

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	75264
Total RAM Bits	516096
Number of I/O	620
Number of Gates	3000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/m1agle3000v2-fgg896i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Kana Microsemi

IGLOOe DC and Switching Characteristics

Table 2-12 • Quiescent Supply Current (IDD) Characteristics, No Flash*Freeze Mode¹

	Core Voltage	AGLE600	AGLE3000	Units
ICCA Current ²			I I	
Typical (25°C)	1.2 V	28	89	μA
	1.5 V	82	320	μA
ICCI or IJTAG Current ³				
VCCI/VJTAG = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	μΑ
VCCI/VJTAG = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	μΑ
VCCI/VJTAG = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	μΑ
VCCI/VJTAG = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	μΑ
VCCI/VJTAG= 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	μΑ

Notes:

IDD = N_{BANKS} × ICCI + ICCA. JTAG counts as one bank when powered.
 Includes VCC and VPUMP and VCCPLL currents.

3. Values do not include I/O static contribution (PDC6 and PDC7).

Power Consumption of Various Internal Resources

 Table 2-15 • Different Components Contributing to the Dynamic Power Consumption in IGLOOe Devices

 For IGLOOe V2 or V5 Devices, 1.5 V DC Core Supply Voltage

			cific Dynamic ons (µW/MHz)
Parameter	Definition	AGLE600	AGLE3000
PAC1	Clock contribution of a Global Rib	19.7	12.77
PAC2	Clock contribution of a Global Spine	4.16	1.85
PAC3	Clock contribution of a VersaTile row	C	.88
PAC4	Clock contribution of a VersaTile used as a sequential module	C).11
PAC5	First contribution of a VersaTile used as a sequential module	0	.057
PAC6	Second contribution of a VersaTile used as a sequential module	0	.207
PAC7	Contribution of a VersaTile used as a combinatorial module	0	.207
PAC8	Average contribution of a routing net		0.7
PAC9	Contribution of an I/O input pin (standard-dependent)	See Table 2-	13 on page 2-9.
PAC10	Contribution of an I/O output pin (standard-dependent)	See Table 2-1	4 on page 2-10.
PAC11	Average contribution of a RAM block during a read operation	2	5.00
PAC12	Average contribution of a RAM block during a write operation	3	0.00
PAC13	Dynamic contribution for PLL	2	2.70

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power calculator or SmartPower in Libero SoC software.

Table 2-16 • Different Components Contributing to the Static Power Consumption in IGLOO Devices For IGLOOe V2 or V5 Devices, 1.5 V DC Core Supply Voltage

		Device Specific Static Power						
Parameter	Definition	AGLE600	AGLE3000					
PDC1	Array static power in Active mode	See Table 2-12	on page 2-8.					
PDC2	Array static power in Static (Idle) mode	See Table 2-11 on page 2-7.						
PDC3	Array static power in Flash*Freeze mode	See Table 2-9	on page 2-7.					
PDC4	Static PLL contribution	1.84	1					
PDC5	Bank quiescent power (VCCI-dependent)	See Table 2-12	on page 2-8.					
PDC6	I/O input pin static power (standard-dependent)	See Table 2-13	on page 2-9.					
PDC7	I/O output pin static power (standard-dependent)	See Table 2-14	on page 2-10.					

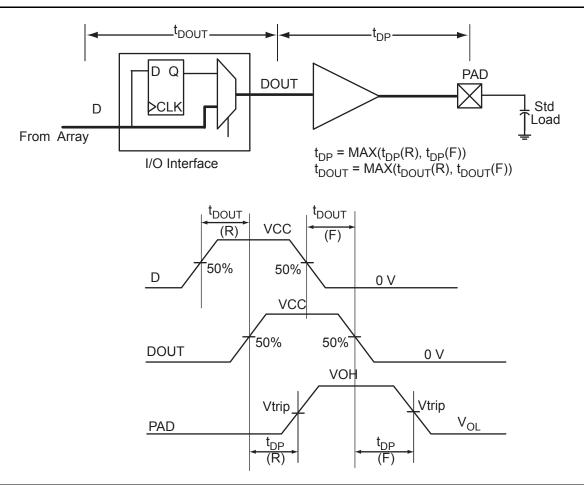


Figure 2-5 • Output Buffer Model and Delays (example)

Microsemi.

