

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8247vrtmfa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

1 Overview

This table shows the functionality supported by each SoC in the MPC8272 family.

Table 1. MPC8272 PowerQUICC II Family Functionality

			SoCs		
Functionality		MPC8272	MPC8248	MPC8271	MPC8247
	Package ¹		516 F	PBGA	
Serial communications controllers (SCC	s)	3	3	3	3
QUICC multi-channel controller (QMC)		Yes	Yes	Yes	Yes
Fast communication controllers (FCCs)		2	2	2	2
I-Cache (Kbyte)		16	16	16	16
D-Cache (Kbyte)		16	16	16	16
Ethernet (10/100)		2	2	2	2
UTOPIA II Ports		1	0	1	0
Multi-channel controllers (MCCs)		0	0	0	0
PCI bridge		Yes	Yes	Yes	Yes
Transmission convergence (TC) layer		_	_	_	_
Inverse multiplexing for ATM (IMA)		_	_	_	_
Universal serial bus (USB) 2.0 full/low ra	ate	1	1	1	1
Security engine (SEC)		Yes	Yes	_	_

¹ See Table 2.

Devices in the MPC8272 family are available in two packages—the VR or ZQ package—as shown in . For package ordering information, see Section 10, "Ordering Information."

Table 2. MPC8272 PowerQUICC II Device Packages

Code (Package)	VR (516 PBGA—Lead free)	ZQ (516 PBGA—Lead spheres)
	MPC8272VR	MPC8272ZQ
Device	MPC8248VR	MPC8248ZQ
Device	MPC8271VR	MPC8271ZQ
	MPC8247VR	MPC8247ZQ

Overview

- Floating-point unit (FPU) supports floating-point arithmetic
- Support for cache locking
- Low-power consumption
- Separate power supply for internal logic (1.5 V) and for I/O (3.3 V)
- Separate PLLs for G2_LE core and for the communications processor module (CPM)
 - G2_LE core and CPM can run at different frequencies for power/performance optimization
 - Internal core/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5:5:1, 6:1, 7:1, 8:1
 - Internal CPM/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1, 8:1 ratios
- 64-bit data and 32-bit address 60x bus
 - Bus supports multiple master designs—up to two external masters
 - Supports single transfers and burst transfers
 - 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
- 60x-to-PCI bridge
 - Programmable host bridge and agent
 - 32-bit data bus, 66 MHz, 3.3 V
 - Synchronous and asynchronous 60x and PCI clock modes
 - All internal address space available to external PCI host
 - DMA for memory block transfers
 - PCI-to-60x address remapping
- System interface unit (SIU)
 - Clock synthesizer
 - Reset controller
 - Real-time clock (RTC) register
 - Periodic interrupt timer
 - Hardware bus monitor and software watchdog timer
 - IEEE 1149.1 JTAG test access port
- Eight bank memory controller
 - Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash, and other user-definable peripherals
 - Byte write enables
 - 32-bit address decodes with programmable bank size
 - Three user-programmable machines, general-purpose chip-select machine, and page mode pipeline SDRAM machine
 - Byte selects for 64-bit bus width (60x)
 - Dedicated interface logic for SDRAM
- Disable CPU mode

- PCI bridge
 - PCI Specification revision 2.2-compliant and supports frequencies up to 66 MHz
 - On-chip arbitration
 - Support for PCI to 60x memory and 60x memory to PCI streaming
 - PCI host bridge or peripheral capabilities
 - Includes four DMA channels for the following transfers:
 - PCI-to-60x to 60x-to-PCI
 - 60x-to-PCI to PCI-to-60x
 - PCI-to-60x to PCI-to-60x
 - 60x-to-PCI to 60x-to-PCI
 - Includes the configuration registers required by the PCI standard (which are automatically loaded from the EPROM to configure the MPC8272) and message and doorbell registers
 - Supports the I₂O standard
 - Hot-Swap friendly (supports the Hot Swap Specification as defined by PICMG 2.1 R1.0 August 3, 1998)
 - Support for 66 MHz, 3.3 V specification
 - 60x-PCI bus core logic, which uses a buffer pool to allocate buffers for each port

Operating Conditions 2

This table shows the maximum electrical ratings.

Table 3. Absolute Maximum Ratings¹

Rating	Symbol	Value	Unit
Core supply voltage ²	VDD	-0.3 - 2.25	V
PLL supply voltage ²	VCCSYN	-0.3 - 2.25	٧
I/O supply voltage ³	VDDH	-0.3 - 4.0	٧
Input voltage ⁴	VIN	GND(-0.3) - 3.6	٧
Junction temperature	Тј	120	°C
Storage temperature range	T _{STG}	(-55) - (+150)	°C

¹ Absolute maximum ratings are stress ratings only; functional operation (see Table 4) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage.

