

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	75264
Total RAM Bits	516096
Number of I/O	620
Number of Gates	300000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/m1agle3000v2-fg896i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOOe Low Power Flash FPGAs

I/Os Per Package¹

IGLOOe Devices	AGL	E600	AGLE3000					
ARM-Enabled IGLOOe Devices			M1AGLE3000					
	I/O Types							
Package	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs				
FG256	165	79	-	-				
FG484	270	135	341	168				
FG896	_	_	620	310				

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the IGLOOe FPGA Fabric User's Guide to ensure compliance with design and board migration requirements.

- 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
- 3. For AGLE3000 devices, the usage of certain I/O standards is limited as follows:
 - SSTL3(I) and (II): up to 40 I/Os per north or south bank
 - LVPECL / GTL + 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
 - SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
- 4. FG256 and FG484 are footprint-compatible packages.
- 5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per minibank (group of I/Os).
- 6. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of single-ended user I/Os available is reduced by one.
- 7. "G" indicates RoHS-compliant packages. Refer to "IGLOOe Ordering Information" on page III for the location of the "G" in the part number.

IGLOOe FPGAs Package Sizes Dimensions

Package	FG256	FG484	FG896
Length × Width (mm × mm)	17 × 17	23 × 23	31 × 31
Nominal Area (mm2)	289	529	961
Pitch (mm)	1	1	1
Height (mm)	1.6	2.23	2.23

IGLOOe Device Status

IGLOOe Devices	Status	M1 IGLOOe Devices	Status		
AGLE600	Production				
AGLE3000	Production	M1AGLE3000	Production		

Figure 1-1 • IGLOOe Device Architecture Overview

Flash*Freeze Technology

The IGLOOe device has an ultra-low power static mode, called Flash*Freeze mode, which retains all SRAM and register information and can still quickly return to normal operation. Flash*Freeze technology enables the user to quickly (within 1 μ s) enter and exit Flash*Freeze mode by activating the Flash*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and global I/Os can still be driven and can be toggling without impact on power consumption, clocks can still be driven or can be toggling without impact on power consumption, and the device retains all core registers, SRAM information, and states. I/O states are tristated during Flash*Freeze mode or can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLL in this mode.

Flash*Freeze technology allows the user to switch to active mode on demand, thus simplifying the power management of the device.

The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. It is also possible to use the Flash*Freeze pin as a regular I/O if Flash*Freeze mode usage is not planned, which is advantageous because of the inherent low power static and dynamic capabilities of the IGLOOe device. Refer to Figure 1-2 for an illustration of entering/exiting Flash*Freeze mode.

Figure 1-2 • IGLOOe Flash*Freeze Mode

Kana Microsemi

IGLOOe DC and Switching Characteristics

Table 2-12 • Quiescent Supply Current (IDD) Characteristics, No Flash*Freeze Mode¹

	Core Voltage	AGLE600	AGLE3000	Units
ICCA Current ²				
Typical (25°C)	1.2 V	28	89	μΑ
	1.5 V	82	320	μΑ
ICCI or IJTAG Current ³				
VCCI/VJTAG = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	μA
VCCI/VJTAG = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	μΑ
VCCI/VJTAG = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	μA
VCCI/VJTAG = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	μA
VCCI/VJTAG= 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	μA

Notes:

IDD = N_{BANKS} × ICCI + ICCA. JTAG counts as one bank when powered.
 Includes VCC and VPUMP and VCCPLL currents.

3. Values do not include I/O static contribution (PDC6 and PDC7).

Power per I/O Pin

Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings

	VCCI (V)	Static Power PDC6 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL/LVCMOS	3.3	-	16.34
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	-	24.49
3.3 V LVCMOS Wide Range ³	3.3	-	16.34
3.3 V LVCMOS Wide Range – Schmitt trigger ³	3.3	-	24.49
2.5 V LVCMOS	2.5	-	4.71
2.5 V LVCMOS	2.5	-	6.13
1.8 V LVCMOS	1.8	-	1.66
1.8 V LVCMOS – Schmitt trigger	1.8	-	1.78
1.5 V LVCMOS (JESD8-11)	1.5	-	1.01
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	-	0.97
1.2 V LVCMOS ⁴	1.2	-	0.60
1.2 V LVCMOS – Schmitt trigger ⁴	1.2	-	0.53
1.2 V LVCMOS Wide Range ⁴	1.2	-	0.60
1.2 V LVCMOS Wide Range – Schmitt trigger ⁴	1.2	-	0.53
3.3 V PCI	3.3	-	17.76
3.3 V PCI – Schmitt trigger	3.3	-	19.10
3.3 V PCI-X	3.3	-	17.76
3.3 V PCI-X – Schmitt trigger	3.3	-	19.10
Voltage-Referenced	•		
3.3 V GTL	3.3	2.90	7.14
2.5 V GTL	2.5	2.13	3.54
3.3 V GTL+	3.3	2.81	2.91
2.5 V GTL+	2.5	2.57	2.61
HSTL (I)	1.5	0.17	0.79
HSTL (II)	1.5	0.17	.079
SSTL2 (I)	2.5	1.38	3.26
SSTL2 (II)	2.5	1.38	3.26
SSTL3 (I)	3.3	3.21	7.97
SSTL3 (II)	3.3	3.21	7.97
Differential	-	÷	
LVDS	2.5	2.26	0.89
LVPECL	3.3	5.71	1.94

