

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XF

Betans	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	75264
Total RAM Bits	516096
Number of I/O	620
Number of Gates	3000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/m1agle3000v2-fgg896

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOOe Low Power Flash FPGAs

I/Os Per Package¹

IGLOOe Devices	AGLE	E600	AGLE	3000							
ARM-Enabled IGLOOe Devices	M1AGLE3000										
	I/O Types										
Package	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs							
FG256	165	79	-	_							
FG484	270	135	341	168							
FG896	_	_	620	310							

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the IGLOOe FPGA Fabric User's Guide to ensure compliance with design and board migration requirements.

- 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
- 3. For AGLE3000 devices, the usage of certain I/O standards is limited as follows:
 - SSTL3(I) and (II): up to 40 I/Os per north or south bank
 - LVPECL / GTL + 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
 - SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
- 4. FG256 and FG484 are footprint-compatible packages.
- 5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per minibank (group of I/Os).
- 6. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of single-ended user I/Os available is reduced by one.
- 7. "G" indicates RoHS-compliant packages. Refer to "IGLOOe Ordering Information" on page III for the location of the "G" in the part number.

IGLOOe FPGAs Package Sizes Dimensions

Package	FG256	FG484	FG896
Length × Width (mm × mm)	17 × 17	23 × 23	31 × 31
Nominal Area (mm2)	289	529	961
Pitch (mm)	1	1	1
Height (mm)	1.6	2.23	2.23

IGLOOe Device Status

IGLOOe Devices	Status	M1 IGLOOe Devices	Status
AGLE600	Production		
AGLE3000	Production	M1AGLE3000	Production

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, Flash-based IGLOOe devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industrystandard AES algorithm. The IGLOOe family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the IGLOOe family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/communications, computing, and avionics markets.

Firm-Error Immunity

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOOe flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOOe FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Advanced Flash Technology

The IGLOOe family offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

IGLOOe family FPGAs utilize design and process techniques to minimize power consumption in all modes of operation.

Advanced Architecture

The proprietary IGLOOe architecture provides granularity comparable to standard-cell ASICs. The IGLOOe device consists of five distinct and programmable architectural features (Figure 1-1 on page 4):

- Flash*Freeze technology
- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory
- Extensive CCCs and PLLs
- Pro I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOOe core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the Microsemi ProASIC[®] family of third-generation-architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

IGLOOe DC and Switching Characteristics

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The absolute maximum junction temperature is 100°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation allowed for an 896-pin FBGA package at commercial temperature and in still air.

EQ 2

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{100°C - 70°C}{13.6°C/W} = 2.206 \text{ W}$$

			θ _{ja}					
Package Type	Pin Count	θ_{jc}	Still Air	200 ft./min.	500 ft./min.	Units		
Plastic Quad Flat Package (PQFP)	208	8.0	26.1	22.5	20.8	C/W		
Plastic Quad Flat Package (PQFP) with embedded heat spreader	208	3.8	16.2	13.3	11.9	C/W		
Fine Pitch Ball Grid Array (FBGA)	256	3.8	26.9	22.8	21.5	C/W		
	484	3.2	20.5	17.0	15.9	C/W		
	676	3.2	16.4	13.0	12.0	C/W		
	896	2.4	13.6	10.4	9.4	C/W		

Table 2-5 • Package Thermal Resistivities

Temperature and Voltage Derating Factors

Table 2-6 •Temperature and Voltage Derating Factors for Timing Delays
(normalized to T_J = 70°C,VCC = 1.425 V)
For IGLOOe V2 or V5 devices, 1.5 V DC Core Supply Voltage

Array Voltage		Junction Temperature (°C)												
VCC (V)	–40°C	0°C	25°C	70°C	85°C	100°C								
1.425	0.945	0.965	0.978	1.000	1.008	1.013								
1.500	0.876	0.893	0.906	0.927	0.934	0.940								
1.575	0.824	0.840	0.852	0.872	0.879	0.884								

