

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	75264
Total RAM Bits	516096
Number of I/O	620
Number of Gates	300000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/agle3000v2-fg896i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOOe Device Family Overview

SRAM and FIFO

IGLOOe devices have embedded SRAM blocks along their north and south sides. Each variable-aspectratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

IGLOOe devices provide designers with very flexible clock conditioning capabilities. Each member of the IGLOOe family contains six CCCs, each with an integrated PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

- Wide input frequency range ($f_{IN CCC}$) = 1.5 MHz up to 250 MHz
- Output frequency range (f_{OUT CCC}) = 0.75 MHz up to 250 MHz
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration.
- Output duty cycle = 50% ± 1.5% or better
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used
- Maximum acquisition time is 300 µs
- Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns
- Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz / fout_ccc

Global Clocking

IGLOOe devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

IGLOOe Device Family Overview

m file Save to file	<u></u>		Show BSR [
Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
SYPASS_IO	ADLIB:INBUF	K1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
_ED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR[3]	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
DEa	ADLIB:INBUF	E4	Z
ЭЕЬ	ADLIB:INBUF	F1	Z
DSC_EN	ADLIB:INBUF	К3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	R7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF_LVCMOS33U	R6	Z

Figure 1-4 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T_J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

<i>Table 2-3</i> • Flash Programming Limits – Retention, Storage, and Operating Temperature	Table 2-3 •	Flash Programming Limits – Retention, Storage, and Operating Temperature ¹
---	-------------	---

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

Table 2-4 •	Overshoot and Undershoot Limits ^{1, 3}

VCCI	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Notes:

1. Based on reliability requirements at junction temperature at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every IGLOOe device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5.

There are five regions to consider during power-up.

IGLOOe I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V

VCC Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

• During programming, I/Os become tristated and weakly pulled up to VCCI.

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power modes usage. Microsemi recommends using the PowerCalculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 • Power Supply State per Mode

	Power Supply Configurations						
Modes/power supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP		
Flash*Freeze	On	On	On	On	On/off/floating		
Sleep	Off	Off	On	Off	Off		
Shutdown	Off	Off	Off	Off	Off		
No Flash*Freeze	On	On	On	On	On/off/floating		

Note: Off: Power supply level = 0 V

Table 2-9 • Quiescent Supply Current (IDD), IGLOOe Flash*Freeze Mode*

	Core Voltage	AGLE600	AGLE3000	Units
Typical (25°C)	1.2 V	34	95	μΑ
	1.5 V	72	310	μA

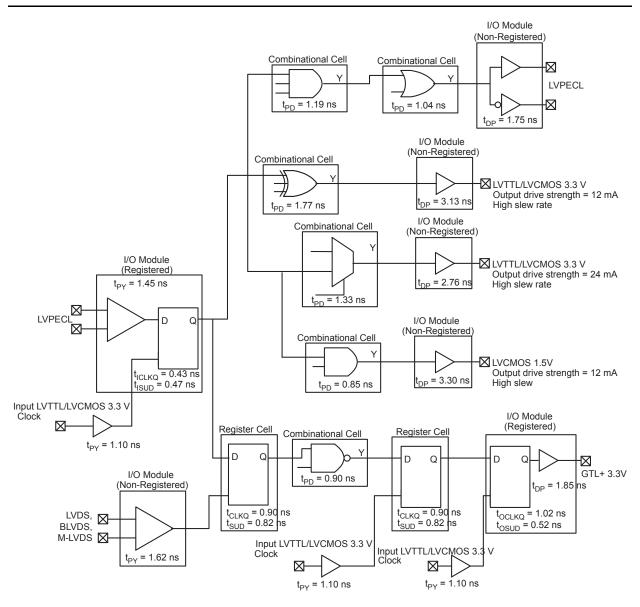
Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 and Table 2-14 on page 2-10 (PDC6 and PDC7).

Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOOe Sleep Mode*

	Core Voltage	AGLE600	AGLE3000	Units
VCCI/VJTAG = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	μA
VCCI/VJTAG = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	μA
VCCI/VJTAG = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	μA
VCCI/VJTAG = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	μA
VCCI/VJTAG= 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	μA

Note: $*IDD = N_{BANKS} \times ICCI$. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 and Table 2-14 on page 2-10 (PDC6 and PDC7).

Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOOe Shutdown Mode*


	Core Voltage	AGLE600	AGLE3000	Units
Typical (25°C)	1.2 V / 1.5 V	0	0	μA

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

User I/O Characteristics

Timing Model

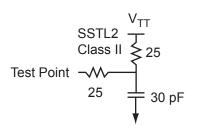
Figure 2-3 • Timing Model Operating Conditions: Std. Speed, Commercial Temperature Range (T_J = 70°C), Worst-Case VCC = 1.425 V, Applicable to 1.5 V DC Core Voltage, V2 and V5 devices

SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class II		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA⁴
18 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI - 0.43	18	18	169	124	10	10

Table 2-101 • Minimum and Maximum DC Input and Output Levels


Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-20 • AC Loading

Table 2-102 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input HIGH (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-103 • SSTL 2 Class II – Applies to 1.5 V DC Core Voltage

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V,
```

Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.98	1.94	0.19	1.15	0.67	1.97	1.66			5.60	5.29	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-104 • SSTL 2 Class II – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.20	0.26	1.39	1.10	2.24	1.97			8.05	7.78	ns

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by the Microsemi Designer software when the user instantiates a differential I/O macro in the design.

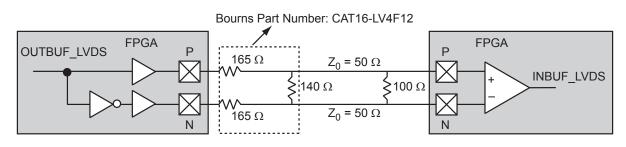
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

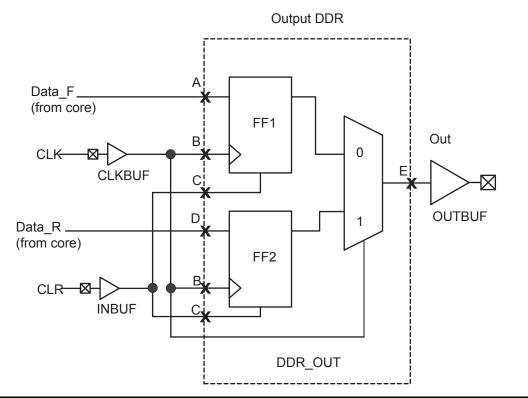
LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-23. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, IGLOOe also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).




Figure 2-23 • LVDS Circuit Diagram and Board-Level Implementation

1.2 V DC Core Voltage

Table 2-124 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.68	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.97	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	1.02	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	1.19	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	1.19	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.24	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.19	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.19	ns
t _{ICKMPWH}	Clock Minimum Pulse Width HIGH for the Input Data Register	0.31	ns
t _{ICKMPWL}	Clock Minimum Pulse Width LOW for the Input Data Register	0.28	ns

Output DDR Module

Figure 2-33 • Output DDR Timing Model

Table 2-132 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	A, B
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	A, B
t _{DDROHD2}	Data Hold Data_R	D, B

Microsemi.

IGLOOe DC and Switching Characteristics

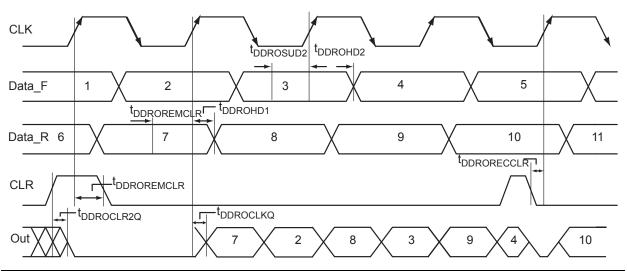


Figure 2-34 • Output DDR Timing Diagram

VersaTile Specifications as a Sequential Module

The IGLOOe library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *IGLOO*, *Fusion*, *and ProASIC3 Macro Library Guide*.

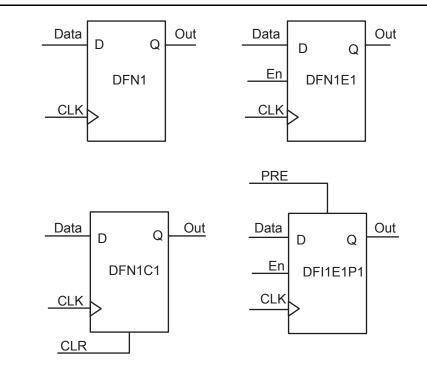


Figure 2-37 • Sample of Sequential Cells

1.2 V DC Core Voltage

