

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	270
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/agle600v5-fgg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOOe Device Family Overview

SRAM and FIFO

IGLOOe devices have embedded SRAM blocks along their north and south sides. Each variable-aspectratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

IGLOOe devices provide designers with very flexible clock conditioning capabilities. Each member of the IGLOOe family contains six CCCs, each with an integrated PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

- Wide input frequency range ($f_{IN CCC}$) = 1.5 MHz up to 250 MHz
- Output frequency range (f_{OUT CCC}) = 0.75 MHz up to 250 MHz
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration.
- Output duty cycle = 50% ± 1.5% or better
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used
- Maximum acquisition time is 300 µs
- Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns
- Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz / fout_ccc

Global Clocking

IGLOOe devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

Microsemi.

IGLOOe DC and Switching Characteristics

Symbol	Parar	neter	Commercial	Industrial	Units
T _A	Ambient Temperature		-40 to +85	°C	
TJ	Junction Temperature ²		0 to + 85	-40 to +100	°C
VCC ³	1.5 V DC core supply voltage ⁴		1.425 to 1.575	1.425 to 1.575	V
	1.2 V–1.5 V wide range DC core voltage ^{5, 6}		1.14 to 1.575	1.14 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage ⁶	Programming Mode	3.15 to 3.45	3.15 to 3.45	V
		Operation ⁷	0 to 3.6	0 to 3.6	V
VCCPLL ⁸	Analog power supply (PLL)	1.5 V DC core supply voltage ⁴	1.425 to 1.575	1.425 to 1.575	V
		1.2 V–1.5 V DC core supply voltage ⁵	1.14 to 1.575	1.14 to 1.575	V
VCCI and	1.2 V DC supply voltage ⁵		1.14 to 1.26	1.14 to 1.26	V
VMV ⁹	1.2 V wide range DC supply voltage ⁵		1.14 to 1.575	1.14 to 1.575	V
	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.0 V DC supply voltage ¹⁰		2.7 to 3.6	2.7 to 3.6	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	LVDS differential I/O		2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Table 2-2 • Recommended Operating Conditions ¹

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

2. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools.

3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-21 on page 2-20. VCCI should be at the same voltage within a given I/O bank.

4. For IGLOOe V5 devices

5. For IGLOOe V2 devices only, operating at VCCI \geq VCC

6. All IGLOOe devices (V5 and V2) must be programmed with the VCC core voltage at 1.5 V. Applications using the V2 devices powered by a 1.2 V supply must switch the core supply to 1.5 V for in-system programming.

7. VPUMP can be left floating during operation (not programming mode).

8. VCCPLL pins should be tied to VCC pins. See the "VCCPLA/B/C/D/E/F PLL Supply Voltage" section for further information.

9. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section for further information.

10. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T_J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

<i>Table 2-3</i> • Flash Programming Limits – Retention, Storage, and Operating Temperature	Table 2-3 •	Flash Programming Limits – Retention, Storage, and Operating Temperature ¹
---	-------------	---

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

Table 2-4 •	Overshoot and Undershoot Limits ^{1, 3}

VCCI	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Notes:

1. Based on reliability requirements at junction temperature at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every IGLOOe device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5.

There are five regions to consider during power-up.

IGLOOe I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V

VCC Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

• During programming, I/Os become tristated and weakly pulled up to VCCI.

