

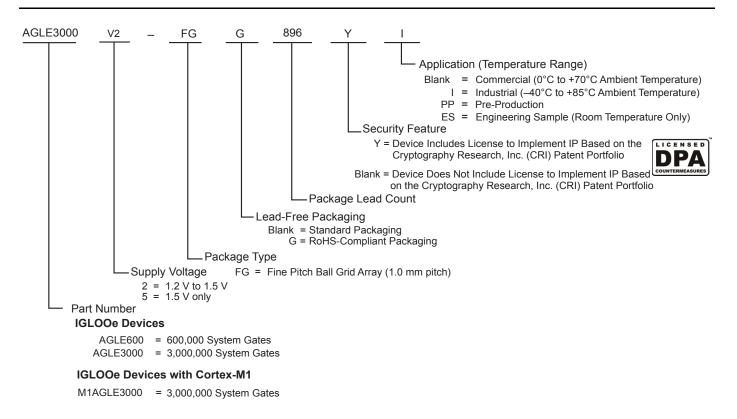
Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	270
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/agle600v5-fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOOe Ordering Information

Note: Marking Information: IGLOO V2 devices do not have V2 marking, but IGLOO V5 devices are marked accordingly.

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power modes usage. Microsemi recommends using the PowerCalculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 • Power Supply State per Mode

	Power Supply Configurations									
Modes/power supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP					
Flash*Freeze	On	On	On	On	On/off/floating					
Sleep	Off	Off	On	Off	Off					
Shutdown	Off	Off	Off	Off	Off					
No Flash*Freeze	On	On	On	On	On/off/floating					

Note: Off: Power supply level = 0 V

Table 2-9 • Quiescent Supply Current (IDD), IGLOOe Flash*Freeze Mode*

	Core Voltage	AGLE600	AGLE3000	Units
Typical (25°C)	1.2 V	34	95	μΑ
	1.5 V	72	310	μΑ

Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 and Table 2-14 on page 2-10 (PDC6 and PDC7).

Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOOe Sleep Mode*

	Core Voltage	AGLE600	AGLE3000	Units
VCCI/VJTAG = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	μA
VCCI/VJTAG = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	μA
VCCI/VJTAG = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	μA
VCCI/VJTAG = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	μA
VCCI/VJTAG= 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	μA

Note: $*IDD = N_{BANKS} \times ICCI$. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 and Table 2-14 on page 2-10 (PDC6 and PDC7).

Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOOe Shutdown Mode*

	Core Voltage	AGLE600	AGLE3000	Units
Typical (25°C)	1.2 V / 1.5 V	0	0	μA

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% as all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Table 2-19 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Component Definition							
α_1	10%							
α ₂	I/O buffer toggle rate	10%						

Table 2-20 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β_3	RAM enable rate for write operations	12.5%

static Microsemi.

IGLOOe DC and Switching Characteristics

Parameter	Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer with Schmitt trigger disabled
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{PYS}	Pad to Data delay through the Input Buffer with Schmitt trigger enabled
t _{HZ}	Enable to Pad delay through the Output Buffer—HIGH to Z
t _{zH}	Enable to Pad delay through the Output Buffer—Z to HIGH
t _{LZ}	Enable to Pad delay through the Output Buffer—LOW to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to LOW
t _{zHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to HIGH
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to LOW

Table 2-24 • I/O AC Parameter Definitions

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	1.55	5.54	0.26	1.31	1.58	1.10	5.63	4.53	2.79	2.87	11.42	10.32	ns
8 mA	Std.	1.55	4.60	0.26	1.31	1.58	1.10	4.67	3.94	3.09	3.45	10.45	9.73	ns
12 mA	Std.	1.55	3.93	0.26	1.31	1.58	1.10	3.99	3.51	3.28	3.82	9.77	9.29	ns
16 mA	Std.	1.55	3.74	0.26	1.31	1.58	1.10	3.79	3.41	3.32	3.92	9.58	9.20	ns
24 mA	Std.	1.55	3.64	0.26	1.31	1.58	1.10	3.69	3.42	3.38	4.30	9.48	9.21	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	1.55	3.26	0.26	1.31	1.58	1.10	3.33	2.67	2.79	3.01	9.12	8.46	ns
8 mA	Std.	1.55	2.77	0.26	1.31	1.58	1.10	2.80	2.24	3.09	3.59	8.59	8.03	ns
12 mA	Std.	1.55	2.47	0.26	1.31	1.58	1.10	2.51	2.04	3.28	3.97	8.29	7.82	ns
16 mA	Std.	1.55	2.42	0.26	1.31	1.58	1.10	2.46	2.00	3.33	4.08	8.24	7.79	ns
24 mA	Std.	1.55	2.45	0.26	1.31	1.58	1.10	2.48	1.95	3.38	4.46	8.26	7.73	ns

Notes:

1. Software default selection highlighted in gray.

static Microsemi.

