

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	75264
Total RAM Bits	516096
Number of I/O	620
Number of Gates	3000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/agle3000v2-fgg896i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

	AGLE600	AGLE3000
Package		M1AGLPE3000
FG256	C, I	-
FG484	C, I	C, I
FG896	_	C, I

Note: C = Commercial temperature range: 0°C to 70°C ambient temperature.<math>I = Industrial temperature range: -40°C to 85°C ambient temperature.

References made to IGLOOe devices also apply to ARM-enabled IGLOOe devices. The ARM-enabled part numbers start with M1 (Cortex-M1).

Contact your local Microsemi SoC Products Group representative for device availability:

http://www.microsemi.com/soc/contact/default.aspx.

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power modes usage. Microsemi recommends using the PowerCalculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 • Power Supply State per Mode

	Power Supply Configurations										
Modes/power supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP						
Flash*Freeze	On	On	On	On	On/off/floating						
Sleep	Off	Off	On	Off	Off						
Shutdown	Off	Off	Off	Off	Off						
No Flash*Freeze	On	On	On	On	On/off/floating						

Note: Off: Power supply level = 0 V

Table 2-9 • Quiescent Supply Current (IDD), IGLOOe Flash*Freeze Mode*

	Core Voltage	AGLE600	AGLE3000	Units
Typical (25°C)	1.2 V	34	95	μΑ
	1.5 V	72	310	μA

Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 and Table 2-14 on page 2-10 (PDC6 and PDC7).

Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOOe Sleep Mode*

	Core Voltage	AGLE600	AGLE3000	Units
VCCI/VJTAG = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	μA
VCCI/VJTAG = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	μA
VCCI/VJTAG = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	μA
VCCI/VJTAG = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	μA
VCCI/VJTAG= 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	μA

Note: $*IDD = N_{BANKS} \times ICCI$. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 and Table 2-14 on page 2-10 (PDC6 and PDC7).

Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOOe Shutdown Mode*

	Core Voltage	AGLE600	AGLE3000	Units
Typical (25°C)	1.2 V / 1.5 V	0	0	μA

IGLOOe DC and Switching Characteristics

Combinatorial Cells Contribution—P_{C-CELL}

 $P_{C-CELL} = N_{C-CELL} * \alpha_1 / 2 * PAC7 * F_{CLK}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-15.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

Routing Net Contribution—P_{NET}

 $\mathsf{P}_{\mathsf{NET}} = (\mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} + \mathsf{N}_{\mathsf{C}\text{-}\mathsf{CELL}}) * \alpha_1 / 2 * \mathsf{PAC8} * \mathsf{F}_{\mathsf{CLK}}$

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

 $N_{C\text{-}CELL}$ is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-15.

F_{CLK} is the global clock signal frequency.

I/O Input Buffer Contribution—PINPUTS

 P_{INPUTS} = N_{INPUTS} * α_2 / 2 * PAC9 * F_{CLK}

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-15.

F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—POUTPUTS

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * PAC10 * F_{CLK}$

 $N_{\mbox{OUTPUTS}}$ is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-15.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-20 on page 2-15.

F_{CLK} is the global clock signal frequency.

RAM Contribution—P_{MEMORY}

 $\mathsf{P}_{\mathsf{MEMORY}} = \mathsf{PAC11} * \mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{F}_{\mathsf{READ-CLOCK}} * \beta_2 + \mathsf{PAC12} * \mathsf{N}_{\mathsf{BLOCK}} * \mathsf{F}_{\mathsf{WRITE-CLOCK}} * \beta_3$

 $N_{\mbox{\scriptsize BLOCKS}}$ is the number of RAM blocks used in the design.

F_{READ-CLOCK} is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations—guidelines are provided in Table 2-20 on page 2-15.

F_{WRITE-CLOCK} is the memory write clock frequency.

 β_3 is the RAM enable rate for write operations—guidelines are provided in Table 2-20 on page 2-15.

PLL Contribution—P_{PLL}

P_{PLL} = PDC4 + PAC13 * F_{CLKOUT}

F_{CLKOUT} is the output clock frequency.¹

If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P_{AC13}* F_{CLKOUT} product) to the total PLL contribution.