Power per I/O Pin

Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings

	VCCI (V)	Static Power PDC6 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL/LVCMOS	3.3	-	16.34
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	-	24.49
3.3 V LVCMOS Wide Range ³	3.3	-	16.34
3.3 V LVCMOS Wide Range – Schmitt trigger ³	3.3	_	24.49
2.5 V LVCMOS	2.5	-	4.71
2.5 V LVCMOS	2.5	-	6.13
1.8 V LVCMOS	1.8	-	1.66
1.8 V LVCMOS – Schmitt trigger	1.8	-	1.78
1.5 V LVCMOS (JESD8-11)	1.5	-	1.01
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	-	0.97
1.2 V LVCMOS ⁴	1.2	-	0.60
1.2 V LVCMOS – Schmitt trigger ⁴	1.2	-	0.53
1.2 V LVCMOS Wide Range ⁴	1.2	_	0.60
1.2 V LVCMOS Wide Range – Schmitt trigger ⁴	1.2	-	0.53
3.3 V PCI	3.3	-	17.76
3.3 V PCI – Schmitt trigger	3.3	-	19.10
3.3 V PCI-X	3.3	-	17.76
3.3 V PCI-X – Schmitt trigger	3.3	-	19.10
Voltage-Referenced			
3.3 V GTL	3.3	2.90	7.14
2.5 V GTL	2.5	2.13	3.54
3.3 V GTL+	3.3	2.81	2.91
2.5 V GTL+	2.5	2.57	2.61
HSTL (I)	1.5	0.17	0.79
HSTL (II)	1.5	0.17	.079
SSTL2 (I)	2.5	1.38	3.26
SSTL2 (II)	2.5	1.38	3.26
SSTL3 (I)	3.3	3.21	7.97
SSTL3 (II)	3.3	3.21	7.97
Differential		•	•
LVDS	2.5	2.26	0.89
LVPECL	3.3	5.71	1.94

Notes:

1. PDC6 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCCI.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

4. Applicable for IGLOOe V2 devices only.

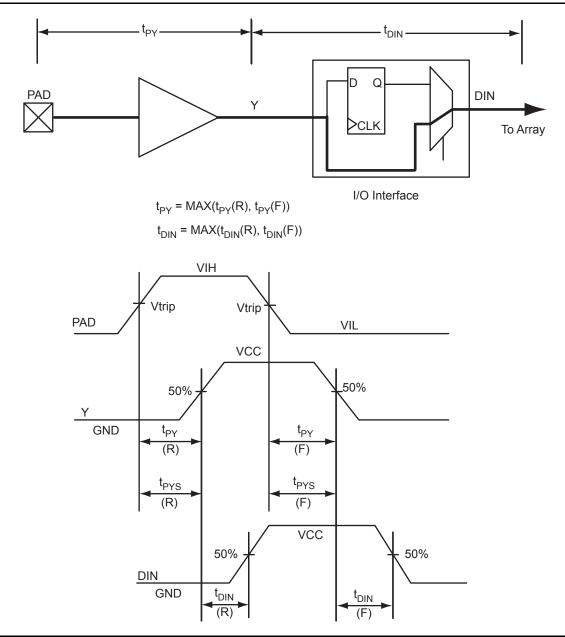


Figure 2-4 • Input Buffer Timing Model and Delays (example)

		Equivalent			VIL	VIH		VOL	VOH	IOL ¹	IOH ¹
I/O Standard	Drive Strength	Software Default Drive Strength ²	Slew Rate		Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
HSTL (II)	15 mA ⁵	15 mA ⁵	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	15	15
SSTL2 (I)	15 mA	15 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI - 0.62	15	15
SSTL2 (II)	18 mA	18 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI - 0.43	18	18
SSTL3 (I)	14 mA	14 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14
SSTL3 (II)	21 mA	21 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI - 0.9	21	21

Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels (continued) Applicable to Commercial and Industrial Conditions

Notes:

1. Currents are measured at 85°C junction temperature.

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-12 specification.

4. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

5. Output drive strength is below JEDEC specification.

6. Output Slew Rates can be extracted from IBIS Models, http://www.microsemi.com/soc/download/ibis/default.aspx.

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

 Table 2-31 • Duration of Short Circuit Event before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	6 months

Table 2-32 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (Typ.) for

Hysteresis	S Voltag	je \	Value (Typ	for Schmitt Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV
1.2 V LVCMOS (Schmitt trigger mode)	40 mV

Table 2-33 • I/O Input Rise Time, Fall Time, and Related I/O Reliability*

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS (Schmitt trigger disabled)	No requirement	10 ns*	20 years (100°C)
LVTTL/LVCMOS (Schmitt trigger enabled)		No requirement, but input noise voltage cannot exceed Schmitt hysteresis.	20 years (100°C)
HSTL/SSTL/GTL	No requirement	10 ns*	10 years (100°C)
LVDS/B-LVDS/M-LVDS/LVPECL	No requirement	10 ns*	10 years (100°C)

Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

static Microsemi.