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3 Freescale Semiconductor

² Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V during normal operation. It is recommended that VDD/VCCSYN should be raised before or simultaneous with VDDH during power-on reset. VDD/VCCSYN may exceed VDDH by more than 0.4 V during power-on reset for no more than 100 ms.

³ Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.5 V during normal operation.

⁴ Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset.

3 DC Electrical Characteristics

This table shows DC electrical characteristics.

Table 5. DC Electrical Characteristics¹

Characteristic	Symbol	Min	Max	Unit
Input high voltage—all inputs except TCK, TRST and PORESET ²	V _{IH}	2.0	3.465	V
Input low voltage ³	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ⁴	I _{IN}	_	10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	I _{OZ}	_	10	μΑ
Signal low input current, V _{IL} = 0.8 V	ΙL	_	1	μΑ
Signal high input current, V _{IH} = 2.0 V	I _H	_	1	μΑ
Output high voltage, I _{OH} = -2 mA except UTOPIA mode, and open drain pins In UTOPIA mode ⁵ (UTOPIA pins only): I _{OH} = -8.0mA PA[8-31] PB[18-31] PC[0-1,4-29] PD[7-25, 29-31]	V _{ОН}	2.4	_	V
In UTOPIA mode ⁵ (UTOPIA pins only): I _{OL} = 8.0mA PA[8–31] PB[18–31] PC[0–1,4–29] PD[7–25, 29–31]	V _{OL}	_	0.5	V

Thermal Characteristics

4.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application, or a more accurate and complex model of the package can be used in the thermal simulation.

4.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{IT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the case to avoid measurement errors caused by cooling effects of the thermocouple wire.

4.6 Layout Practices

Each VDD and VDDH pin should be provided with a low-impedance path to the board's power supplies. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VDD and VDDH power supplies should be bypassed to ground using bypass capacitors located as close as possible to the four sides of the package. For filtering high frequency noise, a capacitor of 0.1uF on each VDD and VDDH pin is recommended. Further, for medium frequency noise, a total of 2 capacitors of 47uF for VDD and 2 capacitors of 47uF for VDDH are also recommended. The capacitor leads and associated printed circuit traces connecting to chip VDD, VDDH and ground should be kept to less than half an inch per capacitor lead. Boards should employ separate inner layers for power and GND planes.

All output pins on the SoC have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

4.7 References

Semiconductor Equipment and Materials International (415) 964-5111 805 East Middlefield Rd.

Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) Specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications

http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

5 Power Dissipation

This table provides preliminary, estimated power dissipation for various configurations. Note that suitable thermal management is required to ensure the junction temperature does not exceed the maximum specified value. Also note that the I/O power should be included when determining whether to use a heat sink. For a complete list of possible clock configurations, see Section 7, "Clock Configuration Modes."

Table 8. Estimated Power Dissipation for Various Configurations¹

	СРМ		CPU		P _{INT} (W) ^{2,3}			
Bus (MHz)	Multiplication Factor	CPM (MHz)	Multiplication Factor	CPU (MHz)	Vddl 1.5 Volts			
	1 actor		1 actor		Nominal	Maximum		
66.67	3	200	4	266	1	1.2		
100	2	200	3	300	1.1	1.3		
100	2	200	4	400	1.3	1.5		
133	2	267	3	400	1.5	1.8		

¹ Test temperature = 105° C

66.7 MHz = 0.35 W (nominal), 0.4 W (maximum)

83.3 MHz = 0.4 W (nominal), 0.5 W (maximum)

100 MHz = 0.5 W (nominal), 0.6 W (maximum)

133 MHz = 0.7 W (nominal), 0.8 W (maximum)

 $^{^{2}}$ $P_{INT} = I_{DD} \times V_{DD}$ Watts

³ Values do not include I/O. Add the following estimates for active I/O based on the following bus speeds:

AC Electrical Characteristics

6 AC Electrical Characteristics

The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for 66.67/83.33/100/133 MHz devices. Note that AC timings are based on a 50-pf load for MAX Delay and 10-pf load for MIN delay. Typical output buffer impedances are shown in this table.

Table 9. Output Buffer Impedances¹

Output Buffers	Typical Impedance (Ω)
60x bus	45 or 27 ²
Memory controller	45 or 27 ²
Parallel I/O	45
PCI	27

¹ These are typical values at 65° C. Impedance may vary by ±25% with process and temperature.

6.1 CPM AC Characteristics

This table lists CPM output characteristics.