Table 2-7 •Temperature and Voltage Derating Factors for Timing Delays
(normalized to T_J = 70°C, VCC = 1.14 V)
For IGLOOe V2, 1.2 V DC Core Supply Voltage

Array Voltage		Junction Temperature (°C)												
VCC (V)	–40°C	0°C	25°C	70°C	85°C	100°C								
1.14	0.968	0.978	0.991	1.000	1.006	1.010								
1.20	0.864	0.873	0.885	0.893	0.898	0.902								
1.26	0.793	0.803	0.813	0.821	0.826	0.829								

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-19 on page 2-15.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-20 on page 2-15.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-20 on page 2-15. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

P_{STAT} = (PDC1 or PDC2 or PDC3) + N_{BANKS} * PDC5 + N_{INPUTS}* PDC6 + N_{OUTPUTS}* P_{DC7}

 $N_{\mbox{\scriptsize INPUTS}}$ is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

N_{BANKS} is the number of I/O banks powered in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

 $P_{CLOCK} = (PAC1 + N_{SPINE} * PAC2 + N_{ROW} * PAC3 + N_{S-CELL} * PAC4) * F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *IGLOOe FPGA Fabric User's Guide*.

 N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *IGLOOe FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

PAC1, PAC2, PAC3, and PAC4 are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 $P_{S-CELL} = N_{S-CELL} * (PAC5 + \alpha_1 / 2 * PAC6) * F_{CLK}$

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-15.

F_{CLK} is the global clock signal frequency.

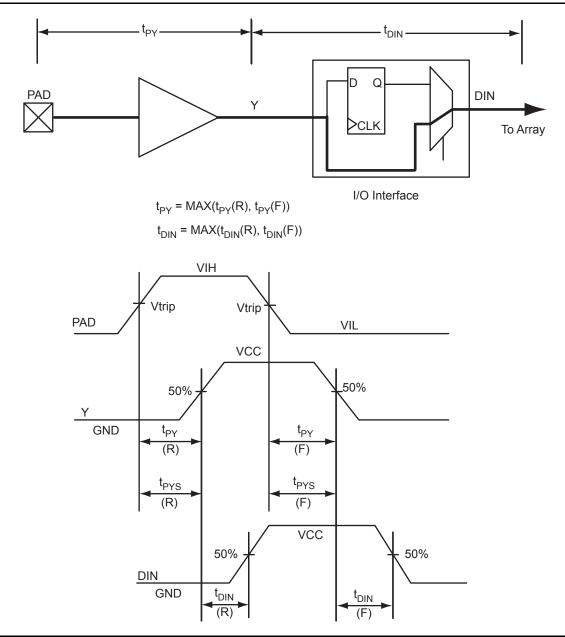


Figure 2-4 • Input Buffer Timing Model and Delays (example)

IGLOOe DC and Switching Characteristics

Table 2-30 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSH (mA)*	IOSL (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	4 mA	25	27
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
3.3 V LVCMOS Wide Range	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	4 mA	16	18
	8 mA	32	37
	12 mA	65	74
	16 mA	83	87
	24 mA	169	124
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	6 mA	35	44
	8 mA	45	51
	12 mA	91	74
	16 mA	91	74
1.5 V LVCMOS	2 mA	13	16
	4 mA	25	33
	6 mA	32	39
	8 mA	66	55
	12 mA	66	55
1.2 V LVCMOS	2 mA	20	26
1.2 V LVCMOS Wide Range	100 µA	20	26
3.3 V PCI/PCIX	Per PCI/PCI-X Specification	Per PC	CI Curves
3.3 V GTL	25 mA	268	181
2.5 V GTL	25 mA	169	124
3.3 V GTL+	35 mA	268	181
2.5 V GTL+	33 mA	169	124
HSTL (I)	8 mA	32	39
HSTL (II)	15 mA	66	55
SSTL2 (I)	15 mA	83	87
SSTL2 (II)	18 mA	169	124
SSTL3 (I)	14 mA	51	54
SSTL3 (II)	21 mA	103	109

