

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; RISC CPM, Security; SEC
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8248czqtiea

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Integrated security engine (SEC) (MPC8272 and MPC8248 only)
 - Supports DES, 3DES, MD-5, SHA-1, AES, PKEU, RNG and RC-4 encryption algorithms in hardware
- Communications processor module (CPM)
 - Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support for communications peripherals
 - Interfaces to G2_LE core through on-chip dual-port RAM and DMA controller. (Dual-port RAM size is 16 KB plus 4 KB dedicated instruction RAM.)
 - Microcode tracing capabilities
 - Eight CPM trap registers
- Universal serial bus (USB) controller
 - Supports USB 2.0 full/low rate compatible
 - USB host mode
 - Supports control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - NRZI encoding/decoding with bit stuffing
 - Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and data rate configuration). Note that low-speed operation requires an external hub.
 - Flexible data buffers with multiple buffers per frame
 - Supports local loopback mode for diagnostics (12 Mbps only)
 - Supports USB slave mode
 - Four independent endpoints support control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - CRC5 checking
 - NRZI encoding/decoding with bit stuffing
 - 12- or 1.5-Mbps data rate
 - Flexible data buffers with multiple buffers per frame
 - Automatic retransmission upon transmit error
 - Serial DMA channels for receive and transmit on all serial channels
 - Parallel I/O registers with open-drain and interrupt capability
 - Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers
 - Two fast communication controllers (FCCs) supporting the following protocols:
 - 10-/100-Mbit Ethernet/IEEE 802.3 CDMA/CS interface through media independent interface (MII)
 - Transparent
 - HDLC—up to T3 rates (clear channel)

3 DC Electrical Characteristics

This table shows DC electrical characteristics.

Table 5. DC Electrical Characteristics¹

Characteristic	Symbol	Min	Max	Unit
Input high voltage—all inputs except TCK, TRST and PORESET ²	V _{IH}	2.0	3.465	V
Input low voltage ³	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ⁴	I _{IN}	_	10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	I _{OZ}	—	10	μA
Signal low input current, V _{IL} = 0.8 V	١L	_	1	μA
Signal high input current, V _{IH} = 2.0 V	ι _Η	—	1	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$ except UTOPIA mode, and open drain pins In UTOPIA mode ⁵ (UTOPIA pins only): $I_{OH} = -8.0\text{mA}$ PA[8-31] PB[18-31] PC[0-1,4-29] PD[7-25, 29-31]	V _{OH}	2.4	_	V
In UTOPIA mode ⁵ (UTOPIA pins only): I _{OL} = 8.0mA PA[8–31] PB[18–31] PC[0–1,4–29] PD[7–25, 29–31]	V _{OL}	_	0.5	V

DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
I _{OL} = 5.3mA	V _{OL}		0.4	V
<u>ČŠ</u> [0–5]	01			
CS6/BCTL1/SMI				
CS7/TLBSYNC				
BADDR27/ IRQ1				
BADDR28/ IRQ2				
ALE/ IRQ4				
BCTL0				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4				
PSDAMUX/PGPL5				
PCI_CFG0 (PCI_HOST_EN)				
PCI_CFG1 (PCI_ARB_EN)				
PCI_CFG2 (DLL_ENABLE)				
MODCK1/RSRV/TC(0)/BNKSEL(0)				
MODCK2/CSE0/TC(1)/BNKSEL(1)				
MODCK3CSE1/TC(2)/BNKSEL(2)				
$I_{OL} = 3.2 \text{mA}$				
PCI_PAR				
PCI_FRAME				
PCI_TRDY				
PCI_IRDY				
PCI_STOP				
PCI_DEVSEL				
PCI_IDSEL				
PCI_PERR				
PCI_SERR				
PCI_REQ0				
PCI_REQ1/ CPI_HS_ES				
PCI_GNT0				
PCI_GNT1/ CPI_HS_LES				
PCI_GNT2/ CPI_HS_ENUM				
PCI_RST				
PCI_INTA				
PCI_REQ2				
DLLOUT				
PCI_AD(0-31)				
PCI_AD(0-31) PCI_C(0-3)/BE(0-3)				
PA[8–31]				
PB[18–31]				
PC[0–1,4–29]				
PD[7–25, 29–31]				
TDO				

Table 5. DC Electrical Characteristics¹ (continued)

The default configuration of the CPM pins (PA[8-31], PB[18-31], PC[0-1,4-29], PD[7-25, 29-31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

 ² TCK, TRST and PORESET have min VIH = 2.5V.
 ³ V_{IL} for IIC interface does not match IIC standard, but does meet IIC standard for V_{OL} and should not cause any compatibility issue.

