

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	75264
Total RAM Bits	516096
Number of I/O	620
Number of Gates	3000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/agle3000v5-fg896

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash Advantages

Low Power

Flash-based IGLOOe devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOOe devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

IGLOOe devices also have low dynamic power consumption to further maximize power savings; power is even further reduced by the use of a 1.2 V core voltage.

Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOOe device the lowest total system power offered by any FPGA.

Security

The nonvolatile, flash-based IGLOOe devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOOe devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

IGLOOe devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in IGLOOe devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOOe devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOOe devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of the IGLOOe family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The IGLOOe family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOOe device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based IGLOOe FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Flash-based IGLOOe devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOOe devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOOe device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOOe devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

IGLOOe DC and Switching Characteristics

Symbol	Parar	neter	Commercial	Industrial	Units
T _A	Ambient Temperature		0 to +70	-40 to +85	°C
TJ	Junction Temperature ²		0 to + 85	-40 to +100	°C
VCC ³	1.5 V DC core supply voltage ⁴		1.425 to 1.575	1.425 to 1.575	V
	1.2 V–1.5 V wide range DC core voltage ^{5, 6}		1.14 to 1.575	1.14 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage ⁶	Programming Mode	3.15 to 3.45	3.15 to 3.45	V
		Operation ⁷	0 to 3.6	0 to 3.6	V
VCCPLL ⁸	Analog power supply (PLL)	1.5 V DC core supply voltage ⁴	1.425 to 1.575	1.425 to 1.575	V
		1.2 V–1.5 V DC core supply voltage ⁵	1.14 to 1.575	1.14 to 1.575	V
VCCI and	1.2 V DC supply voltage ⁵		1.14 to 1.26	1.14 to 1.26	V
VMV ⁹	1.2 V wide range DC supply voltage ⁵		1.14 to 1.575	1.14 to 1.575	V
	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.0 V DC supply voltage ¹⁰		2.7 to 3.6	2.7 to 3.6	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	LVDS differential I/O		2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Table 2-2 • Recommended Operating Conditions ¹

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

2. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools.

3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-21 on page 2-20. VCCI should be at the same voltage within a given I/O bank.

4. For IGLOOe V5 devices

5. For IGLOOe V2 devices only, operating at VCCI \geq VCC

6. All IGLOOe devices (V5 and V2) must be programmed with the VCC core voltage at 1.5 V. Applications using the V2 devices powered by a 1.2 V supply must switch the core supply to 1.5 V for in-system programming.

7. VPUMP can be left floating during operation (not programming mode).

8. VCCPLL pins should be tied to VCC pins. See the "VCCPLA/B/C/D/E/F PLL Supply Voltage" section for further information.

9. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section for further information.

10. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

Power Consumption of Various Internal Resources

 Table 2-15 • Different Components Contributing to the Dynamic Power Consumption in IGLOOe Devices

 For IGLOOe V2 or V5 Devices, 1.5 V DC Core Supply Voltage

			cific Dynamic ons (µW/MHz)
Parameter	Definition	AGLE600	AGLE3000
PAC1	Clock contribution of a Global Rib	19.7	12.77
PAC2	Clock contribution of a Global Spine	4.16	1.85
PAC3	Clock contribution of a VersaTile row	C	0.88
PAC4	Clock contribution of a VersaTile used as a sequential module	C).11
PAC5	First contribution of a VersaTile used as a sequential module	0	.057
PAC6	Second contribution of a VersaTile used as a sequential module	0	.207
PAC7	Contribution of a VersaTile used as a combinatorial module	0	.207
PAC8	Average contribution of a routing net		0.7
PAC9	Contribution of an I/O input pin (standard-dependent)	See Table 2-	13 on page 2-9.
PAC10	Contribution of an I/O output pin (standard-dependent)	See Table 2-1	4 on page 2-10.
PAC11	Average contribution of a RAM block during a read operation	2	5.00
PAC12	Average contribution of a RAM block during a write operation	3	0.00
PAC13	Dynamic contribution for PLL	2	2.70

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power calculator or SmartPower in Libero SoC software.

Table 2-16 • Different Components Contributing to the Static Power Consumption in IGLOO Devices For IGLOOe V2 or V5 Devices, 1.5 V DC Core Supply Voltage

		Device Specific St	atic Power (mW)			
Parameter	Definition	AGLE600	AGLE3000			
PDC1	Array static power in Active mode	See Table 2-12	on page 2-8.			
PDC2	Array static power in Static (Idle) mode	See Table 2-11	on page 2-7.			
PDC3	Array static power in Flash*Freeze mode	See Table 2-9 on page 2-7.				
PDC4	Static PLL contribution	1.84	1			
PDC5	Bank quiescent power (VCCI-dependent)	See Table 2-12	on page 2-8.			
PDC6	I/O input pin static power (standard-dependent)	See Table 2-13	on page 2-9.			
PDC7	I/O output pin static power (standard-dependent)	See Table 2-14	on page 2-10.			