Note: $T_J = 100^{\circ}C$

Timing Characteristics

1.5 V DC Core Voltage

Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Unit s
4 mA	Std.	0.97	4.90	0.18	1.08	1.34	0.66	5.00	3.99	2.27	2.16	8.60	7.59	ns
8 mA	Std.	0.97	4.05	0.18	1.08	1.34	0.66	4.13	3.45	2.53	2.65	7.73	7.05	ns
12 mA	Std.	0.97	3.44	0.18	1.08	1.34	0.66	3.51	3.05	2.71	2.95	7.11	6.64	ns
16 mA	Std.	0.97	3.27	0.18	1.08	1.34	0.66	3.34	2.96	2.74	3.04	6.93	6.55	ns
24 mA	Std.	0.97	3.18	0.18	1.08	1.34	0.66	3.24	2.97	2.79	3.36	6.84	6.56	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.97	2.85	0.18	1.08	1.34	0.66	2.92	2.27	2.27	2.27	6.51	5.87	ns
8 mA	Std.	0.97	2.39	0.18	1.08	1.34	0.66	2.44	1.88	2.53	2.76	6.03	5.47	ns
12 mA	Std.	0.97	2.12	0.18	1.08	1.34	0.66	2.17	1.69	2.71	3.08	5.76	5.28	ns
16 mA	Std.	0.97	2.08	0.18	1.08	1.34	0.66	2.12	1.65	2.75	3.17	5.72	5.25	ns
24 mA	Std.	0.97	2.10	0.18	1.08	1.34	0.66	2.14	1.60	2.80	3.49	5.74	5.20	ns

Notes:

1. Software default selection highlighted in gray.

IGLOOe DC and Switching Characteristics

Timing Characteristics

1.5 V DC Core Voltage

Table 2-54 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.97	7.33	0.18	1.27	1.59	0.66	7.47	6.18	2.34	1.18	11.07	9.77	ns
4 mA	Std.	0.97	6.07	0.18	1.27	1.59	0.66	6.20	5.25	2.69	2.42	9.79	8.84	ns
6 mA	Std.	0.97	5.18	0.18	1.27	1.59	0.66	5.29	4.61	2.93	2.88	8.88	8.21	ns
8 mA	Std.	0.97	4.88	0.18	1.27	1.59	0.66	4.98	4.48	2.99	3.01	8.58	8.08	ns
12 mA	Std.	0.97	4.80	0.18	1.27	1.59	0.66	4.89	4.49	3.07	3.47	8.49	8.09	ns
16 mA	Std.	0.97	4.80	0.18	1.27	1.59	0.66	4.89	4.49	3.07	3.47	8.49	8.09	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-55 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

	Speed													
Drive Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	3.43	0.18	1.27	1.59	0.66	3.51	3.39	2.33	1.19	7.10	6.98	ns
4 mA	Std.	0.97	2.83	0.18	1.27	1.59	0.66	2.89	2.59	2.69	2.49	6.48	6.18	ns
6 mA	Std.	0.97	2.45	0.18	1.27	1.59	0.66	2.51	2.19	2.93	2.95	6.10	5.79	ns
8 mA	Std.	0.97	2.38	0.18	1.27	1.59	0.66	2.43	2.12	2.98	3.08	6.03	5.71	ns
12 mA	Std.	0.97	2.37	0.18	1.27	1.59	0.66	2.42	2.03	3.07	3.57	6.02	5.62	ns
16 mA	Std.	0.97	2.37	0.18	1.27	1.59	0.66	2.42	2.03	3.07	3.57	6.02	5.62	ns

Notes:

1. Software default selection highlighted in gray.

Timing Characteristics

1.5 V DC Core Voltage

 Table 2-60 •
 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.97	7.61	0.18	1.47	1.77	0.66	7.76	6.33	2.81	2.34	11.36	9.92	ns
4 mA	Std.	0.97	6.54	0.18	1.47	1.77	0.66	6.67	5.56	3.09	2.88	10.26	9.16	ns
6 mA	Std.	0.97	6.15	0.18	1.47	1.77	0.66	6.27	5.42	3.15	3.02	9.87	9.02	ns
8 mA	Std.	0.97	6.07	0.18	1.47	1.77	0.66	6.20	5.42	2.64	3.56	9.79	9.02	ns
12 mA	Std.	0.97	6.07	0.18	1.47	1.77	0.66	6.20	5.42	2.64	3.56	9.79	9.02	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-61 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	3.25	0.18	1.47	1.77	0.66	3.32	3.00	2.80	2.43	6.92	6.59	ns
4 mA	Std.	0.97	2.81	0.18	1.47	1.77	0.66	2.87	2.51	3.08	2.97	6.46	6.10	ns
6 mA	Std.	0.97	2.72	0.18	1.47	1.77	0.66	2.78	2.41	3.14	3.12	6.37	6.01	ns
8 mA	Std.	0.97	2.69	0.18	1.47	1.77	0.66	2.75	2.30	3.24	3.67	6.35	5.89	ns
12 mA	Std.	0.97	2.69	0.18	1.47	1.77	0.66	2.75	2.30	3.24	3.67	6.35	5.89	ns

Notes:

1. Software default selection highlighted in gray.

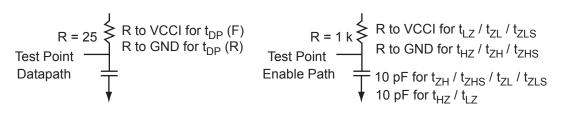
3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-69 •	Minimum and Maximum DC Input and Output Levels
--------------	--

3.3 V PCI/PCI-X	VIL		VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min., V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Per PCI specification	Per PCI curves										10	10

Notes:


1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-12.

Figure 2-12 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-70.

Table 2-70 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)}	-	10
		0.615 * VCCI for t _{DP(F)}		

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

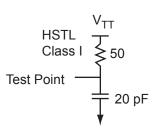
IGLOOe DC and Switching Characteristics

HSTL Class I

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-89 •	Minimum and Maximum DC Input and Output Levels
--------------	--

HSTL Class		VIL	VIH		VOL	VOH		ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min.	mA		Max. mA ³	Max.		μA ⁴
8 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI-0.4	8	8	32	39	10	10


Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-17 • AC Loading

Table 2-90 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-91 •HSTL Class I – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	2.74	0.19	1.77	0.67	2.79	2.73			6.42	6.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-92 • HSTL Class I – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	3.10	0.26	1.94	1.10	3.12	3.10			8.93	8.91	ns

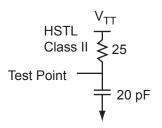
HSTL Class II

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

HSTL Class II		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA ⁵	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	15	15	66	55	10	10

Table 2-93 • Minimum and Maximum DC Input and Output Levels

Notes:


1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Output drive strength is below JEDEC specification.

Figure 2-18 • AC Loading

Table 2-94 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-95 •HSTL Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.98	2.62	0.19	1.77	0.67	2.66	2.40			6.29	6.03	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-96 •HSTL Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.93	0.26	1.94	1.10	2.98	2.75			8.79	8.55	ns

DC Parameter	Description		Max.	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage		3.0		.3	3.6		V
VOL	Output Low Voltage	0.96 1.27		1.06	1.43	1.30	1.57	V
VOH	Output High Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
VIL, VIH	Input Low, Input High Voltages	0	3.6	0	3.6	0	3.6	V
VODIFF	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
VOCM	Output Common Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
VICM	Input Common Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
VIDIFF	Input Differential Voltage	300		300		300		mV