Notes:

1. PDC6 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCCI.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

4. Applicable for IGLOOe V2 devices only.

IGLOOe DC and Switching Characteristics

Combinatorial Cells Contribution—P_{C-CELL}

 $P_{C-CELL} = N_{C-CELL} * \alpha_1 / 2 * PAC7 * F_{CLK}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-15.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

Routing Net Contribution—P_{NET}

 $\mathsf{P}_{\mathsf{NET}} = (\mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} + \mathsf{N}_{\mathsf{C}\text{-}\mathsf{CELL}}) * \alpha_1 / 2 * \mathsf{PAC8} * \mathsf{F}_{\mathsf{CLK}}$

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

 $N_{C\text{-}CELL}$ is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-15.

F_{CLK} is the global clock signal frequency.

I/O Input Buffer Contribution—PINPUTS

 P_{INPUTS} = N_{INPUTS} * α_2 / 2 * PAC9 * F_{CLK}

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-15.

F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—POUTPUTS

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * PAC10 * F_{CLK}$

 $N_{\mbox{OUTPUTS}}$ is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-15.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-20 on page 2-15.

F_{CLK} is the global clock signal frequency.

RAM Contribution—P_{MEMORY}

 $\mathsf{P}_{\mathsf{MEMORY}} = \mathsf{PAC11} * \mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{F}_{\mathsf{READ-CLOCK}} * \beta_2 + \mathsf{PAC12} * \mathsf{N}_{\mathsf{BLOCK}} * \mathsf{F}_{\mathsf{WRITE-CLOCK}} * \beta_3$

 $N_{\mbox{\scriptsize BLOCKS}}$ is the number of RAM blocks used in the design.

F_{READ-CLOCK} is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations—guidelines are provided in Table 2-20 on page 2-15.

F_{WRITE-CLOCK} is the memory write clock frequency.

 β_3 is the RAM enable rate for write operations—guidelines are provided in Table 2-20 on page 2-15.

PLL Contribution—P_{PLL}

P_{PLL} = PDC4 + PAC13 * F_{CLKOUT}

F_{CLKOUT} is the output clock frequency.¹

If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P_{AC13}* F_{CLKOUT} product) to the total PLL contribution.

Microsemi.

IGLOOe DC and Switching Characteristics

Parameter	Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer with Schmitt trigger disabled
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{PYS}	Pad to Data delay through the Input Buffer with Schmitt trigger enabled
t _{HZ}	Enable to Pad delay through the Output Buffer—HIGH to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to HIGH
t _{LZ}	Enable to Pad delay through the Output Buffer—LOW to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to LOW
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to HIGH
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to LOW

Table 2-24 • I/O AC Parameter Definitions

1.2 V DC Core Voltage

Table 2-44 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
100 µA	4 mA	Std.	1.55	8.14	0.26	1.66	2.14	1.10	8.14	6.46	3.80	3.79	13.93	12.25	ns
100 µA	8 mA	Std.	1.55	6.68	0.26	1.66	2.14	1.10	6.68	5.57	4.25	4.69	12.47	11.36	ns
100 µA	12 mA	Std.	1.55	5.65	0.26	1.66	2.14	1.10	5.65	4.91	4.55	5.25	11.44	10.69	ns
100 µA	16 mA	Std.	1.55	5.36	0.26	1.66	2.14	1.10	5.36	4.76	4.61	5.41	11.14	10.55	ns
100 µA	24 mA	Std.	1.55	5.20	0.26	1.66	2.14	1.10	5.20	4.78	4.69	6.00	10.99	10.56	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-45 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zнs}	Units
100 µA	4 mA	Std.	1.55	4.65	0.26	1.66	2.14	110	4.65	3.64	3.80	4.00	10.44	9.43	ns
100 µA	8 mA	Std.	1.55	3.85	0.26	1.66	2.14	1.10	3.85	2.99	4.25	4.91	9.64	8.77	ns
100 µA	12 mA	Std.	1.55	3.40	0.26	1.66	2.14	1.10	3.40	2.68	4.55	5.49	9.19	8.46	ns
100 µA	16 mA	Std.	1.55	3.33	0.26	1.66	2.14	1.10	3.33	2.62	4.62	5.65	9.11	8.41	ns
100 µA	24 mA	Std.	1.55	3.36	0.26	1.66	2.14	1.10	3.36	2.54	4.71	6.24	9.15	8.32	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