🔨 Microsemi

IGLOOe DC and Switching Characteristics

Table 2-22 •	Summary of Maximum and Minimum DC Input Levels
	Applicable to Commercial and Industrial Conditions

	Comn	nercial ¹	Indu	strial ²
	IIL ³	IIH ⁴	IIL ³	IIH ⁴
DC I/O Standards	μA	μA	μΑ	μA
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15
3.3 V LVCMOS Wide Range	10	10	15	15
2.5 V LVCMOS	10	10	15	15
1.8 V LVCMOS	10	10	15	15
1.5 V LVCMOS	10	10	15	15
1.2 V LVCMOS ⁵	10	10	15	15
1.2 V LVCOMS Wide Range ⁵	10	10	15	15
3.3 V PCI	10	10	15	15
3.3 V PCI-X	10	10	15	15
3.3 V GTL	10	10	15	15
2.5 V GTL	10	10	15	15
3.3 V GTL+	10	10	15	15
2.5 V GTL+	10	10	15	15
HSTL (I)	10	10	15	15
HSTL (II)	10	10	15	15
SSTL2 (I)	10	10	15	15
SSTL2 (II)	10	10	15	15
SSTL3 (I)	10	10	15	15
SSTL3 (II)	10	10	15	15

Notes:

1. Commercial range (0°C < T_A < 70°C) 2. Industrial range (-40°C < T_A < 85°C)

3. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

5. Applicable to V2 devices operating at VCCI \geq VCC.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Unit s
4 mA	Std.	0.97	4.90	0.18	1.08	1.34	0.66	5.00	3.99	2.27	2.16	8.60	7.59	ns
8 mA	Std.	0.97	4.05	0.18	1.08	1.34	0.66	4.13	3.45	2.53	2.65	7.73	7.05	ns
12 mA	Std.	0.97	3.44	0.18	1.08	1.34	0.66	3.51	3.05	2.71	2.95	7.11	6.64	ns
16 mA	Std.	0.97	3.27	0.18	1.08	1.34	0.66	3.34	2.96	2.74	3.04	6.93	6.55	ns
24 mA	Std.	0.97	3.18	0.18	1.08	1.34	0.66	3.24	2.97	2.79	3.36	6.84	6.56	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.97	2.85	0.18	1.08	1.34	0.66	2.92	2.27	2.27	2.27	6.51	5.87	ns
8 mA	Std.	0.97	2.39	0.18	1.08	1.34	0.66	2.44	1.88	2.53	2.76	6.03	5.47	ns
12 mA	Std.	0.97	2.12	0.18	1.08	1.34	0.66	2.17	1.69	2.71	3.08	5.76	5.28	ns
16 mA	Std.	0.97	2.08	0.18	1.08	1.34	0.66	2.12	1.65	2.75	3.17	5.72	5.25	ns
24 mA	Std.	0.97	2.10	0.18	1.08	1.34	0.66	2.14	1.60	2.80	3.49	5.74	5.20	ns

Notes:

1. Software default selection highlighted in gray.

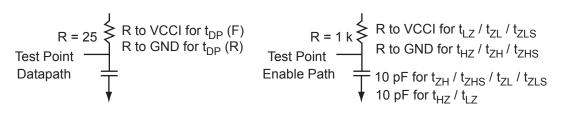
3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-69 •	Minimum and Maximum DC Input and Output Levels
--------------	--

3.3 V PCI/PCI-X	V	IL	v	IH	VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min., V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Per PCI specification					Per P	CI curve	S				10	10

Notes:


1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-12.

Figure 2-12 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-70.

Table 2-70 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)}	-	10
		0.615 * VCCI for t _{DP(F)}		

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

IGLOOe DC and Switching Characteristics

Timing Characteristics

1.5 V DC Core Voltage

Table 2-71 • 3.3 V PCI/PCI-X – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.97	2.38	0.18	0.96	1.42	0.66	2.43	1.80	2.72	3.08	6.03	5.39	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-72 • 3.3 V PCI/PCI-X – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.76	0.26	1.19	1.63	1.10	2.79	2.16	3.29	3.97	8.58	7.94	ns

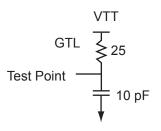
2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

Table 2-77 •	Minimum and Maximum DC Input and Output Levels
--------------	--

2.5 GTL		VIL	VIH		VOL	VOH	IOL	IOH	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
20 mA ⁵	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20	169	124	10	10

Notes:


1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Output drive strength is below JEDEC specification.