Table 2-138 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	1.61	ns
t _{SUD}	Data Setup Time for the Core Register	1.17	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	1.29	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.87	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.89	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.24	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.46	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.46	ns
t _{CKMPWH}	Clock Minimum Pulse Width HIGH for the Core Register	0.95	ns
t _{CKMPWL}	Clock Minimum Pulse Width LOW for the Core Register	0.95	ns

static Microsemi.

IGLOOe DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-145 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address Setup Time	0.83	ns
t _{AH}	Address Hold Time	0.16	ns
t _{ENS}	REN, WEN Setup Time	0.81	ns
t _{ENH}	REN, WEN Hold Time	0.16	ns
t _{BKS}	BLK Setup Time	1.65	ns
t _{вкн}	BLK Hold Time	0.16	ns
t _{DS}	Input Data (DIN) Setup Time	0.71	ns
t _{DH}	Input Data (DIN) Hold Time	0.36	ns
CKQ1 Clock HIGH to New Data Valid on DOUT (output retained, WMODE = 0)		3.53	ns
	Clock HIGH to New Data Valid on DOUT (flow-through, WMODE = 1)	3.06	ns
t _{CKQ2}	Clock HIGH to New Data Valid on DOUT (pipelined)	1.81	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge		ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge		ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	0.41	ns
t _{RSTBQ}	RESET Low to Data Out Low on DOUT (flow-through)	2.06	ns
	RESET Low to Data Out Low on DOUT (pipelined)	2.06	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency	160	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

Table 2-146 • RAM512X18	
Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V	

Parameter	Description	Std.	Units
t _{AS}	Address Setup Time	0.83	ns
t _{AH}	Address Hold Time	0.16	ns
t _{ENS}	REN, WEN Setup Time	0.73	ns
t _{ENH}	REN, WEN Hold Time	0.08	ns
t _{DS}	Input Data (WD) Setup Time	0.71	ns
t _{DH}	Input Data (WD) Hold Time	0.36	ns
t _{CKQ1}	Clock HIGH to New Data Valid on RD (output retained, WMODE = 0)		ns
t _{CKQ2}	Clock HIGH to New Data Valid on RD (pipelined)		ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge		ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge		ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	2.06	ns
	RESET Low to Data Out Low on RD (pipelined)	2.06	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery		ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency	160	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

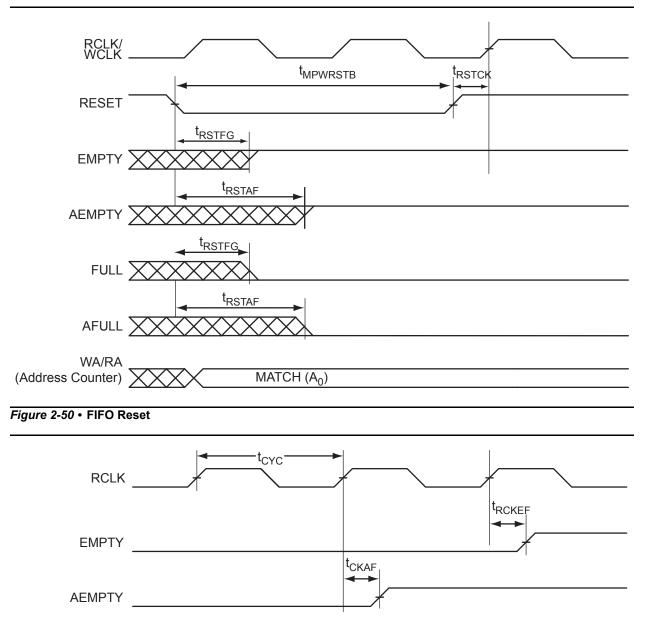


Figure 2-51 • FIFO EMPTY Flag and AEMPTY Flag Assertion

Applies to 1.2 V DC Core Voltage

Table 2-150 • FIFO

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.13	ns
t _{ENH}	REN, WEN Hold Time	0.31	ns
t _{BKS}	BLK Setup Time	0.47	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	1.56	ns
t _{DH}	Input Data (WD) Hold Time	0.49	ns
t _{CKQ1}	Clock HIGH to New Data Valid on RD (pass-through)	6.80	ns
t _{CKQ2}	Clock HIGH to New Data Valid on RD (pipelined)	3.62	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid	7.23	ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid	6.85	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	26.61	ns