IGLOOe DC and Switching Characteristics

Table 2-30 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSH (mA)*	IOSL (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	4 mA	25	27
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
3.3 V LVCMOS Wide Range	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	4 mA	16	18
	8 mA	32	37
	12 mA	65	74
	16 mA	83	87
	24 mA	169	124
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	6 mA	35	44
	8 mA	45	51
	12 mA	91	74
	16 mA	91	74
1.5 V LVCMOS	2 mA	13	16
	4 mA	25	33
	6 mA	32	39
	8 mA	66	55
	12 mA	66	55
1.2 V LVCMOS	2 mA	20	26
1.2 V LVCMOS Wide Range	100 µA	20	26
3.3 V PCI/PCIX	Per PCI/PCI-X Specification	Per PC	CI Curves
3.3 V GTL	25 mA	268	181
2.5 V GTL	25 mA	169	124
3.3 V GTL+	35 mA	268	181
2.5 V GTL+	33 mA	169	124
HSTL (I)	8 mA	32	39
HSTL (II)	15 mA	66	55
SSTL2 (I)	15 mA	83	87
SSTL2 (II)	18 mA	169	124
SSTL3 (I)	14 mA	51	54
SSTL3 (II)	21 mA	103	109

Note: $T_J = 100^{\circ}C$

1.2 V DC Core Voltage

 Table 2-56 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

 Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	1.55	8.21	0.26	1.53	1.96	1.10	8.35	6.88	2.87	1.70	14.14	12.67	ns
4 mA	Std.	1.55	6.83	0.26	1.53	1.96	1.10	6.94	5.88	3.27	3.18	12.73	11.67	ns
6 mA	Std.	1.55	5.85	0.26	1.53	1.96	1.10	5.94	5.19	3.53	3.37	11.73	10.98	ns
8 mA	Std.	1.55	5.52	0.26	1.53	1.96	1.10	5.61	5.06	3.59	3.88	11.39	10.84	ns
12 mA	Std.	1.55	5.42	0.26	1.53	1.96	1.10	5.51	5.06	3.68	4.44	11.30	10.85	ns
16 mA	Std.	1.55	5.42	0.26	1.53	1.96	1.10	5.51	5.06	3.68	4.44	11.30	10.85	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-57 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	3.82	0.26	1.53	1.96	1.10	3.98	3.87	2.86	1.72	9.76	9.66	ns
4 mA	Std.	1.55	3.25	0.26	1.53	1.96	1.10	3.30	3.01	3.26	3.26	9.08	8.79	ns
6 mA	Std.	1.55	2.84	0.26	1.53	1.96	1.10	2.88	2.58	3.53	3.81	8.66	8.37	ns
8 mA	Std.	1.55	2.76	0.26	1.53	1.96	1.10	2.80	2.50	3.58	3.97	8.58	8.29	ns
12 mA	Std.	1.55	2.75	0.26	1.53	1.96	1.10	2.78	2.40	3.68	4.56	8.57	8.19	ns
16 mA	Std.	1.55	2.75	0.26	1.53	1.96	1.10	2.78	2.40	3.68	4.56	8.57	8.19	ns

Notes:

1. Software default selection highlighted in gray.

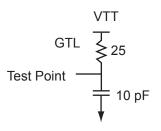
2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

Table 2-77 •	Minimum and Maximum DC Input and Output Levels
--------------	--

2.5 GTL		VIL	VIH		VOL	VOL VOH IO		IOH	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
20 mA ⁵	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20	169	124	10	10

Notes:


1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Output drive strength is below JEDEC specification.

Figure 2-14 • AC Loading

Table 2-78 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-79 • 2.5 V GTL – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	1.90	0.19	2.04	0.67	1.94	1.87			5.57	5.50	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-80 • 2.5 V GTL – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.16	0.26	2.35	1.10	2.20	2.13			8.01	7.94	ns

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

SSTL2 Class I

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-97 •	Minimum and Maximum	DC Input and	Output Levels
--------------	---------------------	--------------	---------------

SSTL2 Class I		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI - 0.62	15	15	83	87	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-19 • AC Loading

Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-99 • SSTL 2 Class I – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,

Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.98	1.91	0.19	1.15	0.67	1.94	1.72			5.57	5.35	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-100 • SSTL 2 Class I – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.17	0.26	1.39	1.10	2.21	2.04			8.02	7.84	ns

DC Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage	3.0		3.3		3	.6	V
VOL	Output Low Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V
VOH	Output High Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
VIL, VIH	Input Low, Input High Voltages	0	3.6	0	3.6	0	3.6	V
VODIFF	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
VOCM	Output Common Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
VICM	Input Common Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
VIDIFF	Input Differential Voltage	300		300		300		mV

Table 2-117 • Minimum and Maximum DC Input and Output Levels

Table 2-118 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	VREF (typ.) (V)
1.64	1.94	Cross point	-