Figure 2-14 • AC Loading

Table 2-78 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-79 • 2.5 V GTL – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	1.90	0.19	2.04	0.67	1.94	1.87			5.57	5.50	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-80 • 2.5 V GTL – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.16	0.26	2.35	1.10	2.20	2.13			8.01	7.94	ns

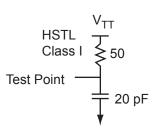
IGLOOe DC and Switching Characteristics

HSTL Class I

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-89 •	Minimum and Maximum DC Input and Output Levels
--------------	--

HSTL Class		VIL	VIH		VOL	VOH		ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min.	mA		Max. mA ³	Max.		μA ⁴
8 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI-0.4	8	8	32	39	10	10


Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-17 • AC Loading

Table 2-90 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-91 •HSTL Class I – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	2.74	0.19	1.77	0.67	2.79	2.73			6.42	6.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-92 • HSTL Class I – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	3.10	0.26	1.94	1.10	3.12	3.10			8.93	8.91	ns

IGLOOe DC and Switching Characteristics

SSTL2 Class I

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-97 •	Minimum and Maximum	DC Input and	Output Levels
--------------	---------------------	--------------	---------------

SSTL2 Class I		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI - 0.62	15	15	83	87	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-19 • AC Loading

Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-99 • SSTL 2 Class I – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,

Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.98	1.91	0.19	1.15	0.67	1.94	1.72			5.57	5.35	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-100 • SSTL 2 Class I – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.17	0.26	1.39	1.10	2.21	2.04			8.02	7.84	ns

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{OSUE}	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	HH, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OESUE}	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Table 2-122 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-27 on page 2-68 for more information.

1.2 V DC Core Voltage

Table 2-124 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.68	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.97	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	1.02	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	1.19	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	1.19	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.24	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.19	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.19	ns
t _{ICKMPWH}	Clock Minimum Pulse Width HIGH for the Input Data Register	0.31	ns
t _{ICKMPWL}	Clock Minimum Pulse Width LOW for the Input Data Register	0.28	ns

Timing Characteristics

1.5 V DC Core Voltage

Table 2-133 • Output DDR Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.07	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.67	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.67	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.38	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.23	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width HIGH for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width LOW for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	250.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-134 • Output DDR Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.60	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	1.09	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	1.16	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.99	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.24	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width HIGH for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width LOW for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	160.00	MHz

static Microsemi.

IGLOOe DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-145 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address Setup Time	0.83	ns
t _{AH}	Address Hold Time	0.16	ns
t _{ENS}	REN, WEN Setup Time	0.81	ns
t _{ENH}	REN, WEN Hold Time	0.16	ns
t _{BKS}	BLK Setup Time	1.65	ns
t _{вкн}	BLK Hold Time	0.16	ns
t _{DS}	Input Data (DIN) Setup Time	0.71	ns
t _{DH}	Input Data (DIN) Hold Time	0.36	ns
t _{CKQ1}	Clock HIGH to New Data Valid on DOUT (output retained, WMODE = 0)	3.53	ns
	Clock HIGH to New Data Valid on DOUT (flow-through, WMODE = 1)	3.06	ns
t _{CKQ2}	Clock HIGH to New Data Valid on DOUT (pipelined)	1.81	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.35	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	0.41	ns
t _{RSTBQ}	RESET Low to Data Out Low on DOUT (flow-through)	2.06	ns
	RESET Low to Data Out Low on DOUT (pipelined)	2.06	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency	160	MHz

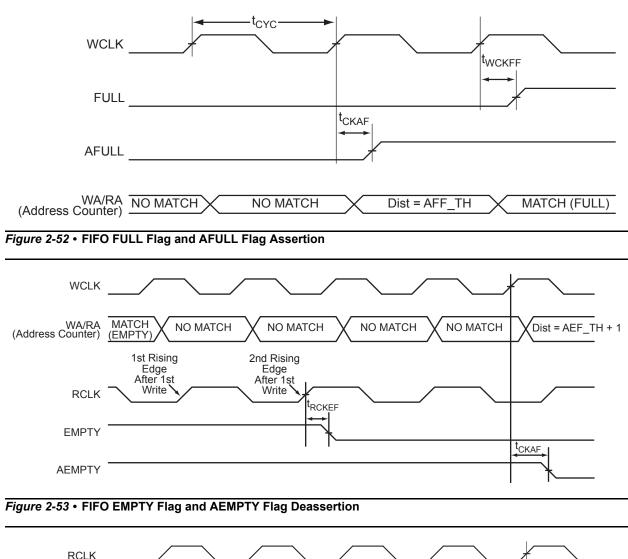
Notes:

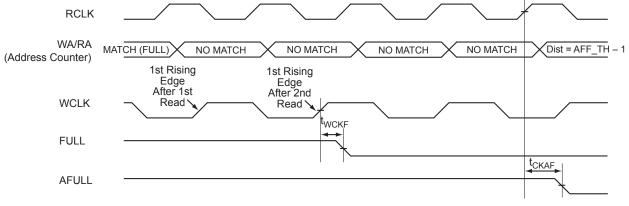
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

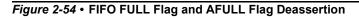
IGLOOe DC and Switching Characteristics

Applies to 1.2 V DC Core Voltage

Table 2-147 • RAM4K9


Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V


Parameter	Description	Std.	Units
t _{AS}	Address Setup Time	1.53	ns
t _{AH}	Address Hold Time	0.29	ns
t _{ENS}	REN, WEN Setup Time	1.50	ns
t _{ENH}	REN, WEN Hold Time	0.29	ns
t _{BKS}	BLK Setup Time	3.05	ns
t _{BKH}	BLK Hold Time	0.29	ns
t _{DS}	Input Data (DIN) Setup Time	1.33	ns
t _{DH}	Input Data (DIN) Hold Time	0.66	ns
t _{CKQ1}	Clock High to New Data Valid on DOUT (output retained, WMODE = 0)	6.61	ns
	Clock High to New Data Valid on DOUT (flow-through, WMODE = 1)	5.72	ns
t _{CKQ2}	Clock High to New Data Valid on DOUT (pipelined)	3.38	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge	0.30	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.89	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	1.01	ns
t _{RSTBQ}	RESET Low to Data Out Low on DOUT (pass-through)	3.86	ns
	RESET Low to Data Out Low on DOUT (pipelined)	3.86	ns
t _{REMRSTB}	RESET Removal	1.12	ns
t _{RECRSTB}	RESET Recovery	5.93	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency	92	MHz


Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

Table 3-3 • TRST and TCK Pull-Down Recommendations

VJTAG	Tie-Off Resistance*
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Note: Equivalent parallel resistance if more than one device is on the JTAG chain

TDI

Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The values in Table 3-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC

Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

	FG256		FG256		FG256
Pin Number	AGLE600 Function	Pin Number	AGLE600 Function	Pin Number	AGLE600 Function
G13	GCC1/IO50PPB2V1	K1	GFC2/IO115PSB6V1	M5	VMV5
G14	IO44NDB2V1	K2	IO113PPB6V1	M6	VCCIB5
G15	IO44PDB2V1	K3	IO112PDB6V1	M7	VCCIB5
G16	IO49NSB2V1	K4	IO112NDB6V1	M8	IO84NDB5V0
H1	GFB0/IO119NPB7V0	K5	VCCIB6	M9	IO84PDB5V0
H2	GFA0/IO118NDB6V1	K6	VCC	M10	VCCIB4
H3	GFB1/IO119PPB7V0	K7	GND	M11	VCCIB4
H4	VCOMPLF	K8	GND	M12	VMV3
H5	GFC0/IO120NPB7V0	K9	GND	M13	VCCPLD
H6	VCC	K10	GND	M14	GDB1/IO66PPB3V1
H7	GND	K11	VCC	M15	GDC1/IO65PDB3V1
H8	GND	K12	VCCIB3	M16	IO61NDB3V1
H9	GND	K13	IO54NPB3V0	N1	IO105PDB6V0
H10	GND	K14	IO57NPB3V0	N2	IO105NDB6V0
H11	VCC	K15	IO55NPB3V0	N3	GEC1/IO104PPB6V0
H12	GCC0/IO50NPB2V1	K16	IO57PPB3V0	N4	VCOMPLE
H13	GCB1/IO51PPB2V1	L1	IO113NPB6V1	N5	GNDQ
H14	GCA0/IO52NPB3V0	L2	IO109PPB6V0	N6	GEA2/IO101PPB5V2
H15	VCOMPLC	L3	IO108PDB6V0	N7	IO92NDB5V1
H16	GCB0/IO51NPB2V1	L4	IO108NDB6V0	N8	IO90NDB5V1
J1	GFA2/IO117PSB6V1	L5	VCCIB6	N9	IO82NDB5V0
J2	GFA1/IO118PDB6V1	L6	GND	N10	IO74NDB4V1
J3	VCCPLF	L7	VCC	N11	IO74PDB4V1
J4	IO116NDB6V1	L8	VCC	N12	GNDQ
J5	GFB2/IO116PDB6V1	L9	VCC	N13	VCOMPLD
J6	VCC	L10	VCC	N14	VJTAG
J7	GND	L11	GND	N15	GDC0/IO65NDB3V1
J8	GND	L12	VCCIB3	N16	GDA1/IO67PDB3V1
J9	GND	L13	GDB0/IO66NPB3V1	P1	GEB1/IO103PDB6V0
J10	GND	L14	IO60NDB3V1	P2	GEB0/IO103NDB6V0
J11	VCC	L15	IO60PDB3V1	P3	VMV6
J12	GCB2/IO54PPB3V0	L16	IO61PDB3V1	P4	VCCPLE
J13	GCA1/IO52PPB3V0	M1	IO109NPB6V0	P5	IO101NPB5V2
J14	GCC2/IO55PPB3V0	M2	IO106NDB6V0	P6	IO95PPB5V1
J15	VCCPLC	M3	IO106PDB6V0	P7	IO92PDB5V1
J16	GCA2/IO53PSB3V0	M4	GEC0/IO104NPB6V0	P8	IO90PDB5V1