⁴ The leakage current is measured for nominal VDDH,VCCSYN, and VDD.

DC Electrical Characteristics

⁵ MPC8272 and MPC8271 only.

Table 6.

Characteristic	Symbol	Min	Мах	Unit
Input high voltage—all inputs except TCK, TRST and PORESET ¹	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ²	I _{IN}		10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	I _{OZ}		10	μA
Signal low input current, $V_{IL} = 0.8 V^3$	١L	_	1	μA
Signal high input current, V _{IH} = 2.0 V	I _H	_	1	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$ except UTOPIA mode, and open drain pins In UTOPIA mode ⁴ (UTOPIA pins only): $I_{OH} = -8.0 \text{mA}$	V _{OH}	2.4	_	V
In UTOPIA mode ⁴ (UTOPIA pins only): I _{OL} = 8.0mA	V _{OL}	_	0.5	V
IoL = 6.0mA BR BG ABB/IRQ2 TS A[0-31] TTI[0-4] TBST TSIZE[0-3] AACK ARTRY DBG DBB/IRQ3 D[0-63] //EXT_BR3 //EXT_BR3 //EXT_BG3 /TEN/EXT_DBG3/CINT PSDVAL TA TEA GBL/IRQ1 CI/BADDR29/IRQ2 WT/BADDR30/IRQ3 BADDR31/IRQ5/CINT CPU_BR IRQ0/NMI_OUT /PCL_RST HRESET SRESET REQONF	V _{OL}		0.4	V

AC Electrical Characteristics

6 AC Electrical Characteristics

The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for 66.67/83.33/100/133 MHz devices. Note that AC timings are based on a 50-pf load for MAX Delay and 10-pf load for MIN delay. Typical output buffer impedances are shown in this table.

Output Buffers	Typical Impedance (Ω)
60x bus	45 or 27 ²
Memory controller	45 or 27 ²
Parallel I/O	45
PCI	27

¹ These are typical values at 65° C. Impedance may vary by ±25% with process and temperature.

² Impedance value is selected through SIUMCR[20,21]. See the SoC reference manual.

6.1 CPM AC Characteristics

This table lists CPM output characteristics.

Spec Number			Value (ns)								
		Characteristic	N	laximu	m Dela	iy	Minimum Delay				
Max	Min		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz	
sp36a	sp37a	FCC outputs—internal clock (NMSI)		5.5	5.5	5.5	0.5	0.5	0.5	0.5	
sp36b	sp37b	FCC outputs—external clock (NMSI)		8	8	8	2	2	2	2	
sp38a	sp39a	SCC/SMC/SPI/I2C outputs—internal clock (NMSI)	10	10	10	10	0	0	0	0	
sp38b	sp39b	SCC/SMC/SPI/I2C outputs—external clock (NMSI)	8	8	8	8	2	2	2	2	
sp40	sp41	TDM outputs/SI	11	11	11	11	2.5	2.5	2.5	2.5	
sp42	sp43	TIMER/IDMA outputs	11	11	11	11	0.5	0.5	0.5	0.5	
sp42a	sp43a	PIO outputs	11	11	11	11	0.5	0.5	0.5	0.5	

Table 10. AC Characteristics for CPM Outputs¹

¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

AC Electrical Characteristics

This figure shows the FCC external clock.