Table 10. AC Characteristics for CPM Outputs¹

Spec Number				Value (ns)									
		Characteristic		laximu	m Dela	ıy	Minimum Delay						
Max	Min		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz			
sp36a	sp37a	FCC outputs—internal clock (NMSI)	6	5.5	5.5	5.5	0.5	0.5	0.5	0.5			
sp36b	sp37b	FCC outputs—external clock (NMSI)	8	8	8	8	2	2	2	2			
sp38a	sp39a	SCC/SMC/SPI/I2C outputs—internal clock (NMSI)	10	10	10	10	0	0	0	0			
sp38b	sp39b	SCC/SMC/SPI/I2C outputs—external clock (NMSI)	8	8	8	8	2	2	2	2			
sp40	sp41	TDM outputs/SI	11	11	11	11	2.5	2.5	2.5	2.5			
sp42	sp43	TIMER/IDMA outputs	11	11	11	11	0.5	0.5	0.5	0.5			
sp42a	sp43a	PIO outputs	11	11	11	11	0.5	0.5	0.5	0.5			

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

Impedance value is selected through SIUMCR[20,21]. See the SoC reference manual.

This table lists CPM input characteristics.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

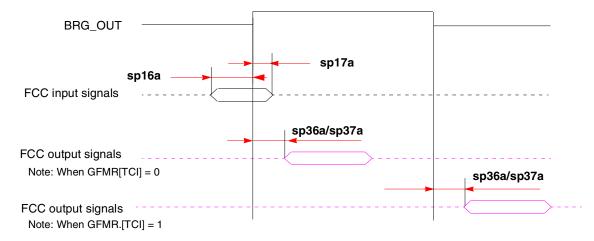
Spec Number			Value (ns)									
Setup Hold	Characteristic		Se	tup		Hold						
	Hold			83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp16a	sp17a	FCC inputs—internal clock (NMSI)	6	6	6	6	0	0	0	0		
sp16b	sp17b	FCC inputs—external clock (NMSI)	2.5	2.5	2.5	2.5	2	2	2	2		
sp18a	sp19a	SCC/SMC/SPI/I2C inputs—internal clock (NMSI)	6	6	6	6	0	0	0	0		
sp18b	sp19b	SCC/SMC/SPI/I2C inputs—external clock (NMSI)	4	4	4	4	2	2	2	2		
sp20	sp21	TDM inputs/SI	3	3	3	3	2.5	2.5	2.5	2.5		
sp22	sp23	PIO/TIMER/IDMA inputs	8	8	8	8	0.5	0.5	0.5	0.5		

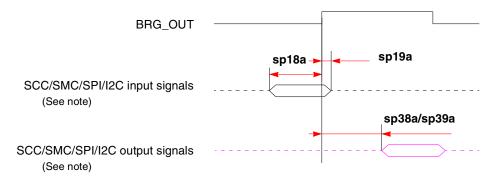
Table 11. AC Characteristics for CPM Inputs¹

NOTE

Although the specifications generally reference the rising edge of the clock, the following AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the FCC internal clock.

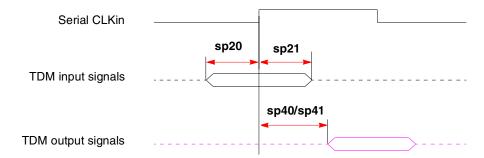



Figure 3. FCC Internal Clock Diagram

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

This figure shows the SCC/SMC/SPI/I²C internal clock.



Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I²C Internal Clock Diagram

This figure shows TDM input and output signals.

Note: There are four possible TDM timing conditions:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 7. TDM Signal Diagram

NOTE: Conditions

The following conditions must be met in order to operate the MPC8272 family devices with 133 MHz bus: single PowerQUICC II Bus mode must be used (no external master, BCR[EBM] = 0); data bus must be in Pipeline mode (BRx[DR] = 1); internal arbiter and memory controller must be used. For expected load of above 40 pF, it is recommended that data and address buses be configured to low (25 Ω) impedance (SIUMCR[HLBE0] = 1, SIUMCR[HLBE1] = 1).

Table 12. AC Characteristics for SIU Inputs¹

Spec Number				Value (ns)									
Setup Hol		Characteristic		Se	tup		Hold						
	Hold			83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz			
sp11	sp10	AACK/TA/TS/DBG/BG/BR/ARTRY/TEA	6	5	3.5	N/A	0.5	0.5	0.5	N/A			
sp12	sp10	Data bus in normal mode	5	4	3.5	N/A	0.5	0.5	0.5	N/A			
sp13	sp10	Data bus in pipeline mode (without ECC and PARITY)	N/A	4	2.5	1.5	N/A	0.5	0.5	0.5			
sp15	sp10	All other pins	5	4	3.5	N/A	0.5	0.5	0.5	N/A			

Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

This table lists SIU output characteristics.