IGLOOe DC and Switching Characteristics

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

1.5 V LVCMOS	S VIL VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL¹	IIH ²		
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	6	6	32	39	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	8	8	66	55	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12	66	55	10	10

Table 2-58 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 35 pF $R = 1 k$
Enable Path \downarrow R to VCCI for $t_{LZ} / t_{ZL} / t_{ZLS}$
 R to GND for $t_{HZ} / t_{ZH} / t_{ZHS}$
 $5 pF for t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$
 $5 pF for t_{HZ} / t_{ZH} / t_{ZLS}$

Figure 2-10 • AC Loading

Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.5	0.75	_	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Voltage-Referenced I/O Characteristics

3.3 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-73 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL		VIL	VIH		VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴		
20 mA ⁵	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20	268	181	10	10		


Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Output drive strength is below JEDEC specification.

Figure 2-13 • AC Loading

Table 2-74 •	AC Waveforms.	Measuring Points	, and Capacitive Loads
		inououring i onito	, and capacitie is a cauce

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

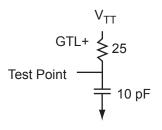
Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

2.5 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

Table 2-85 •	Minimum and Maximum DC Input and Output Levels
--------------	--

2.5 V GTL+		VIL	VIH		VOL	VOH IOL IO		IOH	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
33 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	_	33	33	169	124	10	10


Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-16 • AC Loading

Table 2-86 •	AC Waveforms.	Measuring Points	, and Capacitive Loads
	Ao maronomio,	mouournig i onito	

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-87 • 2.5 V GTL+ – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V VREF = 1.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	1.97	0.19	1.29	0.67	2.00	1.84			5.63	5.47	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-88 • 2.5 V GTL+ – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,

Worst-Case VCCI = 2.3 V VREF = 1.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.23	0.26	1.55	1.10	2.28	2.11			8.08	7.91	ns

🌜 Microsemi.

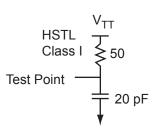
IGLOOe DC and Switching Characteristics

HSTL Class I

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-89 •	Minimum and Maximum DC Input and Output Levels
--------------	--

HSTL Class		VIL	VIH		VOL	VOH		ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min.	mA		Max. mA ³	Max.		μA ⁴
8 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI-0.4	8	8	32	39	10	10


Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-17 • AC Loading

Table 2-90 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-91 •HSTL Class I – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	2.74	0.19	1.77	0.67	2.79	2.73			6.42	6.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-92 • HSTL Class I – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V VREF = 0.75 V

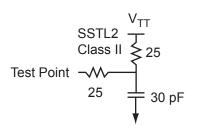
Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	3.10	0.26	1.94	1.10	3.12	3.10			8.93	8.91	ns

SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class II		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
18 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI - 0.43	18	18	169	124	10	10

Table 2-101 • Minimum and Maximum DC Input and Output Levels


Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-20 • AC Loading

Table 2-102 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input HIGH (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-103 • SSTL 2 Class II – Applies to 1.5 V DC Core Voltage