IGLOOe DC and Switching Characteristics

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	6	6	32	39	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	8	8	66	55	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12	66	55	10	10

Table 2-58 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 35 pF $R = 1 k$
Enable Path \downarrow R to VCCI for $t_{LZ} / t_{ZL} / t_{ZLS}$
 R to GND for $t_{HZ} / t_{ZH} / t_{ZHS}$
 $5 pF for t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$
 $5 pF for t_{HZ} / t_{ZH} / t_{ZLS}$

Figure 2-10 • AC Loading

Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.5	0.75	_	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Voltage-Referenced I/O Characteristics

3.3 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-73 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL		VIL	VIH Min Max		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
20 mA ⁵	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20	268	181	10	10


Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Output drive strength is below JEDEC specification.

Figure 2-13 • AC Loading

Table 2-74 •	AC Waveforms.	Measuring Points	, and Capacitive Loads
		inououring i onito	, and capacitie is a cauce

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

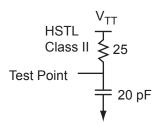
HSTL Class II

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

HSTL Class II		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA ⁵	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	15	15	66	55	10	10

Table 2-93 • Minimum and Maximum DC Input and Output Levels

Notes:


1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Output drive strength is below JEDEC specification.

Figure 2-18 • AC Loading

Table 2-94 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-95 •HSTL Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.98	2.62	0.19	1.77	0.67	2.66	2.40			6.29	6.03	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-96 •HSTL Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.93	0.26	1.94	1.10	2.98	2.75			8.79	8.55	ns

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

SSTL2 Class I

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-97 •	Minimum and Maximum	DC Input and	Output Levels
--------------	---------------------	--------------	---------------

SSTL2 Class I		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI - 0.62	15	15	83	87	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-19 • AC Loading

Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-99 • SSTL 2 Class I – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,

Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.98	1.91	0.19	1.15	0.67	1.94	1.72			5.57	5.35	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-100 • SSTL 2 Class I – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.17	0.26	1.39	1.10	2.21	2.04			8.02	7.84	ns

Microsemi. IGLOOE DC and Switching Characteristics

Timing Characteristics

1.5 V DC Core Voltage

Table 2-135 • Combinatorial Cell Propagation Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	0.80	ns
AND2	$Y = A \cdot B$	t _{PD}	0.84	ns
NAND2	Y = !(A · B)	t _{PD}	0.90	ns
OR2	Y = A + B	t _{PD}	1.19	ns
NOR2	Y = !(A + B)	t _{PD}	1.10	ns
XOR2	Y = A 🕀 B	t _{PD}	1.37	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	1.33	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	1.79	ns
MUX2	Y = A !S + B S	t _{PD}	1.48	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	1.21	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-136 • Combinatorial Cell Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	1.35	ns
AND2	$Y = A \cdot B$	t _{PD}	1.42	ns
NAND2	Y = !(A ⋅ B)	t _{PD}	1.58	ns
OR2	Y = A + B	t _{PD}	2.10	ns
NOR2	Y = !(A + B)	t _{PD}	1.94	ns
XOR2	Y = A 🕀 B	t _{PD}	2.33	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	2.34	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	3.05	ns
MUX2	Y = A !S + B S	t _{PD}	2.64	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	2.10	ns

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-91. Table 2-139 and Table 2-141 present minimum and maximum global clock delays within the device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-139 • AGLE600 Global Resource Commercial-Case Conditions: T_{.1} = 70°C, VCC = 1.425 V

			Std.	
Parameter	Description	Min.	Min. ¹ Max. ²	
t _{RCKL}	Input Low Delay for Global Clock	1.48	1.82	ns
t _{RCKH}	Input High Delay for Global Clock	1.52	1.94	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-140 • AGLE3000 Global Resource