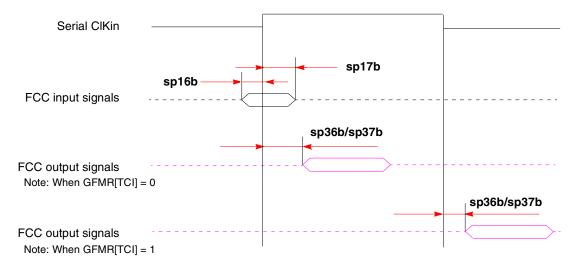
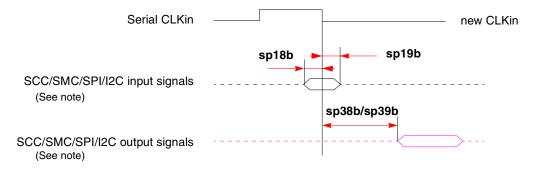
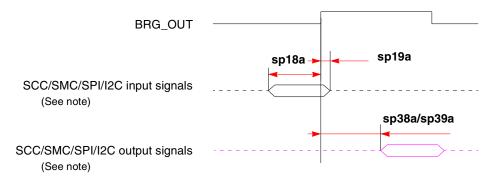



Figure 4. FCC External Clock Diagram

This figure shows the SCC/SMC/SPI/I²C external clock.

Note: There are four possible timing conditions for SPI:

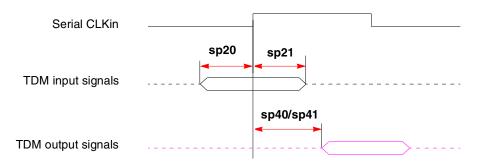
- 1. Input sampled on the rising edge and output driven on the rising edge.
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge (shown).
- 4. Input sampled on the falling edge and output driven on the rising edge.


Note: There are two possible timing conditions for SCC/SMC/I²C:

- 1. Input sampled on the falling edge and output driven on the falling edge (shown).
- 2. Input sampled on the falling edge and output driven on the rising edge.

Figure 5. SCC/SMC/SPI/I²C External Clock Diagram

This figure shows the SCC/SMC/SPI/I²C internal clock.



Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I²C Internal Clock Diagram

This figure shows TDM input and output signals.

Note: There are four possible TDM timing conditions:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 7. TDM Signal Diagram

Clock Configuration Modes

Mode ³	Bus ((MI	Clock Hz)	CPM Multiplication	CPM Clock (MHz)		CPU Multiplication	CPU Clock (MHz)		C PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High Factor		Low	High
1000_010	66.7	88.9	3	200.0	266.6	3.5	233.3	311.1	4	50.0	66.7
1000_011	66.7	88.9	3	200.0	266.6	4	266.7	355.5	4	50.0	66.7
1000_100	66.7	88.9	3	200.0	266.6	4.5	300.0	400.0	4	50.0	66.7
1000_101	66.7	88.9	3	200.0	266.6	6	400.0	533.3	4	50.0	66.7
1000_110	66.7	88.9	3	200.0	266.6	6.5	433.3	577.7	4	50.0	66.7
1001_000						Reserved					
1001_001						Reserved					
1001_010	57.1	76.2	3.5	200.0	266.6	3.5	200.0	266.6	4	50.0	66.7
1001_011	57.1	76.2	3.5	200.0	266.6	4	228.6	304.7	4	50.0	66.7
1001_100	57.1	76.2	3.5	200.0	266.6	4.5	257.1	342.8	4	50.0	66.7
		r		1			1	1		r	
1001_101	85.7	114.3	3.5	300.0	400.0	5	428.6	571.4	6	50.0	66.7
1001_110	85.7	114.3	3.5	300.0	400.0	5.5	471.4	628.5	6	50.0	66.7
1001_111	85.7	114.3	3.5	300.0	400.0	6	514.3	685.6	6	50.0	66.7
1010_000	75.0	100.0	2	150.0	200.0	2	150.0	200.0	3	50.0	66.7
1010_001	75.0	100.0	2	150.0	200.0	2.5	187.5	250.0	3	50.0	66.7
1010_010	75.0	100.0	2	150.0	200.0	3	225.0	300.0	3	50.0	66.7
1010_011	75.0	100.0	2	150.0	200.0	3.5	262.5	350.0	3	50.0	66.7
1010_100	75.0	100.0	2	150.0	200.0	4	300.0	400.0	3	50.0	66.7
1010_101	100.0	133.3	2	200.0	266.6	2.5	250.0	333.3	4	50.0	66.7
1010_110		133.3			266.6	3	300.0		4	50.0	66.7
1010_111		133.3			266.6	3.5	350.0		4	50.0	66.7
	•	-		•			-	•	•	-	
1011_000	Reserved										
1011_001	80.0	106.7	2.5	200.0	266.6	2.5	200.0	266.6	4	50.0	66.7
1011_010	80.0	106.7	2.5	200.0	266.6	3	240.0	320.0	4	50.0	66.7
1011_011	80.0	106.7	2.5	200.0	266.6	3.5	280.0	373.3	4	50.0	66.7

 Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	Bus Clock (MHz)		CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Multiplication Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
			Defa	ult Mode	es (MO	DCK_H=0000)					
0000_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0000_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0
0000_010	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0000_011	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0000_100	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0000_101	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0000_110	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
0000_111	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
	ļ	ļ	F	ull Cor	figurati	on Modes	ļ	I			I
0001_000	50.0	100.0	3	150.0	300.0	5	250.0	500.0	6	25.0	50.0
0001_001	50.0	100.0	3	150.0	300.0	6	300.0	600.0	6	25.0	50.0
0001_010	50.0	100.0	3	150.0	300.0	7	350.0	700.0	6	25.0	50.0
0001_011	50.0	100.0	3	150.0	300.0	8	400.0	800.0	6	25.0	50.0
						1					
0010_000	50.0	100.0	4	200.0	400.0	5	250.0	500.0	8	25.0	50.0
0010_001	50.0	100.0	4	200.0	400.0	6	300.0	600.0	8	25.0	50.0
0010_010	50.0	100.0	4	200.0	400.0	7	350.0	700.0	8	25.0	50.0
0010_011	50.0	100.0	4	200.0	400.0	8	400.0	800.0	8	25.0	50.0
	1	1			[I	1				
0010_100	37.5	75.0	4		300.0	5		375.0	6	25.0	50.0
0010_101	37.5	75.0	4			5.5		412.5	6	25.0	50.0
0010_110	37.5	75.0	4	150.0	300.0	6	225.0	450.0	6	25.0	50.0
0011_000	30.0	50.0	5	150.0	250.0	5	150.0	250.0	5	30.0	50.0
0011_001	25.0	50.0	5	125.0	250.0	6	150.0		5	25.0	50.0
0011_010	25.0	50.0	5	125.0	250.0	7	175.0		5	25.0	50.0
0011_011	25.0	50.0	5	125.0	250.0		200.0		5	25.0	50.0
		ı			1	1	ı				
0100_000						Reserved					

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2}

Clock Configuration Modes

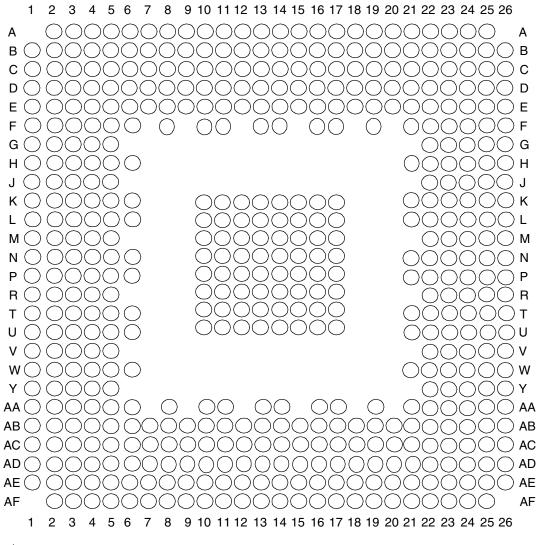
- ⁶ CPM_CLK/PCI_CLK ratio. When PCI_MODCK = 1, the ratio of CPM_CLK/PCI_CLK should be calculated from PCIDF as follows: PCIDF = 3 > CPM_CLK/PCI_CLK = 4 PCIDF = 5 > CPM_CLK/PCI_CLK = 6 PCIDF = 7 > CPM_CLK/PCI_CLK = 8
 - PCIDF = 9 > CPM_CLK/PCI_CLK = 5
 - PCIDF = B > CPM_CLK/PCI_CLK = 6

7.2 PCI Agent Mode

These tables show configurations for PCI agent mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI agent mode the input clock is PCI clock.