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V,
```

Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	1.94	0.19	1.15	0.67	1.97	1.66			5.60	5.29	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

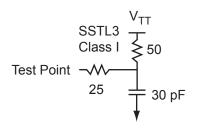
Table 2-104 • SSTL 2 Class II – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	1.55	2.20	0.26	1.39	1.10	2.24	1.97			8.05	7.78	ns

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

SSTL3 Class I


Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL3 Class I		VIL	VIH		VOL	VOH	IOL	IOH	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
14 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14	51	54	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

Figure 2-21 • AC Loading

Table 2-106 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-107 • SSTL 3 Class I – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 1.5 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	2.05	0.19	1.09	0.67	2.09	1.71			5.72	5.34	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-108 • SSTL 3 Class I – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,

Worst-Case VCCI = 3.0 V VREF = 1.5 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	1.55	2.32	0.26	1.32	1.10	2.37	2.02			8.17	7.83	ns

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-131 • Input DDR Propagation Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.76	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.94	ns
t _{DDRISUD1}	Data Setup for Input DDR (negedge)	0.93	ns
t _{DDRISUD2}	Data Setup for Input DDR (posedge)	0.84	ns
t _{DDRIHD1}	Data Hold for Input DDR (negedge)	0.00	ns
t _{DDRIHD2}	Data Hold for Input DDR (posedge)	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear to Out Out_QR for Input DDR	1.23	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	1.42	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.24	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.19	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width HIGH for Input DDR	0.31	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width LOW for Input DDR	0.28	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	160.00	MHz

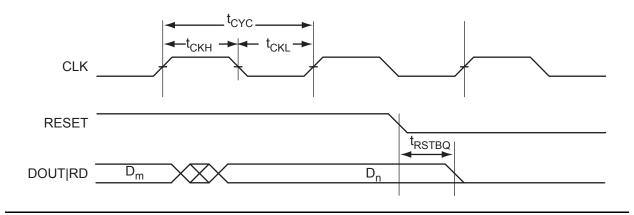


Figure 2-46 • RAM Reset

Table 2-146 • RAM512X18	
Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V	1

Parameter	Description	Std.	Units
t _{AS}	Address Setup Time	0.83	ns
t _{AH}	Address Hold Time	0.16	ns
t _{ENS}	REN, WEN Setup Time	0.73	ns
t _{ENH}	REN, WEN Hold Time	0.08	ns
t _{DS}	Input Data (WD) Setup Time	0.71	ns
t _{DH}	Input Data (WD) Hold Time	0.36	ns