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

Table 2-26 • Summary of I/O Timing Characteristics—Software Default SettingsStd. Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,Worst-Case VCCI (per standard)

I/O Standard	Drive Strength (mA)	Equivalent Software Default Drive Strength Option ¹ (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{bout} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pY} (ns)	t _{PYS} (ns)	t _{Eour} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12	12	High	5	-	1.55	2.47	0.26	1.31	1.58	1.10	2.51	2.04	3.28	3.97	8.29	7.82	ns
3.3 V LVCMOS Wide Range ^{1,2}	100 µA	12	High	35	-	1.55	3.40	0.26	1.66	2.14	1.10	3.40	2.68	4.55	5.49	9.19	8.46	ns
2.5 V LVCMOS	12	12	High	5	-	1.55	2.51	0.26	1.55	1.77	1.10	2.54	2.22	3.36	3.85	8.33	8.00	ns
1.8 V LVCMOS	12	12	High	5	-	1.55	2.75	0.26	1.53	1.96	1.10	2.78	2.40	3.68	4.56	8.57	8.19	ns
1.5 V LVCMOS	12	12	High	5	-	1.55	3.10	0.26	1.72	2.16	1.10	3.15	2.70	3.86	4.68	8.93	8.49	ns
1.2 V LVCMOS	2	2	High	5	-	1.55	4.06	0.26	2.09	2.95	1.10	3.92	3.46	4.01	3.79	9.71	9.24	ns
1.2 V LVCMOS Wide Range ^{1,3}	100 µA	2	High	5	Ι	1.55	4.06	0.26	2.09	2.95	1.10	3.92	3.46	4.01	3.79	9.71	9.24	ns
3.3 V PCI	Per PCI spec	-	High	10	25 ⁴	1.55	2.76	0.26	1.19	1.63	1.10	2.79	2.16	3.29	3.97	8.58	7.94	ns
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ⁴	1.55	2.76	0.25	1.22	1.58	1.10	2.79	2.16	3.29	3.97	8.58	7.94	ns
3.3 V GTL	20 ⁵	-	High	10	25	1.55	2.08	0.25	2.76	-	1.10	2.09	2.08	-	_	7.88	7.87	ns
2.5 V GTL	20 ⁵	-	High	10	25	1.55	2.17	0.25	2.35	-	1.10	2.20	2.13	-	-	7.99	7.91	ns
3.3 V GTL+	35	—	High	10	25	1.55	2.12	0.25	1.62	-	1.10	2.14	2.07	_	-	7.93	7.85	ns
2.5 V GTL+	33	-	High	10	25	1.55	2.25	0.25	1.55	-	1.10	2.27	2.10	_	1	8.06	7.89	ns
HSTL (I)	8	-	High	20	50	1.55	3.09	0.25	1.95	-	1.10	3.11	3.09	-	I	8.90	8.88	ns
HSTL (II)	15	—	High	20	25	1.55	2.94	0.25	1.95	-		2.98		-	-	8.77	8.53	ns
SSTL2 (I)	15	_	High	30	50	1.55	2.18	0.25	1.40	-	1.10	2.21	2.03	-	Ι	7.99	7.82	ns
SSTL2 (II)	18	-	High	30	25	1.55	2.21	0.25	1.40	-	1.10	2.24	1.97	-	1	8.03	7.76	ns
SSTL3 (I)	14	—	High	30	50		2.33		1.33	-		2.36		-	Ι	8.15		ns
SSTL3 (II)	21	_	High	30	25	1.55	2.13	0.25	1.33	_	1.10	2.16	1.89	_	I	7.94	7.67	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-49 for connectivity. This resistor is not required during normal operation.

5. Output drive strength is below JEDEC specification.

Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings (continued)Std. Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,Worst-Case VCCI (per standard)

I/O Standard	Drive Strength (mA)	Equivalent Software Default Drive Strength Option ¹ (mA)	w Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{DOUT} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PΥ} (ns)	t _{PYS} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{zH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
LVDS	24	-	High	-	_	1.55	2.26	0.25	1.95	-	—	—	_	—	—	_	-	ns
LVPECL	24	-	High	_	-	1.55	2.17	0.25	1.70	-	_	-	_	_	_	_	-	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-49 for connectivity. This resistor is not required during normal operation.