Table 2-117 • Minimum and Maximum DC Input and Output Levels

Table 2-118 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	VREF (typ.) (V)
1.64	1.94	Cross point	-

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-119 • LVPECL – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.98	1.75	0.19	1.45	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-120 • LVPECL – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	1.55	2.16	0.26	1.70	ns

IGLOOe DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-131 • Input DDR Propagation Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.76	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.94	ns
t _{DDRISUD1}	Data Setup for Input DDR (negedge)	0.93	ns
t _{DDRISUD2}	Data Setup for Input DDR (posedge)	0.84	ns
t _{DDRIHD1}	Data Hold for Input DDR (negedge)	0.00	ns
t _{DDRIHD2}	Data Hold for Input DDR (posedge)	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear to Out Out_QR for Input DDR	1.23	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	1.42	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.24	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.19	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width HIGH for Input DDR	0.31	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width LOW for Input DDR	0.28	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	160.00	MHz

Embedded SRAM and FIFO Characteristics

RAM4K9 RAM512X18 ADDRA11 DOUTA8 RADDR8 **RD17** DOUTA7 RADDR7 **RD16** ADDRA10 ٠ . ٠ . DOUTAO ADDRA0 RADDR0 RD0 DINA8 DINA7 . RW1 RW0 DINA0 WIDTHA1 WIDTHA0 PIPE PIPEA WMODEA BLKA a d REN WENA **XRCLK** CLKA ADDRB11 DOUTB8 WADDR8 DOUTB7 ADDRB10 WADDR7 ٠ ADDRB0 DOUTB0 WADDR0 WD17 WD16 DINB8 DINB7 • WD0 . DINB0 WW1 WW0 WIDTHB1 WIDTHB0 PIPEB WMODEB BLKB -d WEN WENB d **WCLK CLKB** RESET RESET

SRAM

Figure 2-41 • RAM Models

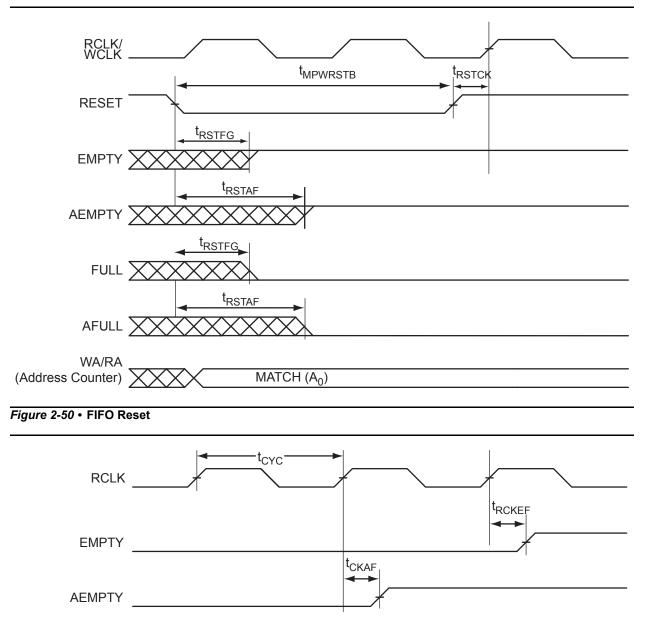


Figure 2-51 • FIFO EMPTY Flag and AEMPTY Flag Assertion

IGLOOe DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-149 • FIFO

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.99	ns
t _{ENH}	REN, WEN Hold Time	0.16	ns
t _{BKS}	BLK Setup Time	0.30	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.76	ns
t _{DH}	Input Data (WD) Hold Time	0.25	ns
t _{CKQ1}	Clock HIGH to New Data Valid on RD (pass-through)	3.33	ns
t _{CKQ2}	Clock HIGH to New Data Valid on RD (pipelined)	1.80	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid	3.53	ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid	3.35	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	12.85	ns
t _{RSTFG}	RESET LOW to Empty/Full Flag Valid	3.48	ns
t _{RSTAF}	RESET LOW to Almost Empty/Full Flag Valid	12.72	ns
t _{RSTBQ}	RESET LOW to Data Out LOW on RD (pass-through)	2.02	ns
	RESET LOW to Data Out LOW on RD (pipelined)	2.02	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency	160	MHz

