

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	270
Number of Gates	600000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/agle600v2-fgg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pro I/Os with Advanced I/O Standards

The IGLOOe family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V). IGLOOe FPGAs support 19 different I/O standards, including single-ended, differential, and voltage-referenced. The I/Os are organized into banks, with eight banks per device (two per side). The configuration of these banks determines the I/O standards supported. Each I/O bank is subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
- Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II).

IGLOOe banks support M-LVDS with 20 multi-drop points.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Wide Range I/O Support

IGLOOe devices support JEDEC-defined wide range I/O operation. IGLOOe devices support both the JESD8-B specification, covering 3.0 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.

- 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
- 2. From the FlashPro GUI, click **PDB Configuration**. A FlashPoint Programming File Generator window appears.
- Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
- 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-4 on page 1-8).
- 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High
 - 0 I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

 JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *IGLOOe FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers

Output buffers, after 200 ns delay from input buffer activation.

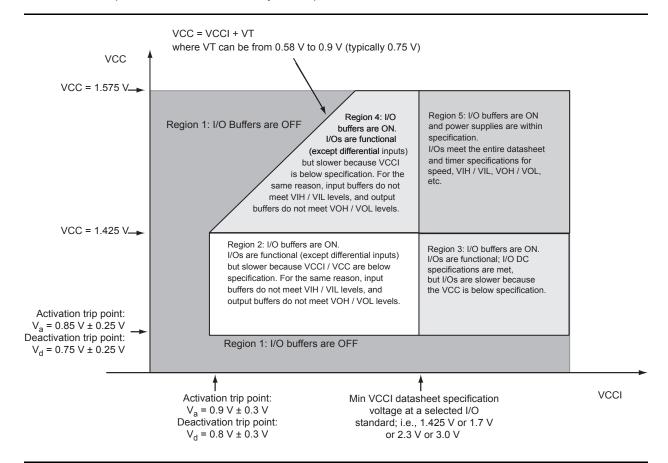


Figure 2-1 • V5 – I/O State as a Function of VCCI and VCC Voltage Levels

2-4 Revision 13

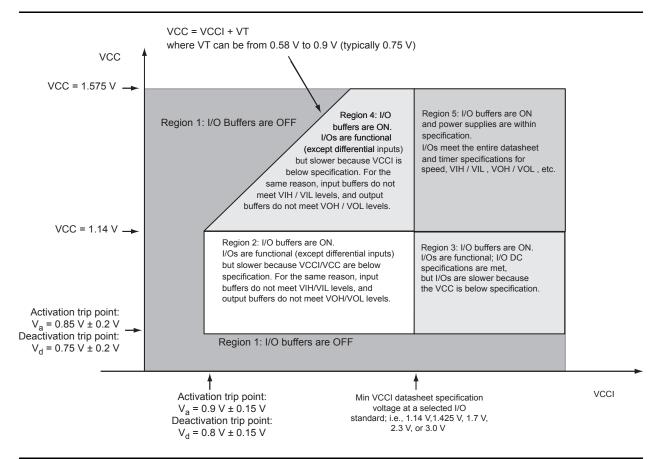


Figure 2-2 • V2 Devices - I/O State as a Function of VCCI and VCC Voltage Levels

Thermal Characteristics

Introduction

The temperature variable in Microsemi Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.

EQ 1 can be used to calculate junction temperature.

 T_J = Junction Temperature = $\Delta T + T_A$

EQ 1

where:

T_A = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P

 θ_{ia} = Junction-to-ambient of the package. θ_{ia} numbers are located in Table 2-5.