5. Output drive strength is below JEDEC specification.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Unit s
4 mA	Std.	0.97	4.90	0.18	1.08	1.34	0.66	5.00	3.99	2.27	2.16	8.60	7.59	ns
8 mA	Std.	0.97	4.05	0.18	1.08	1.34	0.66	4.13	3.45	2.53	2.65	7.73	7.05	ns
12 mA	Std.	0.97	3.44	0.18	1.08	1.34	0.66	3.51	3.05	2.71	2.95	7.11	6.64	ns
16 mA	Std.	0.97	3.27	0.18	1.08	1.34	0.66	3.34	2.96	2.74	3.04	6.93	6.55	ns
24 mA	Std.	0.97	3.18	0.18	1.08	1.34	0.66	3.24	2.97	2.79	3.36	6.84	6.56	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.97	2.85	0.18	1.08	1.34	0.66	2.92	2.27	2.27	2.27	6.51	5.87	ns
8 mA	Std.	0.97	2.39	0.18	1.08	1.34	0.66	2.44	1.88	2.53	2.76	6.03	5.47	ns
12 mA	Std.	0.97	2.12	0.18	1.08	1.34	0.66	2.17	1.69	2.71	3.08	5.76	5.28	ns
16 mA	Std.	0.97	2.08	0.18	1.08	1.34	0.66	2.12	1.65	2.75	3.17	5.72	5.25	ns
24 mA	Std.	0.97	2.10	0.18	1.08	1.34	0.66	2.14	1.60	2.80	3.49	5.74	5.20	ns

Notes:

1. Software default selection highlighted in gray.

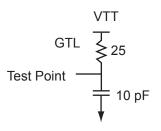
2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

Table 2-77 •	Minimum and Maximum DC Input and Output Levels
--------------	--

2.5 GTL		VIL	VIH		VOL	VOH	IOL	IOH	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. Max. V V		Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
20 mA ⁵	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20	169	124	10	10

Notes:


1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Output drive strength is below JEDEC specification.

Figure 2-14 • AC Loading

Table 2-78 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-79 • 2.5 V GTL – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	1.90	0.19	2.04	0.67	1.94	1.87			5.57	5.50	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-80 • 2.5 V GTL – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.16	0.26	2.35	1.10	2.20	2.13			8.01	7.94	ns

🌜 Microsemi.

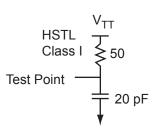
IGLOOe DC and Switching Characteristics

HSTL Class I

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-89 •	Minimum and Maximum DC Input and Output Levels
--------------	--

HSTL Class		VIL	VIH		VOL	VOH		ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min.	mA		Max. mA ³	Max.		μA ⁴
8 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI-0.4	8	8	32	39	10	10


Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-17 • AC Loading

Table 2-90 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-91 •HSTL Class I – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	2.74	0.19	1.77	0.67	2.79	2.73			6.42	6.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-92 • HSTL Class I – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V VREF = 0.75 V

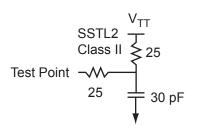
Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	3.10	0.26	1.94	1.10	3.12	3.10			8.93	8.91	ns

SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class II		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA⁴
18 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI - 0.43	18	18	169	124	10	10

Table 2-101 • Minimum and Maximum DC Input and Output Levels


Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-20 • AC Loading

Table 2-102 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input HIGH (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-103 • SSTL 2 Class II – Applies to 1.5 V DC Core Voltage

