

3 – Pin Descriptions and Packaging

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V for IGLOOe V5 devices, and 1.2 V or 1.5 V for IGLOOe V2 devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

For IGLOOe V2 devices, VCC can be switched dynamically from 1.2 V to 1.5 V or vice versa. This allows in-system programming (ISP) when VCC is at 1.5 V and the benefit of low power operation when VCC is at 1.2 V.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on IGLOOe devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.

VMVx

I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V or 1.2 V, depending on the device.

- 1.5 V for IGLOOe devices
- 1.2 V or 1.5 V for IGLOOe V2 devices

When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section in the "Clock Conditioning Circuits in Low Power Flash FPGAs and Mixed Signal FPGAs" chapter in the *IGLOOe FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There are six VCCPLX pins on IGLOOe devices.

Related Documents

User's Guides

IGLOOe FPGA Fabric User's Guide http://www.microsemi.com/soc/documents/IGLOOe UG.pdf

Packaging Documents

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials: http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

FG256							
Pin Number	AGLE600 Function						
P9	IO82PDB5V0						
P10	IO76NDB4V1						
P11	IO76PDB4V1						
P12	VMV4						
P13	TCK						
P14	VPUMP						
P15	TRST						
P16	GDA0/IO67NDB3V1						
R1	GEA1/IO102PDB6V0						
R2	GEA0/IO102NDB6V0						
R3	GNDQ						
R4	GEC2/IO99PDB5V2						
R5	IO95NPB5V1						
R6	IO91NDB5V1						
R7	IO91PDB5V1						
R8	IO83NDB5V0						
R9	IO83PDB5V0						
R10	IO77NDB4V1						
R11	IO77PDB4V1						
R12	IO69NDB4V0						
R13	GDB2/IO69PDB4V0						
R14	TDI						
R15	GNDQ						
R16	TDO						
T1	GND						
T2	IO100NDB5V2						
Т3	FF/GEB2/IO100PDB5 V2						
T4	IO99NDB5V2						
T5	IO88NDB5V0						
Т6	IO88PDB5V0						
T7	IO89NSB5V0						
Т8	IO80NSB4V1						
Т9	IO81NDB4V1						
T10	IO81PDB4V1						
T11	IO70NDB4V0						

FG256								
Pin Number	AGLE600 Function							
T12	GDC2/IO70PDB4V0							
T13	IO68NDB4V0							
T14	GDA2/IO68PDB4V0							
T15	TMS							
T16	GND							

FG484			FG484	FG484			
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function		
C18	GND	E9	IO22NDB0V2	F22	IO98NDB2V2		
C19	IO76PPB1V4	E10	IO30NDB0V3	G1	IO289NDB7V1		
C20	IO88NDB2V0	E11	IO38PDB0V4	G2	IO289PDB7V1		
C21	IO94PPB2V1	E12	IO44NDB1V0	G3	IO291PPB7V2		
C22	VCCIB2	E13	IO58NDB1V2	G4	IO295PDB7V2		
D1	IO293PDB7V2	E14	IO58PDB1V2	G5	IO297PDB7V2		
D2	IO303NDB7V3	E15	GBC1/IO79PDB1V4	G6	GAC2/IO307PDB7V4		
D3	IO305NDB7V3	E16	GBB0/IO80NDB1V4	G7	VCOMPLA		
D4	GND	E17	GNDQ	G8	GNDQ		
D5	GAA0/IO00NDB0V0	E18	GBA2/IO82PDB2V0	G9	IO26NDB0V3		
D6	GAA1/IO00PDB0V0	E19	IO86NDB2V0	G10	IO26PDB0V3		
D7	GAB0/IO01NDB0V0	E20	GND	G11	IO36PDB0V4		
D8	IO20PDB0V2	E21	IO90NDB2V1	G12	IO42PDB1V0		
D9	IO22PDB0V2	E22	IO98PDB2V2	G13	IO50PDB1V1		
D10	IO30PDB0V3	F1	IO299NPB7V3	G14	IO60NDB1V2		
D11	IO38NDB0V4	F2	IO301NDB7V3	G15	GNDQ		
D12	IO52NDB1V1	F3	IO301PDB7V3	G16	VCOMPLB		
D13	IO52PDB1V1	F4	IO308NDB7V4	G17	GBB2/IO83PDB2V0		
D14	IO66NDB1V3	F5	IO309NDB7V4	G18	IO92PDB2V1		
D15	IO66PDB1V3	F6	VMV7	G19	IO92NDB2V1		
D16	GBB1/IO80PDB1V4	F7	VCCPLA	G20	IO102PDB2V2		
D17	GBA0/IO81NDB1V4	F8	GAC0/IO02NDB0V0	G21	IO102NDB2V2		
D18	GBA1/IO81PDB1V4	F9	GAC1/IO02PDB0V0	G22	IO105NDB2V2		
D19	GND	F10	IO32NDB0V3	H1	IO286PSB7V1		
D20	IO88PDB2V0	F11	IO32PDB0V3	H2	IO291NPB7V2		
D21	IO90PDB2V1	F12	IO44PDB1V0	H3	VCC		
D22	IO94NPB2V1	F13	IO50NDB1V1	H4	IO295NDB7V2		
E1	IO293NDB7V2	F14	IO60PDB1V2	H5	IO297NDB7V2		
E2	IO299PPB7V3	F15	GBC0/IO79NDB1V4	H6	IO307NDB7V4		
E3	GND	F16	VCCPLB	H7	IO287PDB7V1		
E4	GAB2/IO308PDB7V4	F17	VMV2	H8	VMV0		
E5	GAA2/IO309PDB7V4	F18	IO82NDB2V0	H9	VCCIB0		
E6	GNDQ	F19	IO86PDB2V0	H10	VCCIB0		
E7	GAB1/IO01PDB0V0	F20	IO96PDB2V1	H11	IO36NDB0V4		
E8	IO20NDB0V2	F21	IO96NDB2V1	H12	IO42NDB1V0		