		S	Std.	
Parameter	Description	Min. ¹	Min. ¹ Max. ²	
t _{RCKL}	Input Low Delay for Global Clock	2.00	2.34	ns
t _{RCKH}	Input High Delay for Global Clock	2.09	2.51	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-141 • AGLE600 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		Std.		
Parameter	Description	Min. ¹ Max. ²		Units
t _{RCKL}	Input Low Delay for Global Clock	2.22	2.67	ns
t _{RCKH}	Input High Delay for Global Clock	2.32	2.93	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-142 • AGLE3000 Global Resource Commercial-Case Conditions:

		Std.		
Parameter	Description	Min. ¹ Max. ²		Units
t _{RCKL}	Input Low Delay for Global Clock	2.83	3.27	ns
t _{RCKH}	Input High Delay for Global Clock	3.00	3.61	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

Timing Waveforms

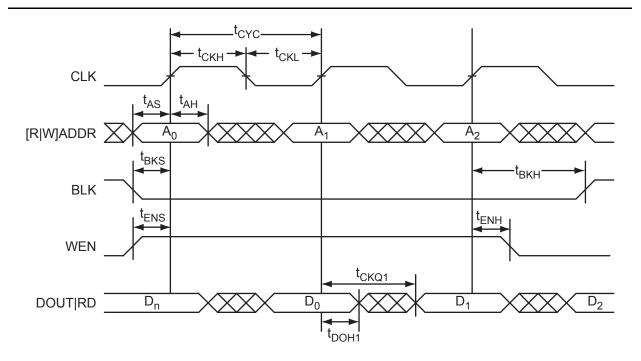
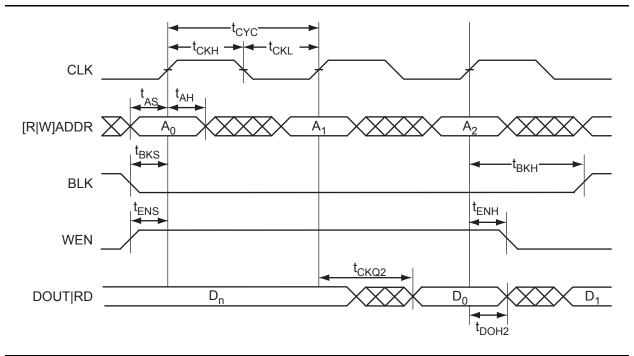



Figure 2-42 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512X18.

Figure 2-43 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512X18.

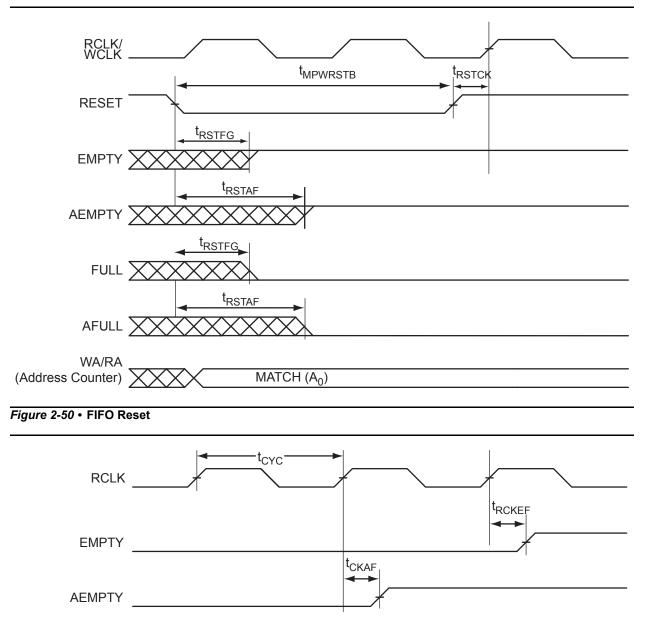


Figure 2-51 • FIFO EMPTY Flag and AEMPTY Flag Assertion

Applies to 1.2 V DC Core Voltage

Table 2-150 • FIFO

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.13	ns
t _{ENH}	REN, WEN Hold Time	0.31	ns
t _{BKS}	BLK Setup Time	0.47	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	1.56	ns
t _{DH}	Input Data (WD) Hold Time	0.49	ns
t _{CKQ1}	Clock HIGH to New Data Valid on RD (pass-through)	6.80	ns
t _{CKQ2}	Clock HIGH to New Data Valid on RD (pipelined)	3.62	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid		ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid	6.85	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	26.61	ns
t _{RSTFG}	RESET LOW to Empty/Full Flag Valid	7.12	ns
t _{RSTAF}	RESET LOW to Almost Empty/Full Flag Valid	26.33	ns
t _{RSTBQ}	RESET LOW to Data Out LOW on RD (pass-through)	4.09	ns
	RESET LOW to Data Out LOW on RD (pipelined)	4.09	ns
t _{REMRSTB}	RESET Removal	1.23	ns
t _{RECRSTB}	RESET Recovery	6.58	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency	92	MHz