3. Software default selection highlighted in gray.

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V

Table 2-81 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL+	VIL		VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
35 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	_	35	35	268	181	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

Figure 2-15 • AC Loading

Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-83 • 3.3 V GTL+ – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 1.0 V

Cread Creada	4				4	4						L lusite
Speed Grade	^t DOUT	τ _{DP}	τ _{DIN}	τργ	^T EOUT	τ _{ZL}	τzΗ	τ _{LZ}	τ _{HZ}	τ _{ZLS}	τzhs	Units
Std.	0.98	1.85	0.19	1.35	0.67	1.88	1.81			5.51	5.44	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

 Table 2-84 • 3.3 V GTL+ – Applies to 1.2 V DC Core Voltage

 Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,

 Worst-Case VCCI = 3.0 V VREF = 1.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	1.55	2.11	0.26	1.61	1.10	2.15	2.07			7.95	7.88	ns

HSTL Class II

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

HSTL Class II		VIL	VIH		VOL	VОН	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA ⁵	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	15	15	66	55	10	10

Table 2-93 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Output drive strength is below JEDEC specification.

Figure 2-18 • AC Loading

Table 2-94 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-95 •HSTL Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.98	2.62	0.19	1.77	0.67	2.66	2.40			6.29	6.03	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-96 •HSTL Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.93	0.26	1.94	1.10	2.98	2.75			8.79	8.55	ns

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-27 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

Output Register

Timing Characteristics

1.5 V DC Core Voltage

Table 2-125 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	1.00	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.51	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.70	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.34	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	1.34	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OCKMPWH}	Clock Minimum Pulse Width HIGH for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.28	ns

1.2 V DC Core Voltage

Table 2-128 • Output Enable Register Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	1.10	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	1.15	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	1.22	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	1.65	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	1.65	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.24	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.24	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OECKMPWH}	Clock Minimum Pulse Width HIGH for the Output Enable Register	0.31	ns
t _{OECKMPWL}	Clock Minimum Pulse Width LOW for the Output Enable Register	0.28	ns

Output DDR Module

Figure 2-33 • Output DDR Timing Model

Table 2-132 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	А, В
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	A, B
t _{DDROHD2}	Data Hold Data_R	D, B

Microsemi. IGLOOe DC and Switching Characteristics

Timing Characteristics

1.5 V DC Core Voltage

Table 2-135 • Combinatorial Cell Propagation Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	0.80	ns
AND2	$Y = A \cdot B$	t _{PD}	0.84	ns
NAND2	Y = !(A · B)	t _{PD}	0.90	ns
OR2	Y = A + B	t _{PD}	1.19	ns
NOR2	Y = !(A + B)	t _{PD}	1.10	ns
XOR2	Y = A ⊕ B	t _{PD}	1.37	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	1.33	ns
XOR3	$Y=A\oplusB\oplusC$	t _{PD}	1.79	ns
MUX2	Y = A !S + B S	t _{PD}	1.48	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	1.21	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-136 • Combinatorial Cell Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	1.35	ns
AND2	$Y = A \cdot B$	t _{PD}	1.42	ns
NAND2	Y = !(A ⋅ B)	t _{PD}	1.58	ns
OR2	Y = A + B	t _{PD}	2.10	ns
NOR2	Y = !(A + B)	t _{PD}	1.94	ns
XOR2	Y = A ⊕ B	t _{PD}	2.33	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	2.34	ns
XOR3	$Y=A\oplusB\oplusC$	t _{PD}	3.05	ns
MUX2	Y = A !S + B S	t _{PD}	2.64	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	2.10	ns