t _{RSTFG}	RESET LOW to Empty/Full Flag Valid	7.12	ns
t _{RSTAF}	RESET LOW to Almost Empty/Full Flag Valid	26.33	ns
t _{RSTBQ}	RESET LOW to Data Out LOW on RD (pass-through)	4.09	ns
	RESET LOW to Data Out LOW on RD (pipelined)	4.09	ns
t _{REMRSTB}	RESET Removal	1.23	ns
t _{RECRSTB}	RESET Recovery	6.58	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency	92	MHz

Pin Descriptions and Packaging

Table 3-1 shows the Flash*Freeze pin location on the available packages. The Flash*Freeze pin location is independent of device (except for a PQ208 package), allowing migration to larger or smaller IGLOO devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the *IGLOOe FPGA Fabric User's Guide* for more information on I/O states during Flash*Freeze mode.

Table 3-1	• Flash*Freeze	Pin Locations	for IGI OOe	Devices

Package	Flash*Freeze Pin
FG256	Т3
FG484	W6
FG896	AH4

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

тск

Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 3-2 for more information.

VJTAG	Tie-Off Resistance ^{1,2}
VJTAG at 3.3 V	200 Ω to 1 k Ω
VJTAG at 2.5 V	200 Ω to 1 k Ω
VJTAG at 1.8 V	500 Ω to 1 k Ω
VJTAG at 1.5 V	500 Ω to 1 kΩ

Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

1. The TCK pin can be pulled-up or pulled-down.

2. The TRST pin is pulled-down.

3. Equivalent parallel resistance if more than one device is on the JTAG chain

	FG484	FG484		
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	
V3	GND	W15	GDC2/IO156PDB4V	
V4	GEA1/IO234PDB6V0	W16	IO154NDB4V0	
V5	GEA0/IO234NDB6V0	W17	GDA2/IO154PDB4V	
V6	GNDQ	W18	TMS	
V7	GEC2/IO231PDB5V4	W19	GND	
V8	IO222NPB5V3	W20	IO150NDB3V4	
V9	IO204NDB5V1	W21	IO146NDB3V4	
V10	IO204PDB5V1	W22	IO148PPB3V4	
V11	IO195NDB5V0	Y1	VCCIB6	
V12	IO195PDB5V0	Y2	IO237NDB6V0	
V13	IO178NDB4V3	Y3	IO228NDB5V4	
V14	IO178PDB4V3	Y4	IO224NDB5V3	
V15	IO155NDB4V0	Y5	GND	
V16	GDB2/IO155PDB4V0	Y6	IO220NDB5V3	
V17	TDI	Y7	IO220PDB5V3	
V18	GNDQ	Y8	VCC	
V19	TDO	Y9	VCC	
V20	GND	Y10	IO200PDB5V0	
V21	IO146PDB3V4	Y11	IO192PDB4V4	
V22	IO142NDB3V3	Y12	IO188NPB4V4	
W1	IO239NDB6V0	Y13	IO187PSB4V4	
W2	IO237PDB6V0	Y14	VCC	
W3	IO230PSB5V4	Y15	VCC	
W4	GND	Y16	IO164NDB4V1	
W5	IO232NDB5V4	Y17	IO164PDB4V1	
W6	FF/GEB2/IO232PDB5	Y18	GND	
	V4	Y19	IO158PPB4V0	
W7	IO231NDB5V4	Y20	IO150PDB3V4	
W8	IO214NDB5V2	Y21	IO148NPB3V4	
W9	IO214PDB5V2	Y22	VCCIB3	
W10	IO200NDB5V0	<u> </u>	1	
W11	IO192NDB4V4			
W12	IO184NDB4V3			
W13	IO184PDB4V3			

W14

IO156NDB4V0

FG896			FG896		FG896
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function
D30	GBA2/IO82PPB2V0	F5	VMV7	G7	VCC
E1	GND	F5	VMV7	G8	VMV0
E2	IO303NPB7V3	F6	GND	G9	VCCIB0
E3	VCCIB7	F7	GNDQ	G10	IO10NDB0V1
E4	IO305PPB7V3	F8	IO12NDB0V1	G11	IO16NDB0V1
E5	VCC	F9	IO12PDB0V1	G12	IO22PDB0V2
E6	GAC0/IO02NDB0V0	F10	IO10PDB0V1	G13	IO26PPB0V3
E7	VCCIB0	F11	IO16PDB0V1	G14	IO38NPB0V4
E8	IO06PPB0V0	F12	IO22NDB0V2	G15	IO36NDB0V4
E9	IO24NDB0V2	F13	IO30NDB0V3	G16	IO46NDB1V0
E10	IO24PDB0V2	F14	IO30PDB0V3	G17	IO46PDB1V0
E11	IO13NDB0V1	F15	IO36PDB0V4	G18	IO56NDB1V1
E12	IO13PDB0V1	F16	IO48NDB1V0	G19	IO56PDB1V1
E13	IO34NDB0V4	F17	IO48PDB1V0	G20	IO66NDB1V3
E14	IO34PDB0V4	F18	IO50NDB1V1	G21	IO66PDB1V3