Table 13. AC Characteristics for SIU Outputs¹

Spec Number				Value (ns)									
	Characteristic		Maximu	m Delay	/	Minimum Delay							
Max	Min			83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz			
sp31	sp30	PSDVAL/TEA/TA	7	6	5.5	N/A	1	1	1	N/A			
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	6.5	5.5	4.5 ²	1	1	1	1 ²			
sp33	sp30	Data bus ³	6.5	6.5	5.5	4.5	0.8	0.8	0.8	1			
sp34	sp30	Memory controller signals/ALE	6	5.5	5.5	4.5	1	1	1	1			
sp35	sp30	All other signals	6	5.5	5.5	N/A	1	1	1	N/A			

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

² Value is for ADD only; other sp32/sp30 signals are not applicable.

³ To achieve 1 ns of hold time at 66.67/83.33/100 MHZ, a minimum loading of 20 pF is required.

Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	Bus (Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High	
1000_010	66.7	88.9	3	200.0	266.6	3.5	233.3	311.1	4	50.0	66.7	
1000_011	66.7	88.9	3	200.0	266.6	4	266.7	355.5	4	50.0	66.7	
1000_100	66.7	88.9	3	200.0	266.6	4.5	300.0	400.0	4	50.0	66.7	
1000_101	66.7	88.9	3	200.0	266.6	6	400.0	533.3	4	50.0	66.7	
1000_110	66.7	88.9	3	200.0	266.6	6.5	433.3	577.7	4	50.0	66.7	
1001_000		Reserved										
1001_001						Reserved						
1001_010	57.1	76.2	3.5	200.0	266.6	3.5	200.0	266.6	4	50.0	66.7	
1001_011	57.1	76.2	3.5	200.0	266.6	4	228.6	304.7	4	50.0	66.7	
1001_100	57.1	76.2	3.5	200.0	266.6	4.5	257.1	342.8	4	50.0	66.7	
	I				I	T	I	I				
1001_101	85.7	114.3	3.5		400.0	5		571.4	6	50.0	66.7	
1001_110	85.7	114.3	3.5	300.0	400.0	5.5		628.5	6	50.0	66.7	
1001_111	85.7	114.3	3.5	300.0	400.0	6	514.3	685.6	6	50.0	66.7	
1010_000	75.0	100.0	2	150.0	200.0	2	150.0	200.0	3	50.0	66.7	
1010_001	75.0	100.0	2	150.0	200.0	2.5	187.5	250.0	3	50.0	66.7	
1010_010	75.0	100.0	2	150.0	200.0	3	225.0	300.0	3	50.0	66.7	
1010_011	75.0	100.0	2	150.0	200.0	3.5	262.5	350.0	3	50.0	66.7	
1010_100	75.0	100.0	2	150.0	200.0	4	300.0	400.0	3	50.0	66.7	
1010 101	100.0	133.3		000.0	000.0	0.5	050.0	000.0	4	50.0	66.7	
1010_101			2		266.6	2.5		333.3	4	50.0	66.7	
1010_110	100.0		2	200.0	266.6 266.6	3.5		400.0 466.6	4	50.0	66.7 66.7	
1010_111	100.0	100.0		200.0	200.0	0.0	0.00.0	+00.0		50.0	00.7	
1011_000						Reserved						
1011_001	80.0	106.7	2.5	200.0	266.6	2.5	200.0	266.6	4	50.0	66.7	
1011_010	80.0	106.7	2.5	200.0	266.6	3	240.0	320.0	4	50.0	66.7	
1011_011	80.0	106.7	2.5	200.0	266.6	3.5	280.0	373.3	4	50.0	66.7	

Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	Bus Clock (MHz)		(MHz) CPM (MHz)		CPU Multiplication	CPU Clock (MHz)		PCI Division	PCI Clock (MHz)		
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
1011_100	80.0	106.7	2.5	200.0	266.6	4	320.0	426.6	4	50.0	66.7
1011_101	80.0	106.7	2.5	200.0	266.6	4.5	360.0	480.0	4	50.0	66.7
1101_000	100.0	133.3	2.5	250.0	333.3	3	300.0	400.0	5	50.0	66.7
1101_001	100.0	133.3	2.5	250.0	333.3	3.5	350.0	466.6	5	50.0	66.7
1101_010	100.0	133.3	2.5	250.0	333.3	4	400.0	533.3	5	50.0	66.7
1101_011	100.0	133.3	2.5	250.0	333.3	4.5	450.0	599.9	5	50.0	66.7
1101_100	100.0	133.3	2.5	250.0	333.3	5	500.0	666.6	5	50.0	66.7
1101_101	125.0	166.7	2	250.0	333.3	3	375.0	500.0	5	50.0	66.7
1101_110	125.0	166.7	2	250.0	333.3	4	500.0	666.6	5	50.0	66.7
1110_000	100.0	133.3	3	300.0	400.0	3.5	350.0	466.6	6	50.0	66.7
1110_001	100.0	133.3	3	300.0	400.0	4	400.0	533.3	6	50.0	66.7
1110_010	100.0	133.3	3	300.0	400.0	4.5	450.0	599.9	6	50.0	66.7
1110_011	100.0	133.3	3	300.0	400.0	5	500.0	666.6	6	50.0	66.7
1110_100	100.0	133.3	3	300.0	400.0	5.5	550.0	733.3	6	50.0	66.7
1100_000						Reserved					
1100_001						Reserved					
1100_010		Reserved									