Embedded SRAM and FIFO Characteristics

RAM4K9 RAM512X18 ADDRA11 DOUTA8 RADDR8 **RD17** DOUTA7 RADDR7 **RD16** ADDRA10 ٠ . ٠ . DOUTAO ADDRA0 RADDR0 RD0 DINA8 DINA7 . RW1 RW0 DINA0 WIDTHA1 WIDTHA0 PIPE PIPEA WMODEA BLKA a d REN WENA **CLK** CLKA ADDRB11 DOUTB8 WADDR8 DOUTB7 ADDRB10 WADDR7 ٠ ADDRB0 DOUTB0 WADDR0 WD17 WD16 DINB8 DINB7 . WD0 . DINB0 WW1 WW0 WIDTHB1 WIDTHB0 PIPEB WMODEB BLKB -d WEN WENB d **WCLK CLKB** RESET RESET

SRAM

Figure 2-41 • RAM Models

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

Applies to 1.2 V DC Core Voltage

Table 2-147 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{AS}	Address Setup Time	1.53	ns
t _{AH}	Address Hold Time	0.29	ns
t _{ENS}	REN, WEN Setup Time	1.50	ns
t _{ENH}	REN, WEN Hold Time	0.29	ns
t _{BKS}	BLK Setup Time	3.05	ns
t _{вкн}	BLK Hold Time	0.29	ns
t _{DS}	Input Data (DIN) Setup Time	1.33	ns
t _{DH}	Input Data (DIN) Hold Time	0.66	ns
t _{CKQ1}	Clock High to New Data Valid on DOUT (output retained, WMODE = 0)	6.61	ns
	Clock High to New Data Valid on DOUT (flow-through, WMODE = 1)	5.72	ns
t _{CKQ2}	Clock High to New Data Valid on DOUT (pipelined)	3.38	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge	0.30	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.89	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	1.01	ns
t _{RSTBQ}	RESET Low to Data Out Low on DOUT (pass-through)	3.86	ns
	RESET Low to Data Out Low on DOUT (pipelined)	3.86	ns
t _{REMRSTB}	RESET Removal	1.12	ns
t _{RECRSTB}	RESET Recovery	5.93	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency	92	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

Figure 2-51 • FIFO EMPTY Flag and AEMPTY Flag Assertion

	FG896		FG896		FG896			
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function			
D30	GBA2/IO82PPB2V0	F5	VMV7	G7	VCC			
E1	GND	F5	VMV7	G8	VMV0			
E2	IO303NPB7V3	F6	GND	G9	VCCIB0			
E3	VCCIB7	F7	GNDQ	G10	IO10NDB0V1			
E4	IO305PPB7V3	F8	IO12NDB0V1	G11	IO16NDB0V1			
E5	VCC	F9	IO12PDB0V1	G12	IO22PDB0V2			
E6	GAC0/IO02NDB0V0	F10	IO10PDB0V1	G13	IO26PPB0V3			
E7	VCCIB0	F11	IO16PDB0V1	G14	IO38NPB0V4			
E8	IO06PPB0V0	F12	IO22NDB0V2	G15	IO36NDB0V4			
E9	IO24NDB0V2	F13	IO30NDB0V3	G16	IO46NDB1V0			
E10	IO24PDB0V2	F14	IO30PDB0V3	G17	IO46PDB1V0			
E11	IO13NDB0V1	F15	IO36PDB0V4	G18	IO56NDB1V1			
E12	IO13PDB0V1	F16	IO48NDB1V0	G19	IO56PDB1V1			
E13	IO34NDB0V4	F17	IO48PDB1V0	G20	IO66NDB1V3			
E14	IO34PDB0V4	F18	IO50NDB1V1	G21	IO66PDB1V3			
E15	IO40NDB0V4	F19	IO58NDB1V2	G22	VCCIB1			
E16	IO49NDB1V1	F20	IO60PDB1V2	G23	VMV1			
E17	IO49PDB1V1	F21	IO77NDB1V4	G24	VCC			
E18	IO50PDB1V1	F22	IO72NDB1V3	G25	GNDQ			
E19	IO58PDB1V2	F23	IO72PDB1V3	G25	GNDQ			
E20	IO60NDB1V2	F24	GNDQ	G26	VCCIB2			
E21	IO77PDB1V4	F25	GND	G27	IO86NDB2V0			
E22	IO68NDB1V3	F26	VMV2	G28	IO92NDB2V1			
E23	IO68PDB1V3	F26	VMV2	G29	IO100PPB2V2			
E24	VCCIB1	F27	IO86PDB2V0	G30	GND			
E25	IO74PDB1V4	F28	IO92PDB2V1	H1	IO294PDB7V2			
E26	VCC	F29	VCC	H2	IO294NDB7V2			
E27	GBB1/IO80PPB1V4	F30	IO100NPB2V2	H3	IO300NDB7V3			
E28	VCCIB2	G1	GND	H4	IO300PDB7V3			
E29	IO82NPB2V0	G2	IO296NPB7V2	H5	IO295PDB7V2			
E30	GND	G3	IO306NDB7V4	H6	IO299PDB7V3			
F1	IO296PPB7V2	G4	IO297NDB7V2	H7	VCOMPLA			
F2	VCC	G5	VCCIB7	H8	GND			
F3	IO306PDB7V4	G6	GNDQ	H9	IO08NDB0V0			
F4	IO297PDB7V2	G6	GNDQ	H10	IO08PDB0V0			

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each revision of the IGLOOe datasheet.