P = Power dissipation

1.2 V DC Core Voltage

Table 2-50 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	1.55	6.25	0.26	1.55	1.77	1.10	6.36	5.34	2.81	2.63	12.14	11.13	ns
8 mA	Std.	1.55	5.18	0.26	1.55	1.77	1.10	5.26	4.61	3.13	3.32	11.05	10.39	ns
12 mA	Std.	1.55	4.42	0.26	1.55	1.77	1.10	4.49	4.08	3.36	3.76	10.28	9.86	ns
16 mA	Std.	1.55	4.19	0.26	1.55	1.77	1.10	4.25	3.96	3.40	3.89	10.04	9.75	ns
24 mA	Std.	1.55	4.09	0.26	1.55	1.76	1.10	4.15	3.97	3.47	4.32	9.94	9.76	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-51 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	1.55	3.38	0.26	1.55	1.77	1.10	3.42	3.11	2.81	2.72	9.21	8.89	ns
8 mA	Std.	1.55	2.83	0.26	1.55	1.77	1.10	2.87	2.51	3.13	3.42	8.66	8.30	ns
12 mA	Std.	1.55	2.51	0.26	1.55	1.77	1.10	2.54	2.22	3.36	3.85	8.33	8.00	ns
16 mA	Std.	1.55	2.45	0.26	1.55	1.77	1.10	2.48	2.16	3.40	3.97	8.27	7.95	ns
24 mA	Std.	1.55	2.46	0.26	1.55	1.77	1.10	2.49	2.09	3.47	4.44	8.28	7.88	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

2-40 Revision 13

Timing Characteristics

1.5 V DC Core Voltage

Table 2-54 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	7.33	0.18	1.27	1.59	0.66	7.47	6.18	2.34	1.18	11.07	9.77	ns
4 mA	Std.	0.97	6.07	0.18	1.27	1.59	0.66	6.20	5.25	2.69	2.42	9.79	8.84	ns
6 mA	Std.	0.97	5.18	0.18	1.27	1.59	0.66	5.29	4.61	2.93	2.88	8.88	8.21	ns
8 mA	Std.	0.97	4.88	0.18	1.27	1.59	0.66	4.98	4.48	2.99	3.01	8.58	8.08	ns
12 mA	Std.	0.97	4.80	0.18	1.27	1.59	0.66	4.89	4.49	3.07	3.47	8.49	8.09	ns
16 mA	Std.	0.97	4.80	0.18	1.27	1.59	0.66	4.89	4.49	3.07	3.47	8.49	8.09	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-55 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t	t	t	t	t	t	t	t	t	f	t	t	Units
Drive Otterigtii	Grade	t _{DOUT}	₹ _{DP}	τ _{DIN}	τ _{PY}	τ _{PYS}	^T EOUT	t _{ZL}	τ _{ZH}	τ _{LZ}	τ _{HZ}	τzls	τ _{ZHS}	Office
2 mA	Std.	0.97	3.43	0.18	1.27	1.59	0.66	3.51	3.39	2.33	1.19	7.10	6.98	ns
4 mA	Std.	0.97	2.83	0.18	1.27	1.59	0.66	2.89	2.59	2.69	2.49	6.48	6.18	ns
6 mA	Std.	0.97	2.45	0.18	1.27	1.59	0.66	2.51	2.19	2.93	2.95	6.10	5.79	ns
8 mA	Std.	0.97	2.38	0.18	1.27	1.59	0.66	2.43	2.12	2.98	3.08	6.03	5.71	ns
12 mA	Std.	0.97	2.37	0.18	1.27	1.59	0.66	2.42	2.03	3.07	3.57	6.02	5.62	ns
16 mA	Std.	0.97	2.37	0.18	1.27	1.59	0.66	2.42	2.03	3.07	3.57	6.02	5.62	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-42 Revision 13

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

Table 2-58 • Minimum and Maximum DC Input and Output Levels

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	юзн	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	6	6	32	39	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	8	8	66	55	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12	66	55	10	10

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

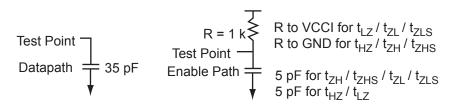


Figure 2-10 • AC Loading

Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.5	0.75	-	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

2-44 Revision 13

2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

Table 2-77 • Minimum and Maximum DC Input and Output Levels

2.5 GTL		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁴
20 mA ⁵	-0.3	VREF - 0.05	VREF + 0.05	3.6	0.4	_	20	20	169	124	10	10

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Output drive strength is below JEDEC specification.