FG484			FG484	FG484			
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function		
N8	VCCIB6	P21	IO130PDB3V2	T12	IO194NDB5V0		
N9	VCC	P22	IO128NDB3V1	T13	IO186NDB4V4		
N10	GND	R1	IO247NDB6V1	T14	IO186PDB4V4		
N11	GND	R2	IO245PDB6V1	T15	GNDQ		
N12	GND	R3	VCC	T16	VCOMPLD		
N13	GND	R4	IO249NPB6V1	T17	VJTAG		
N14	VCC	R5	IO251NDB6V2	T18	GDC0/IO151NDB3V4		
N15	VCCIB3	R6	IO251PDB6V2	T19	GDA1/IO153PDB3V4		
N16	IO116NPB3V0	R7	GEC0/IO236NPB6V0	T20	IO144PDB3V3		
N17	IO132NPB3V2	R8	VMV5	T21	IO140PDB3V3		
N18	IO117NPB3V0	R9	VCCIB5	T22	IO134NDB3V2		
N19	IO132PPB3V2	R10	VCCIB5	U1	IO240PPB6V0		
N20	GNDQ	R11	IO196NDB5V0	U2	IO238PDB6V0		
N21	IO126NDB3V1	R12	IO196PDB5V0	U3	IO238NDB6V0		
N22	IO128PDB3V1	R13	VCCIB4	U4	GEB1/IO235PDB6V0		
P1	IO247PDB6V1	R14	VCCIB4	U5	GEB0/IO235NDB6V0		
P2	IO253PDB6V2	R15	VMV3	U6	VMV6		
P3	IO270NPB6V4	R16	VCCPLD	U7	VCCPLE		
P4	IO261NPB6V3	R17	GDB1/IO152PPB3V4	U8	IO233NPB5V4		
P5	IO249PPB6V1	R18	GDC1/IO151PDB3V4	U9	IO222PPB5V3		
P6	IO259PDB6V3	R19	IO138NDB3V3	U10	IO206PDB5V1		
P7	IO259NDB6V3	R20	VCC	U11	IO202PDB5V1		
P8	VCCIB6	R21	IO130NDB3V2	U12	IO194PDB5V0		
P9	GND	R22	IO134PDB3V2	U13	IO176NDB4V2		
P10	VCC	T1	IO243PPB6V1	U14	IO176PDB4V2		
P11	VCC	T2	IO245NDB6V1	U15	VMV4		
P12	VCC	Т3	IO243NPB6V1	U16	TCK		
P13	VCC	T4	IO241PDB6V0	U17	VPUMP		
P14	GND	T5	IO241NDB6V0	U18	TRST		
P15	VCCIB3	Т6	GEC1/IO236PPB6V0	U19	GDA0/IO153NDB3V4		
P16	GDB0/IO152NPB3V4	T7	VCOMPLE	U20	IO144NDB3V3		
P17	IO136NDB3V2	Т8	GNDQ	U21	IO140NDB3V3		
P18	IO136PDB3V2	Т9	GEA2/IO233PPB5V4	U22	IO142PDB3V3		
P19	IO138PDB3V3	T10	IO206NDB5V1	V1	IO239PDB6V0		
P20	VMV3	T11	IO202NDB5V1	V2	IO240NPB6V0		