t _{CKQ1}	Clock HIGH to New Data Valid on RD (output retained, WMODE = 0)	4.21	ns
t _{CKQ2}	Clock HIGH to New Data Valid on RD (pipelined)	1.71	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.35	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	0.42	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	2.06	ns
	RESET Low to Data Out Low on RD (pipelined)	2.06	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency	160	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

FG256			FG256		FG256		
Pin Number AGLE600 Function		Pin Number AGLE600 Function		Pin Number	AGLE600 Function		
G13	GCC1/IO50PPB2V1	K1	GFC2/IO115PSB6V1	M5	VMV5		
G14	IO44NDB2V1	K2	IO113PPB6V1	M6	VCCIB5		
G15	IO44PDB2V1	K3	IO112PDB6V1	M7	VCCIB5		
G16	IO49NSB2V1	K4	IO112NDB6V1	M8	IO84NDB5V0		
H1	GFB0/IO119NPB7V0	K5	VCCIB6	M9	IO84PDB5V0		
H2	GFA0/IO118NDB6V1	K6	VCC	M10	VCCIB4		
H3	GFB1/IO119PPB7V0	K7	GND	M11	VCCIB4		
H4	VCOMPLF	K8	GND	M12	VMV3		
H5	GFC0/IO120NPB7V0	K9	GND	M13	VCCPLD		
H6	VCC	K10	GND	M14	GDB1/IO66PPB3V1		
H7	GND	K11	VCC	M15	GDC1/IO65PDB3V1		
H8	GND	K12	VCCIB3	M16	IO61NDB3V1		
H9	GND	K13	IO54NPB3V0	N1	IO105PDB6V0		
H10	GND	K14	IO57NPB3V0	N2	IO105NDB6V0		
H11	VCC	K15	IO55NPB3V0	N3	GEC1/IO104PPB6V0		
H12	GCC0/IO50NPB2V1	K16	IO57PPB3V0	N4	VCOMPLE		
H13	GCB1/IO51PPB2V1	L1	IO113NPB6V1	N5	GNDQ		
H14	GCA0/IO52NPB3V0	L2	IO109PPB6V0	N6	GEA2/IO101PPB5V2		
H15	VCOMPLC	L3	IO108PDB6V0	N7	IO92NDB5V1		
H16	GCB0/IO51NPB2V1	L4	IO108NDB6V0	N8	IO90NDB5V1		
J1	GFA2/IO117PSB6V1	L5	VCCIB6	N9	IO82NDB5V0		
J2	GFA1/IO118PDB6V1	L6	GND	N10	IO74NDB4V1		
J3	VCCPLF	L7	VCC	N11	IO74PDB4V1		
J4	IO116NDB6V1	L8	VCC	N12	GNDQ		
J5	GFB2/IO116PDB6V1	L9	VCC	N13	VCOMPLD		
J6	VCC	L10	VCC	N14	VJTAG		
J7	GND	L11	GND	N15	GDC0/IO65NDB3V1		
J8	GND	L12	VCCIB3	N16	GDA1/IO67PDB3V1		
J9	GND	L13	GDB0/IO66NPB3V1	P1	GEB1/IO103PDB6V0		
J10	GND	L14	IO60NDB3V1	P2	GEB0/IO103NDB6V0		
J11	VCC	L15	IO60PDB3V1	P3	VMV6		
J12	GCB2/IO54PPB3V0	L16	IO61PDB3V1	P4	VCCPLE		
J13	GCA1/IO52PPB3V0	M1	IO109NPB6V0	P5	IO101NPB5V2		
J14	GCC2/IO55PPB3V0	M2	IO106NDB6V0	P6	IO95PPB5V1		
J15	VCCPLC	M3	IO106PDB6V0	P7	IO92PDB5V1		
J16	GCA2/IO53PSB3V0	M4	GEC0/IO104NPB6V0	P8	IO90PDB5V1		

Microsemi. IGLOOe Low Power Flash FPGAs

FG484			FG484	FG484		
Pin Number	AGLE600 Function	Pin Number	AGLE600 Function	Pin Number	AGLE600 Function	
N8	VCCIB6	P21	IO59PDB3V0	T12	IO82NDB5V0	
N9	VCC	P22	IO58NDB3V0	T13	IO74NDB4V1	
N10	GND	R1	NC	T14	IO74PDB4V1	
N11	GND	R2	IO110PDB6V0	T15	GNDQ	
N12	GND	R3	VCC	T16	VCOMPLD	
N13	GND	R4	IO109NPB6V0	T17	VJTAG	
N14	VCC	R5	IO106NDB6V0	T18	GDC0/IO65NDB3V1	
N15	VCCIB3	R6	IO106PDB6V0	T19	GDA1/IO67PDB3V1	
N16	IO54NPB3V0	R7	GEC0/IO104NPB6V0	T20	NC	
N17	IO57NPB3V0	R8	VMV5	T21	IO64PDB3V1	