Table 3-3 • TRST and TCK Pull-Down Recommendations

VJTAG	Tie-Off Resistance*
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Note: Equivalent parallel resistance if more than one device is on the JTAG chain

TDI

Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The values in Table 3-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC

Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

Package Pin Assignments

	FG256		FG256	FG256	
Pin Number	AGLE600 Function	Pin Number	AGLE600 Function	Pin Number	AGLE600 Function
A1	GND	C5	GAC0/IO02NDB0V0	E9	IO21NDB1V0
A2	GAA0/IO00NDB0V0	C6	GAC1/IO02PDB0V0	E10	VCCIB1
A3	GAA1/IO00PDB0V0	C7	IO15NDB0V2	E11	VCCIB1
A4	GAB0/IO01NDB0V0	C8	IO15PDB0V2	E12	VMV1
A5	IO05PDB0V0	C9	IO20PDB1V0	E13	GBC2/IO38PDB2V0
A6	IO10PDB0V1	C10	IO25NDB1V0	E14	IO37NDB2V0
A7	IO12PDB0V2	C11	IO27PDB1V0	E15	IO41NDB2V0
A8	IO16NDB0V2	C12	GBC0/IO33NDB1V1	E16	IO41PDB2V0
A9	IO23NDB1V0	C13	VCCPLB	F1	IO124PDB7V0
A10	IO23PDB1V0	C14	VMV2	F2	IO125PDB7V0
A11	IO28NDB1V1	C15	IO36NDB2V0	F3	IO126PDB7V0
A12	IO28PDB1V1	C16	IO42PDB2V0	F4	IO130NDB7V1
A13	GBB1/IO34PDB1V1	D1	IO128PDB7V1	F5	VCCIB7
A14	GBA0/IO35NDB1V1	D2	IO129PDB7V1	F6	GND
A15	GBA1/IO35PDB1V1	D3	GAC2/IO132PDB7V1	F7	VCC
A16	GND	D4	VCOMPLA	F8	VCC
B1	GAB2/IO133PDB7V1	D5	GNDQ	F9	VCC
B2	GAA2/IO134PDB7V1	D6	IO09NDB0V1	F10	VCC
B3	GNDQ	D7	IO09PDB0V1	F11	GND
B4	GAB1/IO01PDB0V0	D8	IO13PDB0V2	F12	VCCIB2
B5	IO05NDB0V0	D9	IO21PDB1V0	F13	IO38NDB2V0
B6	IO10NDB0V1	D10	IO25PDB1V0	F14	IO40NDB2V0
B7	IO12NDB0V2	D11	IO27NDB1V0	F15	IO40PDB2V0
B8	IO16PDB0V2	D12	GNDQ	F16	IO45PSB2V1
B9	IO20NDB1V0	D13	VCOMPLB	G1	IO124NDB7V0
B10	IO24NDB1V0	D14	GBB2/IO37PDB2V0	G2	IO125NDB7V0
B11	IO24PDB1V0	D15	IO39PDB2V0	G3	IO126NDB7V0
B12	GBC1/IO33PDB1V1	D16	IO39NDB2V0	G4	GFC1/IO120PPB7V0
B13	GBB0/IO34NDB1V1	E1	IO128NDB7V1	G5	VCCIB7
B14	GNDQ	E2	IO129NDB7V1	G6	VCC
B15	GBA2/IO36PDB2V0	E3	IO132NDB7V1	G7	GND
B16	IO42NDB2V0	E4	IO130PDB7V1	G8	GND
C1	IO133NDB7V1	E5	VMV0	G9	GND
C2	IO134NDB7V1	E6	VCCIB0	G10	GND
C3	VMV7	E7	VCCIB0	G11	VCC
C4	VCCPLA	E8	IO13NDB0V2	G12	VCCIB2