The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

 $CPM_CLK/PCI_CLK = (PCIDF + 1) / 2.$

² PCI_MODCK determines the PCI clock frequency range. SeeTable 18 for lower range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

⁶ CPM_CLK/PCI_CLK ratio. When PCI_MODCK = 0, the ratio of CPM_CLK/PCI_CLK should be calculated from SCCR[PCIDF] as follows:

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1) 1,2

Mode ³	Mode ³ Bus Cloc (MHz)		CPM	CPM Clock (MHz)		CPU	CPU Clock (MHz)		PCI	PCI Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Multiplication - Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Division Factor ⁶	Low	High
			Defa	ult Mod	es (MO	DCK_H=0000)					
0000_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0000_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0
0000_010	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0000_011	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0000_100	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0000_101	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0000_110	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
0000_111	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
	Į.	<u>l</u>	F	ull Cor	nfigurati	on Modes	<u>l</u>	<u>l</u>			Į.
0001_000	50.0	100.0	3	150.0	300.0	5	250.0	500.0	6	25.0	50.0
0001_001	50.0	100.0	3	150.0	300.0	6	300.0	600.0	6	25.0	50.0
0001_010	50.0	100.0	3	150.0	300.0	7	350.0	700.0	6	25.0	50.0
0001_011	50.0	100.0	3	150.0	300.0	8	400.0	800.0	6	25.0	50.0
0010_000	50.0	100.0	4	200.0	400.0	5	250.0	500.0	8	25.0	50.0
0010_001	50.0	100.0	4	200.0	400.0	6	300.0	600.0	8	25.0	50.0
0010_010	50.0	100.0	4	200.0	400.0	7	350.0	700.0	8	25.0	50.0
0010_011	50.0	100.0	4	200.0	400.0	8	400.0	800.0	8	25.0	50.0
0010_100	37.5	75.0	4	150.0	300.0	5	1975	375.0	6	25.0	50.0
0010_100	37.5	75.0	4		300.0	5.5		412.5	6	25.0	50.0
0010_101	37.5	75.0	4		300.0	6		450.0	6	25.0	50.0
0010_110	37.3	75.0	4	150.0	300.0	0	223.0	450.0	0	25.0	30.0
0011_000	30.0	50.0	5	150.0	250.0	5	150.0	250.0	5	30.0	50.0
0011_001	25.0	50.0	5	125.0	250.0	6	150.0	300.0	5	25.0	50.0
0011_010	25.0	50.0	5	125.0	250.0	7	175.0	350.0	5	25.0	50.0
0011_011	25.0	50.0	5	125.0	250.0	8	200.0	400.0	5	25.0	50.0
0100_000	1					Reserved					
0100_000						i icaci veu					

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³	Bus Clock (MHz)				CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High		
1000_010	66.7	133.3	3	200.0	400.0	3.5	233.3	466.7	8	25.0	50.0		
1000_011	66.7	133.3	3	200.0	400.0	4	266.7	533.3	8	25.0	50.0		
1000_100	66.7	133.3	3	200.0	400.0	4.5	300.0	600.0	8	25.0	50.0		
1000_101	66.7	133.3	3	200.0	400.0	6	400.0	800.0	8	25.0	50.0		
1000_110	66.7	133.3	3	200.0	400.0	6.5	433.3	866.7	8	25.0	50.0		
1001_000						Reserved							
1001_001						Reserved							
1001_010	57.1	114.3	3.5	200.0	400.0	3.5	200.0	400.0	8	25.0	50.0		
1001_011	57.1	114.3	3.5	200.0	400.0	4	228.6	457.1	8	25.0	50.0		
1001_100	57.1	114.3	3.5	200.0	400.0	4.5	257.1	514.3	8	25.0	50.0		
1001_101	42.9	85.7	3.5	150.0	300.0	5	214.3	428.6	6	25.0	50.0		
1001_110	42.9	85.7	3.5	150.0	300.0	5.5	235.7	471.4	6	25.0	50.0		
1001_111	42.9	85.7	3.5	150.0	300.0	6	257.1	514.3	6	25.0	50.0		
	I						I						
1010_000	75.0	150.0	2		300.0	2		300.0	6	25.0	50.0		
1010_001	75.0	150.0	2	150.0	300.0	2.5		375.0	6	25.0	50.0		
1010_010	75.0	150.0	2	150.0	300.0	3		450.0	6	25.0	50.0		
1010_011	75.0	150.0	2	150.0	300.0	3.5		525.0	6	25.0	50.0		
1010_100	75.0	150.0	2	150.0	300.0	4	300.0	600.0	6	25.0	50.0		
1010_101	100.0	200.0	2	200.0	400.0	2.5	250.0	500.0	8	25.0	50.0		
1010_110	100.0	200.0	2	200.0	400.0	3	300.0	600.0	8	25.0	50.0		
1010_111	100.0	200.0	2	200.0	400.0	3.5	350.0	700.0	8	25.0	50.0		
	ı												
1011_000			_	I	l	Reserved	T	l					
1011_001	80.0	160.0	2.5	200.0	400.0	2.5		400.0		25.0	50.0		
1011_010	80.0	160.0	2.5	200.0	400.0	3		480.0	8	25.0	50.0		
1011_011	80.0	160.0	2.5	200.0	400.0	3.5		560.0	8	25.0	50.0		
1011_100	80.0	160.0	2.5	200.0	400.0	4	320.0	640.0	8	25.0	50.0		