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V,
```

Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.98	1.94	0.19	1.15	0.67	1.97	1.66			5.60	5.29	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-104 • SSTL 2 Class II – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.20	0.26	1.39	1.10	2.24	1.97			8.05	7.78	ns

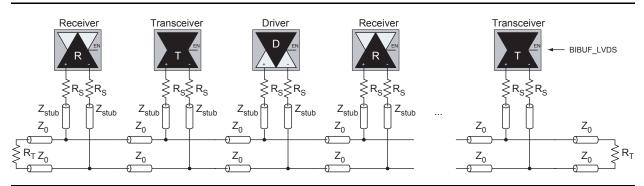
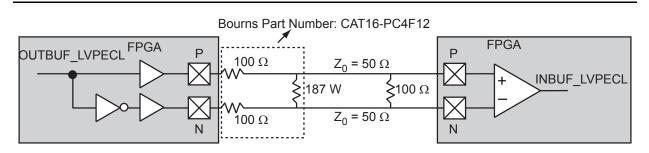
Microsemi.

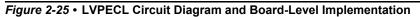
IGLOOe DC and Switching Characteristics

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-24. The input and output buffer delays are available in the LVDS section in Table 2-115 on page 2-63 and Table 2-116 on page 2-63.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").


Figure 2-24 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-25. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

DC Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units		
VCCI	Supply Voltage	3	3.0		.0 3.3		.3	3.6		V
VOL	Output Low Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V		
VOH	Output High Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V		
VIL, VIH	Input Low, Input High Voltages	0	3.6	0	3.6	0	3.6	V		
VODIFF	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V		
VOCM	Output Common Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V		
VICM	Input Common Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V		
VIDIFF	Input Differential Voltage	300		300		300		mV		

Table 2-117 • Minimum and Maximum DC Input and Output Levels

Table 2-118 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	VREF (typ.) (V)
1.64	1.94	Cross point	-

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-119 • LVPECL – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.98	1.75	0.19	1.45	ns

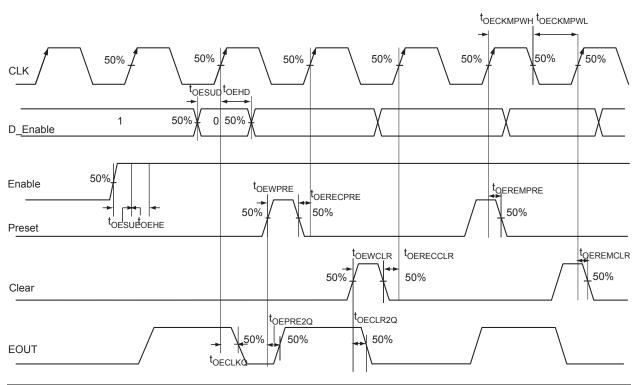
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-120 • LVPECL – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	1.55	2.16	0.26	1.70	ns


Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{OSUE}	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	HH, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OESUE}	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA


Table 2-122 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-27 on page 2-68 for more information.

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

Figure 2-30 • Output Enable Register Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-127 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.75	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.51	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.73	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	1.13	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	1.13	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.24	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.24	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OECKMPWH}	Clock Minimum Pulse Width HIGH for the Output Enable Register	0.31	ns
t _{OECKMPWL}	Clock Minimum Pulse Width LOW for the Output Enable Register	0.28	ns

User Pins

I/O

GL

FF

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOOe FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the I/O Structure section of the IGLOOe FPGA Fabric User's Guide for an explanation of the naming of global pins.

Flash*Freeze Mode Activation Pin