FG896		FG896			FG896	
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	
D30	GBA2/IO82PPB2V0	F5	VMV7	G7	VCC	
E1	GND	F5	VMV7	G8	VMV0	
E2	IO303NPB7V3	F6	GND	G9	VCCIB0	
E3	VCCIB7	F7	GNDQ	G10	IO10NDB0V1	
E4	IO305PPB7V3	F8	IO12NDB0V1	G11	IO16NDB0V1	
E5	VCC	F9	IO12PDB0V1	G12	IO22PDB0V2	
E6	GAC0/IO02NDB0V0	F10	IO10PDB0V1	G13	IO26PPB0V3	
E7	VCCIB0	F11	IO16PDB0V1	G14	IO38NPB0V4	
E8	IO06PPB0V0	F12	IO22NDB0V2	G15	IO36NDB0V4	
E9	IO24NDB0V2	F13	IO30NDB0V3	G16	IO46NDB1V0	
E10	IO24PDB0V2	F14	IO30PDB0V3	G17	IO46PDB1V0	
E11	IO13NDB0V1	F15	IO36PDB0V4	G18	IO56NDB1V1	
E12	IO13PDB0V1	F16	IO48NDB1V0	G19	IO56PDB1V1	
E13	IO34NDB0V4	F17	IO48PDB1V0	G20	IO66NDB1V3	
E14	IO34PDB0V4	F18	IO50NDB1V1	G21	IO66PDB1V3	
E15	IO40NDB0V4	F19	IO58NDB1V2	G22	VCCIB1	
E16	IO49NDB1V1	F20	IO60PDB1V2	G23	VMV1	
E17	IO49PDB1V1	F21	IO77NDB1V4	G24	VCC	
E18	IO50PDB1V1	F22	IO72NDB1V3	G25	GNDQ	
E19	IO58PDB1V2	F23	IO72PDB1V3	G25	GNDQ	
E20	IO60NDB1V2	F24	GNDQ	G26	VCCIB2	
E21	IO77PDB1V4	F25	GND	G27	IO86NDB2V0	
E22	IO68NDB1V3	F26	VMV2	G28	IO92NDB2V1	
E23	IO68PDB1V3	F26	VMV2	G29	IO100PPB2V2	
E24	VCCIB1	F27	IO86PDB2V0	G30	GND	
E25	IO74PDB1V4	F28	IO92PDB2V1	H1	IO294PDB7V2	
E26	VCC	F29	VCC	H2	IO294NDB7V2	
E27	GBB1/IO80PPB1V4	F30	IO100NPB2V2	H3	IO300NDB7V3	
E28	VCCIB2	G1	GND	H4	IO300PDB7V3	
E29	IO82NPB2V0	G2	IO296NPB7V2	H5	IO295PDB7V2	
E30	GND	G3	IO306NDB7V4	H6	IO299PDB7V3	
F1	IO296PPB7V2	G4	IO297NDB7V2	H7	VCOMPLA	
F2	VCC	G5	VCCIB7	H8	GND	
F3	IO306PDB7V4	G6	GNDQ	H9	IO08NDB0V0	
F4	IO297PDB7V2	G6	GNDQ	H10	IO08PDB0V0	

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.