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
			Defau	ilt Mod	es (MO	DCK_H=0000)					
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0000_010	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0000_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0000_100	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0000_101	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0000_110	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0000_111	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.7
			F	ull Con	figurat	ion Modes					
0001_001	60.0	66.7	2	120.0	133.3	5	150.0	166.7	4	30.0	33.3
0001_010	50.0	66.7	2	100.0	133.3	6	150.0	200.0	4	25.0	33.3
0001_011	50.0	66.7	2	100.0	133.3	7	175.0	233.3	4	25.0	33.3
0001_100	50.0	66.7	2	100.0	133.3	8	200.0	266.6	4	25.0	33.3
0010_001	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0010_010	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0010_011	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
0010_100	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2}



Mode ³	e [°] (MHz) CPM			Clock Hz)	CPU		Clock Hz)	Bus Division		Clock Hz)	
MODCK_H- MODCK[1-3]	Low	High	Multiplication Factor ⁴	Low	High	Multiplication - Factor ⁵	Low	High	Factor	Low	High
1000_000			Γ			Reserved			r		
1000_001	50.0	66.7	3	150.0	200.0	2.5	150.0	166.7	2.5	60.0	80.0
1000_010	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
1000_011	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
1000_100	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
1000_101	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0
1001_000						Reserved					
1001_001						Reserved					
1001_010						Reserved					
1001_011	50.0	66.7	4	200.0	266.6	4	200.0	266.6	4	50.0	66.7
1001_100	50.0	66.7	4	200.0		4.5	225.0		4	50.0	66.7
1010_000						Reserved					
1010_001	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
1010_010	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
1010_011	50.0	66.7	4	200.0	266.6	4	266.7	355.5	3	66.7	88.9
1010_100	50.0	66.7	4	200.0	266.6	4.5	300.0	400.0	3	66.7	88.9
1011_000						Reserved					
1011_001	50.0	66.7	4	200.0	266.6	2.5	200.0	266.6	2.5	80.0	106.7
1011_010	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.
1011_011	50.0	66.7	4	200.0	266.6	3.5	280.0	373.3	2.5	80.0	106.
1011_100	50.0	66.7	4	200.0	266.6	4	320.0	426.6	2.5	80.0	106.7
	1	1	1	1	1		1	r		1	
1011_101	50.0	66.7	4	200.0	266.6	2.5	250.0	333.3	2	100.0	133.3
1011_110	50.0	66.7	4	200.0	266.6	3	300.0	400.0	2	100.0	133.3
1011_111	50.0	66.7	4	200.0	266.6	3.5	350.0	466.6	2	100.0	133.3

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

This figure shows the pinout of the 516 PBGA package as viewed from the top surface.

Not to Scale

Figure 12. Pinout of the 516 PBGA Package (View from Top)

This table lists the pins of the MPC8272. Note that the pins in the "MPC8272/8271 Only" column relate to Utopia functionality.

Table 2	21. P	inout
---------	-------	-------

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
BR		A19
BG/IRQ6		D2
ABB/IRQ2		C1

Pin Na		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
A3	0	B15
A3	1	A15
TT	0	В3
TT	1	E8
TT	2	D7
TT	3	C4
ΤŢ	4	E7
TBS	T	E3
TSIZ	ZO	E4
TSIZ	Z1	E5
TSIZ	72	C3
TSIZ	Z3	D5
AAC	.	D3
ARTRY		C2
DBG/IRQ7		F16
DBB/IRQ3		D18
D0		AC1
D1		AA1
D2		V3
D3		R5
D4		P4
D5		M4
D6		J4
70	G1	
D8		W6
D9		Y3
D1	0	V1
D1	N6	
D1	2	Р3
D1	M2	
D1	J5	