N18	IO55NPB3V0	R9	VCCIB5	T22	IO62NDB3V1	
N19	IO57PPB3V0	R10	VCCIB5	U1	NC	
N20	NC	R11	IO84NDB5V0	U2	IO107PDB6V0	
N21	IO56NDB3V0	R12	IO84PDB5V0	U3	IO107NDB6V0	
N22	IO58PDB3V0	R13	VCCIB4	U4	GEB1/IO103PDB6V0	
P1	NC	R14	VCCIB4	U5	GEB0/IO103NDB6V0	
P2	IO111PDB6V1	R15	VMV3	U6	VMV6	
P3	IO115NPB6V1	R16	VCCPLD	U7	VCCPLE	
P4	IO113NPB6V1	R17	GDB1/IO66PPB3V1	U8	IO101NPB5V2	
P5	IO109PPB6V0	R18	GDC1/IO65PDB3V1	U9	IO95PPB5V1	
P6	IO108PDB6V0	R19	IO61NDB3V1	U10	IO92PDB5V1	
P7	IO108NDB6V0	R20	VCC	U11	IO90PDB5V1	
P8	VCCIB6	R21	IO59NDB3V0	U12	IO82PDB5V0	
P9	GND	R22	IO62PDB3V1	U13	IO76NDB4V1	
P10	VCC	T1	NC	U14	IO76PDB4V1	
P11	VCC	T2	IO110NDB6V0	U15	VMV4	
P12	VCC	Т3	NC	U16	ТСК	
P13	VCC	T4	IO105PDB6V0	U17	VPUMP	
P14	GND	T5	IO105NDB6V0	U18	TRST	
P15	VCCIB3	Т6	GEC1/IO104PPB6V0	U19	GDA0/IO67NDB3V1	
P16	GDB0/IO66NPB3V1	T7	VCOMPLE	U20	NC	
P17	IO60NDB3V1	Т8	GNDQ	U21	IO64NDB3V1	
P18	IO60PDB3V1	Т9	GEA2/IO101PPB5V2	U22	IO63PDB3V1	
P19	IO61PDB3V1	T10	IO92NDB5V1	V1	NC	
P20	NC	T11	IO90NDB5V1	V2	NC	

	FG896		FG896	FG896		
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	
AF29	GNDQ	AH4	FF/GEB2/IO232PPB5	AJ8	IO213NDB5V2	
AF30	GND		V4	AJ9	IO213PDB5V2	
AG1	IO238NPB6V0	AH5	VCCIB5	AJ10	IO209NDB5V1	
AG2	VCC	AH6	IO219NDB5V3	AJ11	IO209PDB5V1	
AG3	IO232NPB5V4	AH7	IO219PDB5V3	AJ12	IO203NDB5V1	
AG4	GND	AH8	IO227NDB5V4	AJ13	IO203PDB5V1	
AG5	IO220PPB5V3	AH9	IO227PDB5V4	AJ14	IO197NDB5V0	
AG6	IO228PDB5V4	AH10	IO225PPB5V3	AJ15	IO195PDB5V0	
AG7	IO231NDB5V4	AH11	IO223PPB5V3	AJ16	IO183NDB4V3	
AG8	GEC2/IO231PDB5V4	AH12	IO211NDB5V2	AJ17	IO183PDB4V3	
AG9	IO225NPB5V3	AH13	IO211PDB5V2	AJ18	IO179NPB4V3	
AG10	IO223NPB5V3	AH14	IO205PPB5V1	AJ19	IO177PDB4V2	
AG11	IO221PDB5V3	AH15	IO195NDB5V0	AJ20	IO173NDB4V2	
AG12	IO221NDB5V3	AH16	IO185NDB4V3	AJ21	IO173PDB4V2	
AG13	IO205NPB5V1	AH17	IO185PDB4V3	AJ22	IO163NDB4V1	
AG14	IO199NDB5V0	AH18	IO181PDB4V3	AJ23	IO163PDB4V1	
AG15	IO199PDB5V0	AH19	IO177NDB4V2	AJ24	IO167NPB4V1	
AG16	IO187NDB4V4	AH20	IO171NPB4V2	AJ25	VCC	
AG17	IO187PDB4V4	AH21	IO165PPB4V1	AJ26	IO156NPB4V0	
AG18	IO181NDB4V3	AH22	IO161PPB4V0	AJ27	VCC	
AG19	IO171PPB4V2	AH23	IO157NDB4V0	AJ28	TMS	
AG20	IO165NPB4V1	AH24	IO157PDB4V0	AJ29	GND	
AG21	IO161NPB4V0	AH25	IO155NDB4V0	AJ30	GND	
AG22	IO159NDB4V0	AH26	VCCIB4	AK2	GND	
AG23	IO159PDB4V0	AH27	TDI	AK3	GND	
AG24	IO158PPB4V0	AH28	VCC	AK4	IO217PPB5V2	
	GDB2/IO155PDB4V0	AH29	VPUMP	AK5	GND	
	GDA2/IO154PPB4V0	AH30	GND	AK6	IO215PPB5V2	
AG27	GND	AJ1	GND	AK7	GND	
AG28	VJTAG	AJ2	GND	AK8	IO207NDB5V1	
AG29	VCC	AJ3	GEA2/IO233PPB5V4	AK9	IO207PDB5V1	
AG30	IO149NDB3V4	AJ4	VCC	AK10	IO201NDB5V0	
AH1	GND	AJ5	IO217NPB5V2	AK11	IO201PDB5V0	
AH2	IO233NPB5V4	AJ6	VCC	AK12	IO193NDB4V4	
AH3	VCC	AJ7	IO215NPB5V2	AK12	IO193PDB4V4	