Microsemi. IGLOOe Low Power Flash FPGAs

	FG484		FG484	FG484	
Pin Number	AGLE600 Function	Pin Number	AGLE600 Function	Pin Number	AGLE600 Function
C18	GND	E9	IO10NDB0V1	F22	NC
C19	NC	E10	IO12NDB0V2	G1	IO127NDB7V1
C20	NC	E11	IO16PDB0V2	G2	IO127PDB7V1
C21	NC	E12	IO20NDB1V0	G3	NC
C22	VCCIB2	E13	IO24NDB1V0	G4	IO128PDB7V1
D1	NC	E14	IO24PDB1V0	G5	IO129PDB7V1
D2	NC	E15	GBC1/IO33PDB1V1	G6	GAC2/IO132PDB7V1
D3	NC	E16	GBB0/IO34NDB1V1	G7	VCOMPLA
D4	GND	E17	GNDQ	G8	GNDQ
D5	GAA0/IO00NDB0V0	E18	GBA2/IO36PDB2V0	G9	IO09NDB0V1
D6	GAA1/IO00PDB0V0	E19	IO42NDB2V0	G10	IO09PDB0V1
D7	GAB0/IO01NDB0V0	E20	GND	G11	IO13PDB0V2
D8	IO05PDB0V0	E21	NC	G12	IO21PDB1V0
D9	IO10PDB0V1	E22	NC	G13	IO25PDB1V0
D10	IO12PDB0V2	F1	NC	G14	IO27NDB1V0
D11	IO16NDB0V2	F2	IO131NDB7V1	G15	GNDQ
D12	IO23NDB1V0	F3	IO131PDB7V1	G16	VCOMPLB
D13	IO23PDB1V0	F4	IO133NDB7V1	G17	GBB2/IO37PDB2V0
D14	IO28NDB1V1	F5	IO134NDB7V1	G18	IO39PDB2V0
D15	IO28PDB1V1	F6	VMV7	G19	IO39NDB2V0
D16	GBB1/IO34PDB1V1	F7	VCCPLA	G20	IO43PDB2V0
D17	GBA0/IO35NDB1V1	F8	GAC0/IO02NDB0V0	G21	IO43NDB2V0
D18	GBA1/IO35PDB1V1	F9	GAC1/IO02PDB0V0	G22	NC
D19	GND	F10	IO15NDB0V2	H1	NC
D20	NC	F11	IO15PDB0V2	H2	NC
D21	NC	F12	IO20PDB1V0	H3	VCC
D22	NC	F13	IO25NDB1V0	H4	IO128NDB7V1
E1	NC	F14	IO27PDB1V0	H5	IO129NDB7V1
E2	NC	F15	GBC0/IO33NDB1V1	H6	IO132NDB7V1
E3	GND	F16	VCCPLB	H7	IO130PDB7V1
E4	GAB2/IO133PDB7V1	F17	VMV2	H8	VMV0
E5	GAA2/IO134PDB7V1	F18	IO36NDB2V0	H9	VCCIB0
E6	GNDQ	F19	IO42PDB2V0	H10	VCCIB0
E7	GAB1/IO01PDB0V0	F20	NC	H11	IO13NDB0V2
E8	IO05NDB0V0	F21	NC	H12	IO21NDB1V0