⁶ CPM_CLK/PCI_CLK ratio. When PCI_MODCK = 1, the ratio of CPM_CLK/PCI_CLK should be calculated from PCIDF as follows:

PCIDF = 3 > CPM_CLK/PCI_CLK = 4

PCIDF = 5 > CPM_CLK/PCI_CLK = 6

PCIDF = 7 > CPM_CLK/PCI_CLK = 8

PCIDF = 9 > CPM_CLK/PCI_CLK = 5

PCIDF = B > CPM_CLK/PCI_CLK = 6

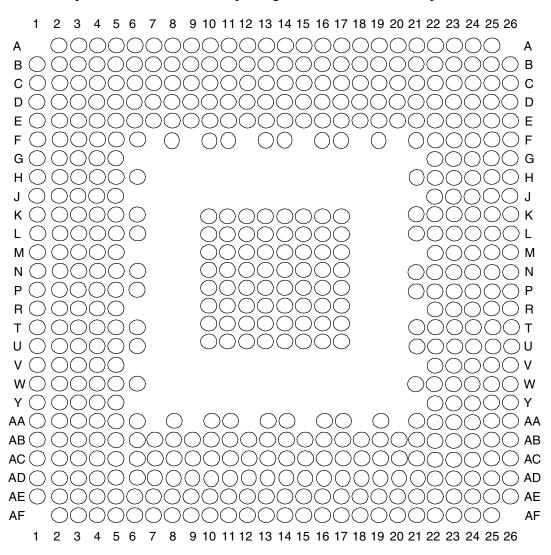
7.2 PCI Agent Mode

These tables show configurations for PCI agent mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI agent mode the input clock is PCI clock.

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2}

Mode ³	PCI (Clock Hz)	CPM CI (MHz Multiplication			z) CPU		Clock Hz)	Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	High Multiplication Factor ⁵	Low	High	Factor	Low	High
			Defau	ılt Mod	es (MO	DCK_H=0000)					
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0000_010	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0000_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0000_100	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0000_101	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0000_110	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0000_111	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.7
			F	ull Con	figurat	ion Modes					
0001_001	60.0	66.7	2	120.0	133.3	5	150.0	166.7	4	30.0	33.3
0001_010	50.0	66.7	2	100.0	133.3	6	150.0	200.0	4	25.0	33.3
0001_011	50.0	66.7	2	100.0	133.3	7	175.0	233.3	4	25.0	33.3
0001_100	50.0	66.7	2	100.0	133.3	8	200.0	266.6	4	25.0	33.3
0010_001	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0010_010	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0010_011	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
0010_100	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3


Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	Mode ³ PCI Cloc (MHz)		CPM	CPM Clock (MHz)		CPU Multiplication		Clock Hz)	Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	CK_H- Low High Factor ⁴	Multiplication Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Factor	Low	High	
1000_000						Posorvod					
1000_000	50.0	66.7	3	150.0	200.0	Reserved 2.5	150.0	166.7	2.5	60.0	80.0
1000_001	50.0	66.7	3	150.0	200.0	3		240.0	2.5	60.0	80.0
1000_010	50.0	66.7	3	150.0	200.0	3.5		280.0	2.5	60.0	80.0
1000_011	50.0	66.7	3	150.0	200.0	4		320.0	2.5	60.0	80.0
1000_100	50.0	66.7	3	150.0	200.0	4.5		360.0	2.5	60.0	80.0
1000_101	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0
1001_000						Reserved					
1001_001						Reserved					
1001_010						Reserved					
1001_011	50.0	66.7	4	200.0	266.6	4	200.0	266.6	4	50.0	66.7
1001_100	50.0	66.7	4	200.0	266.6	4.5	225.0	300.0	4	50.0	66.7
											•
1010_000						Reserved					
1010_001	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
1010_010	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
1010_011	50.0	66.7	4	200.0	266.6	4	266.7	355.5	3	66.7	88.9
1010_100	50.0	66.7	4	200.0	266.6	4.5	300.0	400.0	3	66.7	88.9
1011_000						Reserved					
1011_001	50.0	66.7	4	200.0	266.6	2.5	200.0	266.6	2.5	80.0	106.
1011_010	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.
1011_011	50.0	66.7	4	200.0	266.6	3.5	280.0	373.3	2.5	80.0	106.
1011_100	50.0	66.7	4	200.0	266.6	4	320.0	426.6	2.5	80.0	106.
			T			T		T		T	
1011_101	50.0	66.7	4	200.0	266.6	2.5	250.0	333.3	2	100.0	133.
1011_110	50.0	66.7	4	200.0	266.6	3	300.0	400.0	2	100.0	133.
1011_111	50.0	66.7	4	200.0	266.6	3.5	250.0	466.6	2	100.0	133

Pinout

This figure shows the pinout of the 516 PBGA package as viewed from the top surface.

Not to Scale

Figure 12. Pinout of the 516 PBGA Package (View from Top)

This table lists the pins of the MPC8272. Note that the pins in the "MPC8272/8271 Only" column relate to Utopia functionality.

Table 21. Pinout

Pin N					
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball			
B	BR				
BG/I	BG/IRQ6				
ABB/	IRQ2	C1			

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 21. Pinout (continued)

Pin N		
MPC8272/MPC8248 and MPC8271/MPC8247	Ball	
PA31/FCC1_MII_COL	FCC1_UT_TXENB	G22 ³
PB18/FCC2_M	II_HDLC_RXD3	T25 ³
PB19/FCC2_M	II_HDLC_RXD2	P22 ³
PB20/FCC2_MII_H	HDLC_RMII_RXD1	L25 ³
PB21/FCC2_MII_HDLC_RM	II_RXD0/FCC2_TRAN_RXD	J26 ³
PB22/FCC2_MII_HDLC_ FCC2_RI	TXD0/FCC2_TRAN_TXD/ MII_TXD0	U23 ³
PB23/FCC2_MII_HDLC_	TXD1/FCC2_RMII_TXD1	U26 ³
PB24/FCC2_MII_HDL	C_TXD2/L1RSYNCB2	M24 ³
PB25/FCC2_MII_HDL	C_TXD3/L1TSYNCB2	M23 ³
PB26/FCC2_MII	_CRS/L1RXDB2	H24 ³
PB27/FCC2_MII	_COL/L1TXDB2	E25 ³
PB28/FCC2_MII_RMII_R	X_ER/ FCC2_RTS /TXD1	D26 ³
PB29/FCC2_M	II_RMII_TX_EN	K21 ³
PB30/FCC2_MII_RX_D	V/FCC2_RMII_CRS_DV	D24 ³
PB31/FCC2	_MII_TX_ER	E23 ³
PC0/DREQ3/BRGO7	/SMSYN1/L1CLKOA2	AF23 ³
PC1/BRGC	06/L1RQA2	AD23 ³
PC4/SMRXD1/SI2	_L1ST4/FCC2_CD	AB22 ³
PC5/SMTXD1/SI2_	L1ST3/FCC2_CTS	AE24 ³
PC6/FCC1_CD/SI2_L1ST2	FCC1_UT_RXADDR2	AF24 ³
PC7/FCC1_CTS	FCC1_UT_TXADDR2	AE26 ³
PC8/CD4/RTS1/S	SI2_L1ST2/CTS3	AC24 ³
PC9/CTS4/L	1TSYNCA2	AA23 ³
PC10/CD3	AB25 ³	
PC11/CTS3/USE	V22 ³	
PC12	FCC1_UT_RXADDR1	AA26 ³
PC13/BRGO5	FCC1_UT_TXADDR1	V23 ³
PC14/CD1	FCC1_UT_RXADDR0	W24 ³
PC15/CTS1	FCC1_UT_TXADDR0	U24 ³
PC16/	CLK16	T23 ³

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 21. Pinout (continued)