Flash*Freeze mode is available on IGLOOe devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O. The FF pin can be configured as a Schmitt trigger input.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

Package Pin Assignments

FG484			FG484		FG484
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function
N8	VCCIB6	P21	IO130PDB3V2	T12	IO194NDB5V0
N9	VCC	P22	IO128NDB3V1	T13	IO186NDB4V4
N10	GND	R1	IO247NDB6V1	T14	IO186PDB4V4
N11	GND	R2	IO245PDB6V1	T15	GNDQ
N12	GND	R3	VCC	T16	VCOMPLD
N13	GND	R4	IO249NPB6V1	T17	VJTAG
N14	VCC	R5	IO251NDB6V2	T18	GDC0/IO151NDB3V4
N15	VCCIB3	R6	IO251PDB6V2	T19	GDA1/IO153PDB3V4
N16	IO116NPB3V0	R7	GEC0/IO236NPB6V0	T20	IO144PDB3V3
N17	IO132NPB3V2	R8	VMV5	T21	IO140PDB3V3
N18	IO117NPB3V0	R9	VCCIB5	T22	IO134NDB3V2
N19	IO132PPB3V2	R10	VCCIB5	U1	IO240PPB6V0
N20	GNDQ	R11	IO196NDB5V0	U2	IO238PDB6V0
N21	IO126NDB3V1	R12	IO196PDB5V0	U3	IO238NDB6V0
N22	IO128PDB3V1	R13	VCCIB4	U4	GEB1/IO235PDB6V0
P1	IO247PDB6V1	R14	VCCIB4	U5	GEB0/IO235NDB6V0
P2	IO253PDB6V2	R15	VMV3	U6	VMV6
P3	IO270NPB6V4	R16	VCCPLD	U7	VCCPLE
P4	IO261NPB6V3	R17	GDB1/IO152PPB3V4	U8	IO233NPB5V4
P5	IO249PPB6V1	R18	GDC1/IO151PDB3V4	U9	IO222PPB5V3
P6	IO259PDB6V3	R19	IO138NDB3V3	U10	IO206PDB5V1
P7	IO259NDB6V3	R20	VCC	U11	IO202PDB5V1
P8	VCCIB6	R21	IO130NDB3V2	U12	IO194PDB5V0
P9	GND	R22	IO134PDB3V2	U13	IO176NDB4V2
P10	VCC	T1	IO243PPB6V1	U14	IO176PDB4V2
P11	VCC	T2	IO245NDB6V1	U15	VMV4
P12	VCC	Т3	IO243NPB6V1	U16	ТСК
P13	VCC	T4	IO241PDB6V0	U17	VPUMP
P14	GND	T5	IO241NDB6V0	U18	TRST
P15	VCCIB3	Т6	GEC1/IO236PPB6V0	U19	GDA0/IO153NDB3V4
P16	GDB0/IO152NPB3V4	T7	VCOMPLE	U20	IO144NDB3V3
P17	IO136NDB3V2	Т8	GNDQ	U21	IO140NDB3V3
P18	IO136PDB3V2	Т9	GEA2/IO233PPB5V4	U22	IO142PDB3V3
P19	IO138PDB3V3	T10	IO206NDB5V1	V1	IO239PDB6V0
P20	VMV3	T11	IO202NDB5V1	V2	IO240NPB6V0

FG896			FG896		FG896		
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function		
D30	GBA2/IO82PPB2V0	F5	VMV7	G7	VCC		
E1	GND	F5	VMV7	G8	VMV0		
E2	IO303NPB7V3	F6	GND	G9	VCCIB0		
E3	VCCIB7	F7	GNDQ	G10	IO10NDB0V1		
E4	IO305PPB7V3	F8	IO12NDB0V1	G11	IO16NDB0V1		
E5	VCC	F9	IO12PDB0V1	G12	IO22PDB0V2		
E6	GAC0/IO02NDB0V0	F10	IO10PDB0V1	G13	IO26PPB0V3		
E7	VCCIB0	F11	IO16PDB0V1	G14	IO38NPB0V4		
E8	IO06PPB0V0	F12	IO22NDB0V2	G15	IO36NDB0V4		
E9	IO24NDB0V2	F13	IO30NDB0V3	G16	IO46NDB1V0		
E10	IO24PDB0V2	F14	IO30PDB0V3	G17	IO46PDB1V0		
E11	IO13NDB0V1	F15	IO36PDB0V4	G18	IO56NDB1V1		
E12	IO13PDB0V1	F16	IO48NDB1V0	G19	IO56PDB1V1		
E13	IO34NDB0V4	F17	IO48PDB1V0	G20	IO66NDB1V3		
E14	IO34PDB0V4	F18	IO50NDB1V1	G21	IO66PDB1V3		
E15	IO40NDB0V4	F19	IO58NDB1V2	G22	VCCIB1		
E16	IO49NDB1V1	F20	IO60PDB1V2	G23	VMV1		
E17	IO49PDB1V1	F21	IO77NDB1V4	G24	VCC		
E18	IO50PDB1V1	F22	IO72NDB1V3	G25	GNDQ		
E19	IO58PDB1V2	F23	IO72PDB1V3	G25	GNDQ		
E20	IO60NDB1V2	F24	GNDQ	G26	VCCIB2		
E21	IO77PDB1V4	F25	GND	G27	IO86NDB2V0		
E22	IO68NDB1V3	F26	VMV2	G28	IO92NDB2V1		
E23	IO68PDB1V3	F26	VMV2	G29	IO100PPB2V2		
E24	VCCIB1	F27	IO86PDB2V0	G30	GND		
E25	IO74PDB1V4	F28	IO92PDB2V1	H1	IO294PDB7V2		
E26	VCC	F29	VCC	H2	IO294NDB7V2		
E27	GBB1/IO80PPB1V4	F30	IO100NPB2V2	H3	IO300NDB7V3		
E28	VCCIB2	G1	GND	H4	IO300PDB7V3		
E29	IO82NPB2V0	G2	IO296NPB7V2	H5	IO295PDB7V2		
E30	GND	G3	IO306NDB7V4	H6	IO299PDB7V3		
F1	IO296PPB7V2	G4	IO297NDB7V2	H7	VCOMPLA		
F2	VCC	G5	VCCIB7	H8	GND		
F3	IO306PDB7V4	G6	GNDQ	H9	IO08NDB0V0		
F4	IO297PDB7V2	G6	GNDQ	H10	IO08PDB0V0		

	FG896		FG896		FG896
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function