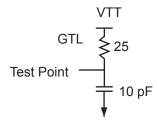


Figure 2-14 • AC Loading

Table 2-78 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF - 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-79 • 2.5 V GTL – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.98	1.90	0.19	2.04	0.67	1.94	1.87			5.57	5.50	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-80 • 2.5 V GTL – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,

Worst-Case VCCI = 3.0 V VREF = 0.8 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	1.55	2.16	0.26	2.35	1.10	2.20	2.13			8.01	7.94	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

2.5 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

Table 2-85 • Minimum and Maximum DC Input and Output Levels

2.5 V GTL+		VIL	VIH Min. Max. V V		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁴
33 mA	-0.3	VREF - 0.1	VREF + 0.1	3.6	0.6	-	33	33	169	124	10	10

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

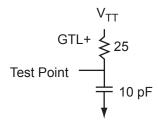


Figure 2-16 • AC Loading

Table 2-86 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF - 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-87 • 2.5 V GTL+ – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V VREF = 1.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.98	1.97	0.19	1.29	0.67	2.00	1.84			5.63	5.47	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-88 • 2.5 V GTL+ – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,

Worst-Case VCCI = 2.3 V VREF = 1.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	1.55	2.23	0.26	1.55	1.10	2.28	2.11			8.08	7.91	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

HSTL Class I

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-89 • Minimum and Maximum DC Input and Output Levels

HSTL Class		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁴
8 mA	-0.3	VREF - 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	8	8	32	39	10	10

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

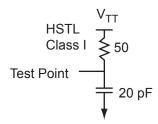


Figure 2-17 • AC Loading

Table 2-90 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF - 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-91 • HSTL Class I – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.98	2.74	0.19	1.77	0.67	2.79	2.73			6.42	6.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-92 • HSTL Class I – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	1.55	3.10	0.26	1.94	1.10	3.12	3.10			8.93	8.91	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

2-56 Revision 13

Timing Characteristics

1.5 V DC Core Voltage

Table 2-133 • Output DDR Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.07	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.67	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.67	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.38	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.23	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width HIGH for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width LOW for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	250.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-134 • Output DDR Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.60	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	1.09	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	1.16	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.99	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.24	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width HIGH for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width LOW for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	160.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

VersaTile Specifications as a Sequential Module

The IGLOOe library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the IGLOO, Fusion, and ProASIC3 Macro Library Guide.