Pin Na		
MPC8272/MPC8248 and MPC8271/MPC8247	Ball	
PC17/CLK15/BR	GO8/DONE2	T26 ³
PC18/CLK14	/TGATE2	R26 ³
PC19/CLK13/BR0	GO7/TGATE1	P24 ³
PC20/CLK12	/USBOE	L26 ³
PC21/CLK11/BR	GO6/CP_INT	L24 ³
PC22/CLK10/DONE3	FCC1_UT_TXPRTY	L23 ³
PC23/CLK9/BRGC	95/DACK3/CD1	K24 ³
PC24/CLK8/TIN3/TOU	T4/DREQ2/BRGO1	K23 ³
PC25/CLK7/BRGO4	/DACK2/SPISEL	F26 ³
PC26/CLK6/TOI	JT3/TMCLK	H23 ³
PC27/CLK5/BRGO3/TOUT1	FCC1_UT_RXPRTY	K22 ³
PC28/CLK4/TIN1/T	OUT2/SPICLK	D25 ³
PC29/CLK3/TIN2/	BRGO2/CTS1	F24 ³
PD7/SMSYN2	FCC1_UT_TXADDR3	AB21 ³
PD14/I20	CSCL	AC26 ³
PD15/I20	CSDA	Y23 ³
PD16/SPIMISO	FCC1_UT_TXPRTY	AA25 ³
PD17/BRGO2/SPIMOSI	FCC1_UT_RXPRTY	Y26 ³
PD18/SPICLK	FCC1_UT_RXADDR4	W25 ³
PD19/SPISEL/BRGO1	FCC1_UT_TXADDR4	V25 ³
PD20/RTS4/L1	RSYNCA2	R24 ³
PD21/TXD4/L	1RXD0A2	P23 ³
PD22/RXD4/L	1TXD0A2	N25 ³
PD23/RTS3/	USB_TP	K26 ³
PD24/TXD3/	USB_TN	K25 ³
PD25/RXD3/U	JSB_RXD	J25 ³
PD29/RTS1	FCC1_UT_RXADDR3	C26 ³
PD30/T	XD1	E24 ³
PD31/R	XD1	B25 ³
VCCS	YN	C18
VCCSY	N1	K6

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 23. Document Revision History (continued)

Revision	Date	Substantive Changes
0.2	12/2003	 Table 1: New Table 2: New Table 8: Modification of VDD and VCCSYN to 1.45–1.60 V Table 8: Addition of note 2 regarding TRST and PORESET (see V_{IH} row of Table 8) Table 8 and Table 21: Addition of muxed signals CPCI_HS_ES to PCI_REO1 (AF14) CPCI_HS_ES to PCI_REO1 (AF14) CPCI_HS_ENDM to PCI_GNT2 (AF21) Table 8 and Table 21: Modification of PCI signal names for consistency with PCI signal names on other PowerQUICC II devices: PCI_CFG0 (PCI_HOST_EN) (AC21) PCI_CFG1 (PCI_ARB_EN) (AE22) PCI_CFG2 (DLI_ENABLE) (AE23) PCI_PAR (AF12) PCI_FRAME (AD15) PCI_TRDY (AF16) PCI_IRDY (AF16) PCI_IRDY (AF15) PCI_SERR (AD13) PCI_DESEL (AC17) PCI_DESEL (AC17) PCI_DESEL (AC17) PCI_PERR (AD14) PCI_SERR (AD13) PCI_REO0-2 (AB220, AF14, AB14) PCI_GO3 (AF22) PCI_INTA (AE21) PCI_CO-3 (AE12, AF13, AC15, AE18) PCI_AD0-31 Table 8 and Table 21: Corrected assertion level (added "") PCI_HOST_EN (AC21) and PCI_ARB_EN (AE22) PCI_ARB_EN (AE22) Table 7: Addition of R_{BJT} and note 4 Sections 4.1-4.5 and 4.7 on thermal characteristics: New Section 7, "Clock Configuration Modes": Modification to first paragraph. Note that PCI_MODCK is a bit in the Hard Reset Configuration to first paragraph. Note that PCI_MODCK is a bit in the Hard Reset Configuration to first paragraph. Note that PCI_MODCK is a bit in the Hard Reset Configuration to first paragraph is in the MPC8280 Family and MPC8280 Family and MPC8280 Family. Addition of "Note: Temperature Reflow for the VR Package" on page 56 Table 21: Addition of note 2 to TRST (E21) and PORESET (C24) Table 21: Removal of Spare0 (AD24). This pin is now a "No connect." Note 5 unchanged. Table 21: Addition of PCI_MODE (AD22). This pin was previously listed as "Ground." Addition of note 1. <!--</td-->
0.1	9/2003	 Addition of the MPC8271 and the MPC8247 (these devices do not have a security engine) Table 8: Addition of note 2 to V_{IH} Table 8: Changed I_{OL} for 60x signals to 6.0 mA Modification of note 1 for Table 17, Table 18, Table 19, and Table 20 Table 21: Addition of ball AD9 to GND. In rev 0 of this document, AD8 was listed as assigned to both CS5 and GND. AD8 is only assigned to CS5. Table 21: Addition of note 4 to Thermal0 (D19) and Thermal1(J3) Addition of ZQ package code to Figure 15
0	5/2003	NDA release

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3