FG896

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

	FG896		FG896	FG896			
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function		
AC18	IO182PPB4V3	AD22	VCCIB4	AE26	GDB0/IO152NDB3V4		
AC19	IO170NPB4V2	AD23	тск	AE27	GDB1/IO152PDB3V4		
AC20	IO164NDB4V1	AD24	VCC	AE28	VMV3		
AC21	IO164PDB4V1	AD25	TRST	AE28	VMV3		
AC22	IO162PPB4V1	AD26	VCCIB3	AE29	VCC		
AC23	GND	AD27	GDA0/IO153NDB3V4	AE30	IO149PDB3V4		
AC24	VCOMPLD	AD28	GDC0/IO151NDB3V4	AF1	GND		
AC25	IO150NDB3V4	AD29	GDC1/IO151PDB3V4	AF2	IO238PPB6V0		
AC26	IO148NDB3V4	AD30	GND	AF3	VCCIB6		
AC27	GDA1/IO153PDB3V4	AE1	IO242PPB6V1	AF4	IO220NPB5V3		
AC28	IO145NDB3V3	AE2	VCC	AF5	VCC		
AC29	IO143NDB3V3	AE3	IO239PDB6V0	AF6	IO228NDB5V4		
AC30	IO137NDB3V2	AE4	IO239NDB6V0	AF7	VCCIB5		
AD1	GND	AE5	VMV6	AF8	IO230PDB5V4		
AD2	IO242NPB6V1	AE5	VMV6	AF9	IO229NDB5V4		
AD3	IO240NDB6V0	AE6	GND	AF10	IO229PDB5V4		
AD4	GEC0/IO236NDB6V0	AE7	GNDQ	AF11	IO214PPB5V2		
AD5	VCCIB6	AE8	IO230NDB5V4	AF12	IO208NDB5V1		
AD6	GNDQ	AE9	IO224NPB5V3	AF13	IO208PDB5V1		
AD6	GNDQ	AE10	IO214NPB5V2	AF14	IO200PDB5V0		
AD7	VCC	AE11	IO212NDB5V2	AF15	IO196NDB5V0		
AD8	VMV5	AE12	IO212PDB5V2	AF16	IO186NDB4V4		
AD9	VCCIB5	AE13	IO202NPB5V1	AF17	IO186PDB4V4		
AD10	IO224PPB5V3	AE14	IO200NDB5V0	AF18	IO180NDB4V3		
AD11	IO218NPB5V3	AE15	IO196PDB5V0	AF19	IO180PDB4V3		
AD12	IO216PPB5V2	AE16	IO190NDB4V4	AF20	IO168NDB4V1		
AD13	IO210PPB5V2	AE17	IO184PDB4V3	AF21	IO168PDB4V1		
AD14	IO202PPB5V1	AE18	IO184NDB4V3	AF22	IO160NDB4V0		
AD15	IO194PDB5V0	AE19	IO172PDB4V2	AF23	IO158NPB4V0		
AD16	IO190PDB4V4	AE20	IO172NDB4V2	AF24	VCCIB4		
AD17	IO182NPB4V3	AE21	IO166NDB4V1	AF25	IO154NPB4V0		
AD18	IO176NDB4V2	AE22	IO160PDB4V0	AF26	VCC		
AD19	IO176PDB4V2	AE23	GNDQ	AF27	TDO		
AD20	IO170PPB4V2	AE24	VMV4	AF28	VCCIB3		
AD21	IO166PDB4V1	AE25	GND	AF29	GNDQ		

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.