Applies to 1.2 V DC Core Voltage

Table 2-150 • FIFO

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.13	ns
t _{ENH}	REN, WEN Hold Time	0.31	ns
t _{BKS}	BLK Setup Time	0.47	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	1.56	ns
t _{DH}	Input Data (WD) Hold Time	0.49	ns
t _{CKQ1}	Clock HIGH to New Data Valid on RD (pass-through)	6.80	ns
t _{CKQ2}	Clock HIGH to New Data Valid on RD (pipelined)	3.62	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid	7.23	ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid	6.85	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	26.61	ns
t _{RSTFG}	RESET LOW to Empty/Full Flag Valid	7.12	ns
t _{RSTAF}	RESET LOW to Almost Empty/Full Flag Valid	26.33	ns
t _{RSTBQ}	RESET LOW to Data Out LOW on RD (pass-through)	4.09	ns
	RESET LOW to Data Out LOW on RD (pipelined)	4.09	ns
t _{REMRSTB}	RESET Removal	1.23	ns
t _{RECRSTB}	RESET Recovery	6.58	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency	92	MHz

	FG896		FG896		FG896
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function
D30	GBA2/IO82PPB2V0	F5	VMV7	G7	VCC
E1	GND	F5	VMV7	G8	VMV0
E2	IO303NPB7V3	F6	GND	G9	VCCIB0
E3	VCCIB7	F7	GNDQ	G10	IO10NDB0V1
E4	IO305PPB7V3	F8	IO12NDB0V1	G11	IO16NDB0V1
E5	VCC	F9	IO12PDB0V1	G12	IO22PDB0V2
E6	GAC0/IO02NDB0V0	F10	IO10PDB0V1	G13	IO26PPB0V3
E7	VCCIB0	F11	IO16PDB0V1	G14	IO38NPB0V4
E8	IO06PPB0V0	F12	IO22NDB0V2	G15	IO36NDB0V4
E9	IO24NDB0V2	F13	IO30NDB0V3	G16	IO46NDB1V0
E10	IO24PDB0V2	F14	IO30PDB0V3	G17	IO46PDB1V0
E11	IO13NDB0V1	F15	IO36PDB0V4	G18	IO56NDB1V1
E12	IO13PDB0V1	F16	IO48NDB1V0	G19	IO56PDB1V1
E13	IO34NDB0V4	F17	IO48PDB1V0	G20	IO66NDB1V3
E14	IO34PDB0V4	F18	IO50NDB1V1	G21	IO66PDB1V3
E15	IO40NDB0V4	F19	IO58NDB1V2	G22	VCCIB1
E16	IO49NDB1V1	F20	IO60PDB1V2	G23	VMV1
E17	IO49PDB1V1	F21	IO77NDB1V4	G24	VCC
E18	IO50PDB1V1	F22	IO72NDB1V3	G25	GNDQ
E19	IO58PDB1V2	F23	IO72PDB1V3	G25	GNDQ
E20	IO60NDB1V2	F24	GNDQ	G26	VCCIB2
E21	IO77PDB1V4	F25	GND	G27	IO86NDB2V0
E22	IO68NDB1V3	F26	VMV2	G28	IO92NDB2V1
E23	IO68PDB1V3	F26	VMV2	G29	IO100PPB2V2
E24	VCCIB1	F27	IO86PDB2V0	G30	GND
E25	IO74PDB1V4	F28	IO92PDB2V1	H1	IO294PDB7V2
E26	VCC	F29	VCC	H2	IO294NDB7V2
E27	GBB1/IO80PPB1V4	F30	IO100NPB2V2	H3	IO300NDB7V3
E28	VCCIB2	G1	GND	H4	IO300PDB7V3
E29	IO82NPB2V0	G2	IO296NPB7V2	H5	IO295PDB7V2
E30	GND	G3	IO306NDB7V4	H6	IO299PDB7V3
F1	IO296PPB7V2	G4	IO297NDB7V2	H7	VCOMPLA
F2	VCC	G5	VCCIB7	H8	GND
F3	IO306PDB7V4	G6	GNDQ	H9	IO08NDB0V0
F4	IO297PDB7V2	G6	GNDQ	H10	IO08PDB0V0