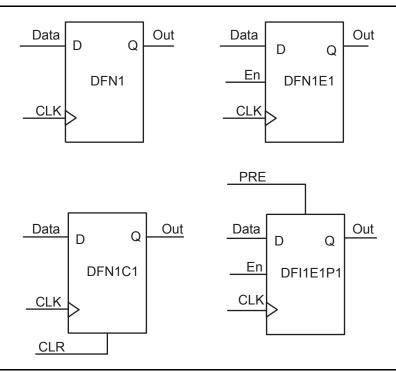


Figure 2-37 • Sample of Sequential Cells

Embedded SRAM and FIFO Characteristics

SRAM

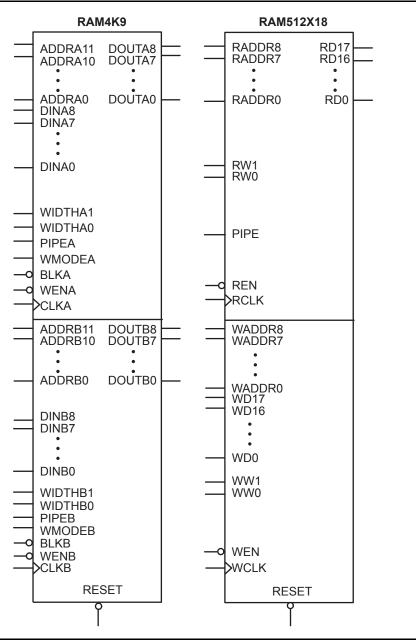


Figure 2-41 • RAM Models

2-94 Revision 13

Applies to 1.2 V DC Core Voltage

Table 2-147 • RAM4K9

Commercial-Case Conditions: $T_J = 70^{\circ}C$, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{AS}	Address Setup Time	1.53	ns
t _{AH}	Address Hold Time	0.29	ns
t _{ENS}	REN, WEN Setup Time	1.50	ns
t _{ENH}	REN, WEN Hold Time	0.29	ns
t _{BKS}	BLK Setup Time	3.05	ns
t _{BKH}	BLK Hold Time	0.29	ns
t _{DS}	Input Data (DIN) Setup Time	1.33	ns
t _{DH}	Input Data (DIN) Hold Time	0.66	ns
t _{CKQ1}	Clock High to New Data Valid on DOUT (output retained, WMODE = 0)	6.61	ns
	Clock High to New Data Valid on DOUT (flow-through, WMODE = 1)	5.72	ns
t _{CKQ2}	Clock High to New Data Valid on DOUT (pipelined)	3.38	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge	0.30	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.89	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	1.01	ns
t _{RSTBQ}	RESET Low to Data Out Low on DOUT (pass-through)	3.86	ns
	RESET Low to Data Out Low on DOUT (pipelined)	3.86	ns
t _{REMRSTB}	RESET Removal	1.12	ns
t _{RECRSTB}	RESET Recovery	5.93	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency	92	MHz

Notes:

2-100 Revision 13

^{1.} For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

^{2.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-148 • RAM512X18 Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{AS}	Address Setup Time	1.53	ns
t _{AH}	Address Hold Time	0.29	ns
t _{ENS}	REN, WEN Setup Time	1.36	ns
t _{ENH}	REN, WEN Hold Time	0.15	ns
t _{DS}	Input Data (WD) Setup Time	1.33	ns
t _{DH}	Input Data (WD) Hold Time	0.66	ns
t _{CKQ1}	Clock High to New Data Valid on RD (output retained)	7.88	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	3.20	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.87	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	1.04	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	3.86	ns
	RESET Low to Data Out Low on RD (pipelined)	3.86	ns
t _{REMRSTB}	RESET Removal	1.12	ns
t _{RECRSTB}	RESET Recovery	5.93	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency	92	MHz

Notes:

^{1.} For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

^{2.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-110 Revision 13

	FG484
Pin Number	AGLE600 Function
N8	VCCIB6
N9	VCC
N10	GND
N11	GND
N12	GND
N13	GND
N14	VCC
N15	VCCIB3
N16	IO54NPB3V0
N17	IO57NPB3V0
N18	IO55NPB3V0
N19	IO57PPB3V0
N20	NC
N21	IO56NDB3V0
N22	IO58PDB3V0
P1	NC
P2	IO111PDB6V1
P3	IO115NPB6V1
P4	IO113NPB6V1
P5	IO109PPB6V0
P6	IO108PDB6V0
P7	IO108NDB6V0
P8	VCCIB6
P9	GND
P10	VCC
P11	VCC
P12	VCC
P13	VCC
P14	GND
P15	VCCIB3
P16	GDB0/IO66NPB3V1
P17	IO60NDB3V1
P18	IO60PDB3V1
P19	IO61PDB3V1
P20	NC

EC494			
	FG484		
Pin Number	AGLE600 Function		
P21	IO59PDB3V0		
P22	IO58NDB3V0		
R1	NC		
R2	IO110PDB6V0		
R3	VCC		
R4	IO109NPB6V0		
R5	IO106NDB6V0		
R6	IO106PDB6V0		
R7	GEC0/IO104NPB6V0		
R8	VMV5		
R9	VCCIB5		
R10	VCCIB5		
R11	IO84NDB5V0		
R12	IO84PDB5V0		
R13	VCCIB4		
R14	VCCIB4		
R15	VMV3		
R16	VCCPLD		
R17	GDB1/IO66PPB3V1		
R18	GDC1/IO65PDB3V1		
R19	IO61NDB3V1		
R20	VCC		
R21	IO59NDB3V0		
R22	IO62PDB3V1		
T1	NC		
T2	IO110NDB6V0		
T3	NC		
T4	IO105PDB6V0		
T5	IO105NDB6V0		
Т6	GEC1/IO104PPB6V0		
T7	VCOMPLE		
Т8	GNDQ		
Т9	GEA2/IO101PPB5V2		
T10	IO92NDB5V1		
T11	IO90NDB5V1		