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

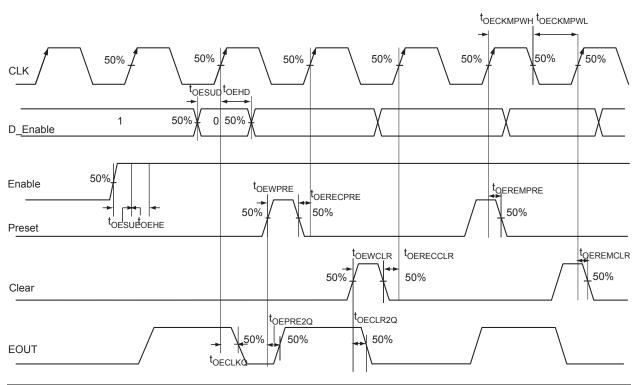
1.5 V DC Core Voltage

Table 2-119 • LVPECL – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.98	1.75	0.19	1.45	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.


1.2 V DC Core Voltage


Table 2-120 • LVPECL – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	1.55	2.16	0.26	1.70	ns

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

Figure 2-30 • Output Enable Register Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-127 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.75	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.51	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.73	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	1.13	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	1.13	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.24	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.24	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OECKMPWH}	Clock Minimum Pulse Width HIGH for the Output Enable Register	0.31	ns
t _{OECKMPWL}	Clock Minimum Pulse Width LOW for the Output Enable Register	0.28	ns

1.2 V DC Core Voltage

Table 2-128 • Output Enable Register Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	1.10	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	1.15	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	1.22	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	1.65	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	1.65	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.24	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.24	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OECKMPWH}	Clock Minimum Pulse Width HIGH for the Output Enable Register	0.31	ns
t _{OECKMPWL}	Clock Minimum Pulse Width LOW for the Output Enable Register	0.28	ns

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-131 • Input DDR Propagation Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.76	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.94	ns
t _{DDRISUD1}	Data Setup for Input DDR (negedge)	0.93	ns
t _{DDRISUD2}	Data Setup for Input DDR (posedge)	0.84	ns
t _{DDRIHD1}	Data Hold for Input DDR (negedge)	0.00	ns
t _{DDRIHD2}	Data Hold for Input DDR (posedge)	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear to Out Out_QR for Input DDR	1.23	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	1.42	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.24	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.19	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width HIGH for Input DDR	0.31	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width LOW for Input DDR	0.28	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	160.00	MHz

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The IGLOOe library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO*, *Fusion*, and *ProASIC3 Macro Library Guide*.

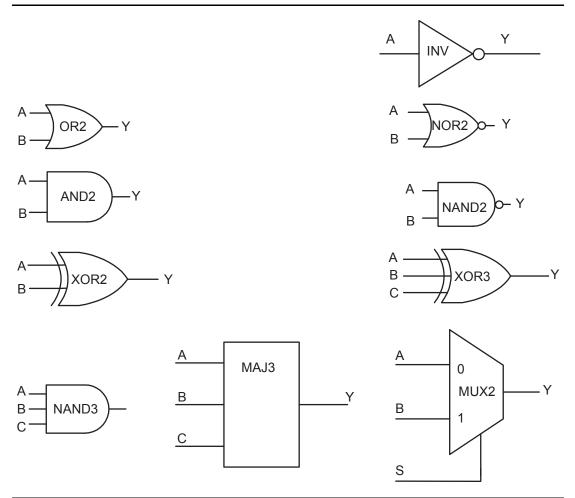


Figure 2-35 • Sample of Combinatorial Cells

1.2 V DC Core Voltage

Table 2-138 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	1.61	ns
t _{SUD}	Data Setup Time for the Core Register	1.17	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	1.29	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.87	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.89	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.24	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.46	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.46	ns
t _{CKMPWH}	Clock Minimum Pulse Width HIGH for the Core Register	0.95	ns
t _{CKMPWL}	Clock Minimum Pulse Width LOW for the Core Register	0.95	ns

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-91. Table 2-139 and Table 2-141 present minimum and maximum global clock delays within the device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-139 • AGLE600 Global Resource Commercial-Case Conditions: T_{.1} = 70°C, VCC = 1.425 V

			Std.	
Parameter	Description	Min.	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.48	1.82	ns
t _{RCKH}	Input High Delay for Global Clock	1.52	1.94	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-140 • AGLE3000 Global Resource

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.00	2.34	ns
t _{RCKH}	Input High Delay for Global Clock	2.09	2.51	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

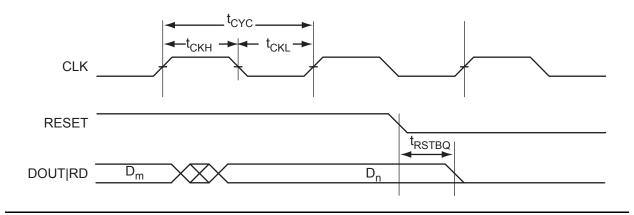


Figure 2-46 • RAM Reset

Microsemi.