Datasheet Information

Revision	Changes	Page
Revision 10 (April 2012)	In Table 2-2 • Recommended Operating Conditions 1, VPUMP programming voltage for operation was changed from "0 to 3.45 V" to "0 to 3.6 V" (SAR 32256). Values for VCCPLL at 1.2–1.5 V DC core supply voltage were changed from "1.14 to 1.26 V" to "1.14 to 1.575 V" (SAR 34701).	2-2
	The tables in the "Quiescent Supply Current" section were updated with revised notes on IDD. Table 2-8 • Power Supply State per Mode is new (SARs 34745, 36949).	2-7
	t_{DOUT} was corrected to t_{DIN} in Figure 2-4 \cdot Input Buffer Timing Model and Delays (example) (SAR 37105).	2-17
	"TBD" for 3.3 V LVCMOS Wide Range in Table 2-28 • I/O Output Buffer Maximum Resistances1 and Table 2-30 • I/O Short Currents IOSH/IOSL was replaced by "Same as regular 3.3 V LVCMOS" (SAR 33855). Values were also added for 1.2 V LVCMOS and 1.2 V LVCMOS Wide Range.	2-28, 2-30
	The formulas in the table notes for Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 34753).	2-29
	IOSH and IOSL values were added to 3.3 V LVCMOS Wide Range Table 2-40 • Minimum and Maximum DC Input and Output Levels, 1.2 V LVCMOS Table 2-64 • Minimum and Maximum DC Input and Output Levels, and 1.2 V LVCMOS Wide Range Table 2-68 • Minimum and Maximum DC Input and Output Levels (SAR 33855).	2-35, 2-47, 2-48
	Figure 2-48 • FIFO Read and Figure 2-49 • FIFO Write have been added (SAR 34844).	2-103
	Values for $F_{DDRIMAX}$ and F_{DDOMAX} were added to the tables in the Input DDR "Timing Characteristics" section and Output DDR "Timing Characteristics" section (SAR 34802).	2-77,2- 81
	Minimum pulse width High and Low values were added to the tables in the "Global Tree Timing Characteristics" section. The maximum frequency for global clock parameter was removed from these tables because a frequency on the global is only an indication of what the global network can do. There are other limiters such as the SRAM, I/Os, and PLL. SmartTime software should be used to determine the design frequency (SAR 36952).	2-89
Revision 9 (March 2012)	The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34665).	I, 1-2
	The Y security option and Licensed DPA Logo were added to the "IGLOOe Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 34725).	III
	The following sentence was removed from the "Advanced Architecture" section:	1-3
	"In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOOe devices via an IEEE 1532 JTAG interface" (SAR 34685).	
	The "Specifying I/O States During Programming" section is new (SAR 34696).	1-7
	Values for VCCPLL at 1.5 V DC core supply voltage were changed from "1.4 to 1.6 V" to "1.425 to 1.575 V" in Table 2-2 • Recommended Operating Conditions 1 (SAR 32292).	2-2
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>IGLOOe FPGA Fabric User's Guide</i> (SAR 34731).	2-13