FG484		
AGLE600 Function		
IO82NDB5V0		
IO74NDB4V1		
IO74PDB4V1		
GNDQ		
VCOMPLD		
VJTAG		
GDC0/IO65NDB3V1		
GDA1/IO67PDB3V1		
NC		
IO64PDB3V1		
IO62NDB3V1		
NC		
IO107PDB6V0		
IO107NDB6V0		
GEB1/IO103PDB6V0		
GEB0/IO103NDB6V0		
VMV6		
VCCPLE		
IO101NPB5V2		
IO95PPB5V1		
IO92PDB5V1		
IO90PDB5V1		
IO82PDB5V0		
IO76NDB4V1		
IO76PDB4V1		
VMV4		
TCK		
VPUMP		
TRST		
GDA0/IO67NDB3V1		
NC		
IO64NDB3V1		
IO63PDB3V1		
NC		

FG484			
Pin Number	AGLE3000 Function		
H13	VCCIB1		
H14	VCCIB1		
H15	VMV1		
H16	GBC2/IO84PDB2V0		
H17	IO83NDB2V0		
H18	IO100NDB2V2		
H19	IO100PDB2V2		
H20	VCC		
H21	VMV2		
H22	IO105PDB2V2		
J1	IO285NDB7V1		
J2	IO285PDB7V1		
J3	VMV7		
J4	IO279PDB7V0		
J5	IO283PDB7V1		
J6	IO281PDB7V0		
J7	IO287NDB7V1		
J8	VCCIB7		
J9	GND		
J10	VCC		
J11	VCC		
J12	VCC		
J13	VCC		
J14	GND		
J15	VCCIB2		
J16	IO84NDB2V0		
J17	IO104NDB2V2		
J18	IO104PDB2V2		
J19	IO106PPB2V3		
J20	GNDQ		
J21	IO109PDB2V3		
J22	IO107PDB2V3		
K1	IO277NDB7V0		
K2	IO277PDB7V0		
K3	GNDQ		

FG484			
Pin Number	AGLE3000 Function		
K4	IO279NDB7V0		
K5	IO283NDB7V1		
K6	IO281NDB7V0		
K7	GFC1/IO275PPB7V0		
K8	VCCIB7		
K9	VCC		
K10	GND		
K11	GND		
K12	GND		
K13	GND		
K14	VCC		
K15	VCCIB2		
K16	GCC1/IO112PPB2V3		
K17	IO108NDB2V3		
K18	IO108PDB2V3		
K19	IO110NPB2V3		
K20	IO106NPB2V3		
K21	IO109NDB2V3		
K22	IO107NDB2V3		
L1	IO257PSB6V2		
L2	IO276PDB7V0		
L3	IO276NDB7V0		
L4	GFB0/IO274NPB7V0		
L5	GFA0/IO273NDB6V4		
L6	GFB1/IO274PPB7V0		
L7	VCOMPLF		
L8	GFC0/IO275NPB7V0		
L9	VCC		
L10	GND		
L11	GND		
L12	GND		
L13	GND		
L14	VCC		
L15	GCC0/IO112NPB2V3		
L16	GCB1/IO113PPB2V3		

FG484		
Dia	1 0404	
Pin Number	AGLE3000 Function	
L17	GCA0/IO114NPB3V0	
L18	VCOMPLC	
L19	GCB0/IO113NPB2V3	
L20	IO110PPB2V3	
L21	IO111NDB2V3	
L22	IO111PDB2V3	
M1	GNDQ	
M2	IO255NPB6V2	
М3	IO272NDB6V4	
M4	GFA2/IO272PDB6V4	
M5	GFA1/IO273PDB6V4	
M6	VCCPLF	
M7	IO271NDB6V4	
M8	GFB2/IO271PDB6V4	
M9	VCC	
M10	GND	
M11	GND	
M12	GND	
M13	GND	
M14	VCC	
M15	GCB2/IO116PPB3V0	
M16	GCA1/IO114PPB3V0	
M17	GCC2/IO117PPB3V0	
M18	VCCPLC	
M19	GCA2/IO115PDB3V0	
M20	IO115NDB3V0	
M21	IO126PDB3V1	
M22	IO124PSB3V1	
N1	IO255PPB6V2	
N2	IO253NDB6V2	
N3	VMV6	
N4	GFC2/IO270PPB6V4	
N5	IO261PPB6V3	
N6	IO263PDB6V3	
N7	IO263NDB6V3	