L26	IO87NDB2V0	N1	IO276PDB7V0	P6	GFC1/IO275PDB7V0
L27	IO97PDB2V1	N2	IO278PDB7V0	P7	GFC0/IO275NDB7V0
L28	IO101PDB2V2	N3	IO280PDB7V0	P8	IO277PDB7V0
L29	IO103PDB2V2	N4	IO284PDB7V1	P9	IO277NDB7V0
L30	IO119NDB3V0	N5	IO279PDB7V0	P10	VCCIB7
M1	IO282NDB7V1	N6	IO285NDB7V1	P11	VCC
M2	IO282PDB7V1	N7	IO287NDB7V1	P12	GND
M3	IO292NDB7V2	N8	IO281NDB7V0	P13	GND
M4	IO292PDB7V2	N9	IO281PDB7V0	P14	GND
M5	IO283NDB7V1	N10	VCCIB7	P15	GND
M6	IO285PDB7V1	N11	VCC	P16	GND
M7	IO287PDB7V1	N12	GND	P17	GND
M8	IO289PDB7V1	N13	GND	P18	GND
M9	IO289NDB7V1	N14	GND	P19	GND
M10	VCCIB7	N15	GND	P20	VCC
M11	VCC	N16	GND	P21	VCCIB2
M12	GND	N17	GND	P22	GCC1/IO112PDB2V3
M13	GND	N18	GND	P23	IO110PDB2V3
M14	GND	N19	GND	P24	IO110NDB2V3
M15	GND	N20	VCC	P25	IO109PPB2V3
M16	GND	N21	VCCIB2	P26	IO111NPB2V3
M17	GND	N22	IO106NDB2V3	P27	IO105PDB2V2
M18	GND	N23	IO106PDB2V3	P28	IO105NDB2V2
M19	GND	N24	IO108PDB2V3	P29	GCC2/IO117PDB3V0
M20	VCC	N25	IO108NDB2V3	P30	IO117NDB3V0
M21	VCCIB2	N26	IO95NDB2V1	R1	GFC2/IO270PDB6V4
M22	NC	N27	IO99NDB2V2	R2	GFB1/IO274PPB7V0
M23	IO104PPB2V2	N28	IO99PDB2V2	R3	VCOMPLF
M24	IO102PDB2V2	N29	IO107PDB2V3	R4	GFA0/IO273NDB6V4
M25	IO102NDB2V2	N30	IO107NDB2V3	R5	GFB0/IO274NPB7V0
M26	IO95PDB2V1	P1	IO276NDB7V0	R6	IO271NDB6V4
M27	IO97NDB2V1	P2	IO278NDB7V0	R7	GFB2/IO271PDB6V4
M28	IO101NDB2V2	P3	IO280NDB7V0	R8	IO269PDB6V4
M29	IO103NDB2V2	P4	IO284NDB7V1	R9	IO269NDB6V4
M30	IO119PDB3V0	P5	IO279NDB7V0	R10	VCCIB7

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each revision of the IGLOOe datasheet.

Revision	Changes	Page
Revision 13 (December 2012)	The "IGLOOe Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43176).	111
	Also added the missing heading 'Supply Voltage' under V2.	
	The note in Table 2-143 • IGLOOe CCC/PLL Specification and Table 2-144 • IGLOOe CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42568).	2-91, 2-92
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 12 (September 2012)	The "Security" section was modified to clarify that Microsemi does not support read-back of programmed data.	1-2
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40272).	N/A
Revision 11 (August 2012)	The drive strength, IOL, and IOH value for 3.3 V GTL and 2.5 V GTL was changed from 25 mA to 20 mA in the following tables (SAR 37180):	
	Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels,	2-20
	Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings	2-25
	Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings	2-26
	Table 2-28 • I/O Output Buffer Maximum Resistances1	2-28
	Table 2-73 • Minimum and Maximum DC Input and Output Levels	2-51
	Table 2-77 • Minimum and Maximum DC Input and Output Levels	2-53
	Also added note stating " <i>Output drive strength is below JEDEC specification</i> ." for Tables 2-25, 2-26, and 2-28.	
	Additionally, the IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were corrected from 51 to 35 (for 3.3 V GTL+) and from 40 to 33 (for 2.5 V GTL+) in table Table 2-21 (SAR 39713).	
	In Table 2-117 • Minimum and Maximum DC Input and Output Levels, VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 37183).	2-65
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions and Packaging" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38318). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "IGLOOe Device Status" table, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.