Microsemi. IGLOOe Low Power Flash FPGAs

FG484		FG484		FG484		
Pin Number	AGLE600 Function	Pin Number	AGLE600 Function	Pin Number	AGLE600 Function	
N8	VCCIB6	P21	IO59PDB3V0	T12	IO82NDB5V0	
N9	VCC	P22	IO58NDB3V0	T13	IO74NDB4V1	
N10	GND	R1	NC	T14	IO74PDB4V1	
N11	GND	R2	IO110PDB6V0	T15	GNDQ	
N12	GND	R3	VCC	T16	VCOMPLD	
N13	GND	R4	IO109NPB6V0	T17	VJTAG	
N14	VCC	R5	IO106NDB6V0	T18	GDC0/IO65NDB3V1	
N15	VCCIB3	R6	IO106PDB6V0	T19	GDA1/IO67PDB3V1	
N16	IO54NPB3V0	R7	GEC0/IO104NPB6V0	T20	NC	
N17	IO57NPB3V0	R8	VMV5	T21	IO64PDB3V1	
N18	IO55NPB3V0	R9	VCCIB5	T22	IO62NDB3V1	
N19	IO57PPB3V0	R10	VCCIB5	U1	NC	
N20	NC	R11	IO84NDB5V0	U2	IO107PDB6V0	
N21	IO56NDB3V0	R12	IO84PDB5V0	U3	IO107NDB6V0	
N22	IO58PDB3V0	R13	VCCIB4	U4	GEB1/IO103PDB6V0	
P1	NC	R14	VCCIB4	U5	GEB0/IO103NDB6V0	
P2	IO111PDB6V1	R15	VMV3	U6	VMV6	
P3	IO115NPB6V1	R16	VCCPLD	U7	VCCPLE	
P4	IO113NPB6V1	R17	GDB1/IO66PPB3V1	U8	IO101NPB5V2	
P5	IO109PPB6V0	R18	GDC1/IO65PDB3V1	U9	IO95PPB5V1	
P6	IO108PDB6V0	R19	IO61NDB3V1	U10	IO92PDB5V1	
P7	IO108NDB6V0	R20	VCC	U11	IO90PDB5V1	
P8	VCCIB6	R21	IO59NDB3V0	U12	IO82PDB5V0	
P9	GND	R22	IO62PDB3V1	U13	IO76NDB4V1	
P10	VCC	T1	NC	U14	IO76PDB4V1	
P11	VCC	T2	IO110NDB6V0	U15	VMV4	
P12	VCC	Т3	NC	U16	ТСК	
P13	VCC	T4	IO105PDB6V0	U17	VPUMP	
P14	GND	T5	IO105NDB6V0	U18	TRST	
P15	VCCIB3	Т6	GEC1/IO104PPB6V0	U19	GDA0/IO67NDB3V1	
P16	GDB0/IO66NPB3V1	T7	VCOMPLE	U20	NC	
P17	IO60NDB3V1	Т8	GNDQ	U21	IO64NDB3V1	
P18	IO60PDB3V1	Т9	GEA2/IO101PPB5V2	U22	IO63PDB3V1	
P19	IO61PDB3V1	T10	IO92NDB5V1	V1	NC	
P20	NC	T11	IO90NDB5V1	V2	NC	

Datasheet Information

Revision	Changes	Page		
Revision 8 (Nov 2009)	The version changed to v2.0 for IGLOOe datasheet chapters, indicating the datasheet contains information based on final characterization.			
Product Brief v2.0	The "Pro (Professional) I/O" section was revised to add "Hot-swappable and cold-sparing I/Os."			
	The "Reprogrammable Flash Technology" section was revised to add "250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance."			
	Definitions of hot-swap and cold-sparing were added to the "Pro I/Os with Advanced I/O Standards" section.			
DC and Switching Characteristics v2.0	$3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained $3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS data.			
	IIL and IIH input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	N/A		
	Values for 1.2 V wide range DC core supply voltage were added to Table 2-2 • Recommended Operating Conditions 1. Table notes regarding 3.3 V wide range and the core voltage required for programming were added to the table.	2-2		
	The data in Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (1.5 V DC core supply voltage) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (1.2 V DC core supply voltage) was revised.	2-6		
	3.3 V LVCMOS wide range data was included in Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings and Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1. Table notes were added in connection with this data.	2-9, 2-10		
	The temperature was revised from 110°C to 100°C in Table 2-31 • Duration of Short Circuit Event before Failure and Table 2-33 • I/O Input Rise Time, Fall Time, and Related I/O Reliability*.	2-31, 2-31		
	The tables in the "Overview of I/O Performance" section and "Detailed I/O DC Characteristics" sectionwere revised to include 3.3 V LVCMOS and 1.2 V LVCMOS wide range.	2-20, 2-28		
	Most tables were updated in the following sections, revising existing values and adding information for 3.3 V and 1.2 V wide range: "Single-Ended I/O Characteristics" "Voltage-Referenced I/O Characteristics" "Differential I/O Characteristics"	2-32, 2-51, 2-62		
	The value for "Delay range in block: fixed delay" was revised in Table 2-143 • IGLOOe CCC/PLL Specification and Table 2-144 • IGLOOe CCC/PLL Specification.	2-91, 2-92		
	The timing characteristics tables for RAM4K9 and RAM512X18 were updated, including renaming of the address collision parameters.	2-98 – 2-101		
Revision 7 (Apr 2009) Product Brief v1.4 DC and Switching Characteristics Advance v0.4	The –F speed grade is no longer offered for IGLOOe devices and was removed from the documentation. The speed grade column and note regarding –F speed grade were removed from "IGLOOe Ordering Information". The "Speed Grade and Temperature Grade Matrix" section was removed.	III, IV		