Package Pin Assignments

FG896			
AGLE3000 Pin Number Function			
AK14	IO197PDB5V0		
AK15	IO191NDB4V4		
AK16	IO191PDB4V4		
AK17	IO189NDB4V4		
AK18	IO189PDB4V4		
AK19	IO179PPB4V3		
AK20	IO175NDB4V2		
AK21	IO175PDB4V2		
AK22	IO169NDB4V1		
AK23	IO169PDB4V1		
AK24	GND		
AK25	IO167PPB4V1		
AK26	GND		
AK27	GDC2/IO156PPB4V0		
AK28	GND		
AK29	GND		
B1	GND		
B2	GND		
В3	GAA2/IO309PPB7V4		
B4	VCC		
B5	IO14PPB0V1		
В6	VCC		
B7	IO07PPB0V0		
B8	IO09PDB0V1		
В9	IO15PPB0V1		
B10	IO19NDB0V2		
B11	IO19PDB0V2		
B12	IO29NDB0V3		
B13	IO29PDB0V3		
B14	IO31PPB0V3		
B15	IO37NDB0V4		
B16	IO37PDB0V4		
B17	IO41PDB1V0		
B18	IO51NDB1V1		
B19	IO59PDB1V2		

FG896			
Pin Number	AGLE3000 Function		
B20	IO53PDB1V1		
B21	IO53NDB1V1		
B22	IO61NDB1V2		
B23	IO61PDB1V2		
B24	IO69NPB1V3		
B25	VCC		
B26	GBC0/IO79NPB1V4		
B27	VCC		
B28	IO64NPB1V2		
B29	GND		
B30	GND		
C1	GND		
C2	IO309NPB7V4		
C3	VCC		
C4	GAA0/IO00NPB0V0		
C5	VCCIB0		
C6	IO03PDB0V0		
C7	IO03NDB0V0		
C8	GAB1/IO01PDB0V0		
C9	IO05PDB0V0		
C10	IO15NPB0V1		
C11	IO25NDB0V3		
C12	IO25PDB0V3		
C13	IO31NPB0V3		
C14	IO27NDB0V3		
C15	IO39NDB0V4		
C16	IO39PDB0V4		
C17	IO55PPB1V1		
C18	IO51PDB1V1		
C19	IO59NDB1V2		
C20	IO63NDB1V2		
C21	IO63PDB1V2		
C22	IO67NDB1V3		
C23	IO67PDB1V3		
C24	IO75NDB1V4		

FG896			
Pin Number	AGLE3000 Function		
C25	IO75PDB1V4		
C26	VCCIB1		
C27	IO64PPB1V2		
C28	VCC		
C29	GBA1/IO81PPB1V4		
C30	GND		
D1	IO303PPB7V3		
D2	VCC		
D3	IO305NPB7V3		
D4	GND		
D5	GAA1/IO00PPB0V0		
D6	GAC1/IO02PDB0V0		
D7	IO06NPB0V0		
D8	GAB0/IO01NDB0V0		
D9	IO05NDB0V0		
D10	IO11NDB0V1		
D11	IO11PDB0V1		
D12	IO23NDB0V2		
D13	IO23PDB0V2		
D14	IO27PDB0V3		
D15	IO40PDB0V4		
D16	IO47NDB1V0		
D17	IO47PDB1V0		
D18	IO55NPB1V1		
D19	IO65NDB1V3		
D20	IO65PDB1V3		
D21	IO71NDB1V3		
D22	IO71PDB1V3		
D23	IO73NDB1V4		
D24	IO73PDB1V4		
D25	IO74NDB1V4		
D26	GBB0/IO80NPB1V4		
D27	GND		
D28	GBA0/IO81NPB1V4		
D29	VCC		

4-20 Revision 13