IGLOOe DC and Switching Characteristics

FIFO

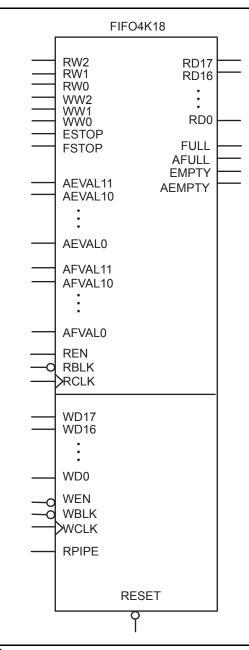


Figure 2-47 • FIFO Model

Pin Descriptions and Packaging

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There are six VCOMPL pins (PLL ground) on IGLOOe devices.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOOe devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User-Defined Supply Pins

VREF

I/O Voltage Reference

Reference voltage for I/O minibanks. VREF pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its minibank.

Table 3-3 • TRST and TCK Pull-Down Recommendations

VJTAG	Tie-Off Resistance*
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Note: Equivalent parallel resistance if more than one device is on the JTAG chain

TDI

Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The values in Table 3-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC

Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

Package Pin Assignments

FG484			FG484		FG484		
Pin Number	AGLE600 Function	Pin Number	AGLE600 Function	Pin Number	AGLE600 Function		
A1	GND	AA14	NC	B5	IO03PDB0V0		
A2	GND	AA15	NC	B6	IO07NDB0V1		
A3	VCCIB0	AA16	IO71NDB4V0	B7	IO07PDB0V1		
A4	IO06NDB0V1	AA17	IO71PDB4V0	B8	IO11NDB0V1		
A5	IO06PDB0V1	AA18	NC	B9	IO17NDB0V2		
A6	IO08NDB0V1	AA19	NC	B10	IO14PDB0V2		
A7	IO08PDB0V1	AA20	NC	B11	IO19PDB0V2		
A8	IO11PDB0V1	AA21	VCCIB3	B12	IO22NDB1V0		
A9	IO17PDB0V2	AA22	GND	B13	IO26NDB1V0		
A10	IO18NDB0V2	AB1	GND	B14	NC		
A11	IO18PDB0V2	AB2	GND	B15	NC		
A12	IO22PDB1V0	AB3	VCCIB5	B16	IO30NDB1V1		
A13	IO26PDB1V0	AB4	IO97NDB5V2	B17	IO30PDB1V1		
A14	IO29NDB1V1	AB5	IO97PDB5V2	B18	IO32PDB1V1		
A15	IO29PDB1V1	AB6	IO93NDB5V1	B19	NC		
A16	IO31NDB1V1	AB7	IO93PDB5V1	B20	NC		
A17	IO31PDB1V1	AB8	IO87NDB5V0	B21	VCCIB2		
A18	IO32NDB1V1	AB9	IO87PDB5V0	B22	GND		
A19	NC	AB10	NC	C1	VCCIB7		
A20	VCCIB1	AB11	NC	C2	NC		
A21	GND	AB12	IO75NDB4V1	C3	NC		
A22	GND	AB13	IO75PDB4V1	C4	NC		
AA1	GND	AB14	IO72NDB4V0	C5	GND		
AA2	VCCIB6	AB15	IO72PDB4V0	C6	IO04NDB0V0		
AA3	NC	AB16	IO73NDB4V0	C7	IO04PDB0V0		
AA4	IO98PDB5V2	AB17	IO73PDB4V0	C8	VCC		
AA5	IO96NDB5V2	AB18	NC	C9	VCC		
AA6	IO96PDB5V2	AB19	NC	C10	IO14NDB0V2		
AA7	IO86NDB5V0	AB20	VCCIB4	C11	IO19NDB0V2		
AA8	IO86PDB5V0	AB21	GND	C12	NC		
AA9	IO85PDB5V0	AB22	GND	C13	NC		
AA10	IO85NDB5V0	B1	GND	C14	VCC		
AA11	IO78PPB4V1	B2	VCCIB7	C15	VCC		
AA12	IO79NDB4V1	B3	NC	C16	NC		
AA13	IO79PDB4V1	B4	IO03NDB0V0	C17	NC		