Revision	Changes	Page
Revision 13 (December 2012)	The "IGLOOe Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43176). Also added the missing heading 'Supply Voltage' under V2.	III
	The note in Table 2-143 • IGLOOe CCC/PLL Specification and Table 2-144 • IGLOOe CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42568).	2-91, 2-92
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 12 (September 2012)	The "Security" section was modified to clarify that Microsemi does not support read-back of programmed data.	1-2
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40272).	N/A
Revision 11 (August 2012)	The drive strength, IOL, and IOH value for 3.3 V GTL and 2.5 V GTL was changed from 25 mA to 20 mA in the following tables (SAR 37180):	
	Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels,	2-20
	Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings	2-25
	Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings	2-26
	Table 2-28 • I/O Output Buffer Maximum Resistances1	2-28
	Table 2-73 • Minimum and Maximum DC Input and Output Levels	2-51
	Table 2-77 • Minimum and Maximum DC Input and Output Levels	2-53
	Also added note stating " <i>Output drive strength is below JEDEC specification</i> ." for Tables 2-25, 2-26, and 2-28.	
	Additionally, the IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were corrected from 51 to 35 (for 3.3 V GTL+) and from 40 to 33 (for 2.5 V GTL+) in table Table 2-21 (SAR 39713).	
	In Table 2-117 • Minimum and Maximum DC Input and Output Levels, VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 37183).	2-65
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions and Packaging" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38318). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Datasheet Information

Revision	Changes	Page
Revision 8 (Nov 2009)	The version changed to v2.0 for IGLOOe datasheet chapters, indicating the datasheet contains information based on final characterization.	N/A
Product Brief v2.0	The "Pro (Professional) I/O" section was revised to add "Hot-swappable and cold-sparing I/Os."	I
	The "Reprogrammable Flash Technology" section was revised to add "250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance."	I
	Definitions of hot-swap and cold-sparing were added to the "Pro I/Os with Advanced I/O Standards" section.	1-7
DC and Switching Characteristics v2.0	$3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained $3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS data.	N/A
	IIL and IIH input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	N/A
	Values for 1.2 V wide range DC core supply voltage were added to Table 2-2 • Recommended Operating Conditions 1. Table notes regarding 3.3 V wide range and the core voltage required for programming were added to the table.	2-2
	The data in Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (1.5 V DC core supply voltage) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (1.2 V DC core supply voltage) was revised.	2-6
	3.3 V LVCMOS wide range data was included in Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings and Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1. Table notes were added in connection with this data.	2-9, 2-10
	The temperature was revised from 110°C to 100°C in Table 2-31 • Duration of Short Circuit Event before Failure and Table 2-33 • I/O Input Rise Time, Fall Time, and Related I/O Reliability*.	2-31, 2-31
	The tables in the "Overview of I/O Performance" section and "Detailed I/O DC Characteristics" sectionwere revised to include 3.3 V LVCMOS and 1.2 V LVCMOS wide range.	2-20, 2-28
	Most tables were updated in the following sections, revising existing values and adding information for 3.3 V and 1.2 V wide range: "Single-Ended I/O Characteristics" "Voltage-Referenced I/O Characteristics" "Differential I/O Characteristics"	2-32, 2-51, 2-62
	The value for "Delay range in block: fixed delay" was revised in Table 2-143 • IGLOOe CCC/PLL Specification and Table 2-144 • IGLOOe CCC/PLL Specification.	2-91, 2-92
	The timing characteristics tables for RAM4K9 and RAM512X18 were updated, including renaming of the address collision parameters.	2-98 – 2-101
Revision 7 (Apr 2009) Product Brief v1.4 DC and Switching Characteristics Advance v0.4	The –F speed grade is no longer offered for IGLOOe devices and was removed from the documentation. The speed grade column and note regarding –F speed grade were removed from "IGLOOe Ordering Information". The "Speed Grade and Temperature Grade Matrix" section was removed.	III, IV