E15	IO40NDB0V4	F19	IO58NDB1V2	G22	VCCIB1
E16	IO49NDB1V1	F20	IO60PDB1V2	G23	VMV1
E17	IO49PDB1V1	F21	IO77NDB1V4	G24	VCC
E18	IO50PDB1V1	F22	IO72NDB1V3	G25	GNDQ
E19	IO58PDB1V2	F23	IO72PDB1V3	G25	GNDQ
E20	IO60NDB1V2	F24	GNDQ	G26	VCCIB2
E21	IO77PDB1V4	F25	GND	G27	IO86NDB2V0
E22	IO68NDB1V3	F26	VMV2	G28	IO92NDB2V1
E23	IO68PDB1V3	F26	VMV2	G29	IO100PPB2V2
E24	VCCIB1	F27	IO86PDB2V0	G30	GND
E25	IO74PDB1V4	F28	IO92PDB2V1	H1	IO294PDB7V2
E26	VCC	F29	VCC	H2	IO294NDB7V2
E27	GBB1/IO80PPB1V4	F30	IO100NPB2V2	H3	IO300NDB7V3
E28	VCCIB2	G1	GND	H4	IO300PDB7V3
E29	IO82NPB2V0	G2	IO296NPB7V2	H5	IO295PDB7V2
E30	GND	G3	IO306NDB7V4	H6	IO299PDB7V3
F1	IO296PPB7V2	G4	IO297NDB7V2	H7	VCOMPLA
F2	VCC	G5	VCCIB7	H8	GND
F3	IO306PDB7V4	G6	GNDQ	H9	IO08NDB0V0
F4	IO297PDB7V2	G6	GNDQ	H10	IO08PDB0V0

Datasheet Information

Revision	Changes	Page		
Revision 3 (cont'd)	Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 was updated to change PDC3 to PDC7. The table notes were updated to reflect that power was measured on VCCI. Table note 4 is new.			
	Table 2-16 • Different Components Contributing to the Static Power Consumption in IGLOO Devices and Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO Devices were updated to add PDC6 and PDC7, and to change the definition for PDC5 to bank quiescent power.			
	A table subtitle was added for Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO Devices.			
	The "Total Static Power Consumption—PSTAT" section was updated to revise the calculation of P _{STAT} , including PDC6 and PDC7.			
	Footnote 1 was updated to include information about P_{AC13} . The PLL Contribution equation was changed from: $P_{PLL} = P_{AC13} + P_{AC14} * FCLKOUT$ to PPLL = $P_{DC4} + P_{AC13} * F_{CLKOUT}$.	2-14		
	The "Timing Model" was updated to be consistent with the revised timing numbers.	2-16		
	In Table 2-22 \bullet Summary of Maximum and Minimum DC Input Levels, T_J was changed to T_A in notes 1 and 2.	2-22		
	Table 2-22 • Summary of Maximum and Minimum DC Input Levels was updated to included a hysteresis value for 1.2 V LVCMOS (Schmitt trigger mode).	2-22		
	All AC Loading figures for single-ended I/O standards were changed from Datapaths at 35 pF to 5 pF.	N/A		
	The "1.2 V LVCMOS (JESD8-12A)" section is new.	2-47		
Revision 2 (Jun 2008) Product Brief v1.0	The product brief section of the datasheet was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview.			
Revision 2 (cont'd) Packaging v1.1	The naming conventions changed for the following pins in the "FG484" for the A3GLE600:Pin NumberNew Function NameJ19IO45PPB2V1K20IO45NPB2V1M2IO114NPB6V1N1IO114PPB6V1N4GFC2/IO115PPB6V1P3IO115NPB6V1	4-6		
Revision 1 (Mar 2008)	The "Low Power" section was updated to change "1.2 V and 1.5 V Core Voltage"			
Product Brief rev. 1	to "1.2 V and 1.5 V Core and I/O Voltage." The text "(from 25 μ W)" was removed from "Low Power Active FPGA Operation."			
	1.2_V was added to the list of core and I/O voltages in the "Pro (Professional) I/O" and "Pro I/Os with Advanced I/O Standards" section sections.	I, 1-7		
Revision 0 (Jan 2008)	This document was previously in datasheet Advance v0.4. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is 51700096-001-0.	N/A		