Table 21. Pinout (continued)

Pinout

Table 21. Pinout (continued)

Pin Na			
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball	
PCI_II	RDY CONTRACT	AF15	
PCI_S	TOP	AE15	
PCI_DE	VSEL	AE14	
PCI_ID	DSEL	AC17	
PCI_P	ERR	AD14	
PCI_S	ERR	AD13	
PCI_R	EQ0	AE20	
PCI_REQ1/CI	PCI_HS_ES	AF14	
PCI_G	NTO	AD20	
PCI_GNT1/CP	CI_HS_LED	AE13	
PCI_GNT2/CPC	CI_HS_ENUM	AF21	
PCI_F	AST	AF22	
PCI_I	NTA	AE21	
PCI_REQ2		AB14	
DLLC	AC22		
PCI_AD0		AF7	
PCI_AD1		AE10	
PCI_AD2		AB10	
PCI_AD3		AD10	
PCI_AD4		AE9	
PCI_AD5		AF8	
PCI_/	AD6	AC10	
PCI_AD7		AE11	
PCI_/	AD8	AB11	
PCI_AD9		AF10	
PCI_AD10		AF9	
PCI_A	D11	AB12	
PCI_A	D12	AC12	
PCI_A	D13	AD12	
PCI_A	D14	AF11	
PCI_A	D15	AB13	

Pin Na			
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball	
PA31/FCC1_MII_COL	FCC1_UT_TXENB	G22 ³	
PB18/FCC2_MII_	_HDLC_RXD3	T25 ³	
PB19/FCC2_MII_	HDLC_RXD2	P22 ³	
PB20/FCC2_MII_HE	DLC_RMII_RXD1	L25 ³	
PB21/FCC2_MII_HDLC_RMII	_RXD0/FCC2_TRAN_RXD	J26 ³	
PB22/FCC2_MII_HDLC_T> FCC2_RMI		U23 ³	
PB23/FCC2_MII_HDLC_T	XD1/FCC2_RMII_TXD1	U26 ³	
PB24/FCC2_MII_HDLC	_TXD2/L1RSYNCB2	M24 ³	
PB25/FCC2_MII_HDLC	_TXD3/L1TSYNCB2	M23 ³	
PB26/FCC2_MII_0	CRS/L1RXDB2	H24 ³	
PB27/FCC2_MII_0	COL/L1TXDB2	E25 ³	
PB28/FCC2_MII_RMII_RX	_ER/FCC2_RTS/TXD1	D26 ³	
PB29/FCC2_MII_	_RMII_TX_EN	K21 ³	
PB30/FCC2_MII_RX_DV/	FCC2_RMII_CRS_DV	D24 ³	
PB31/FCC2_MII_TX_ER		E23 ³	
PC0/DREQ3/BRGO7/S	MSYN1/L1CLKOA2	AF23 ³	
PC1/BRGO6	/L1RQA2	AD23 ³	
PC4/SMRXD1/SI2_I	_1ST4/FCC2_CD	AB22 ³	
PC5/SMTXD1/SI2_L	1ST3/FCC2_CTS	AE24 ³	
PC6/FCC1_CD/SI2_L1ST2	FCC1_UT_RXADDR2	AF24 ³	
PC7/FCC1_CTS	FCC1_UT_TXADDR2	AE26 ³	
PC8/CD4/RTS1/SI	2_L1ST2/CTS3	AC24 ³	
PC9/CTS4/L1TSYNCA2		AA23 ³	
PC10/CD3/USB_RN		AB25 ³	
PC11/CTS3/USB_RP/L1TXD3A2		V22 ³	
PC12	FCC1_UT_RXADDR1	AA26 ³	
PC13/BRGO5	FCC1_UT_TXADDR1	V23 ³	
PC14/CD1	FCC1_UT_RXADDR0	W24 ³	
PC15/CTS1	FCC1_UT_TXADDR0	U24 ³	
PC16/CLK16		T23 ³	

Package Description

9 Package Description

This figure shows the side profile of the PBGA package to indicate the direction of the top surface view.

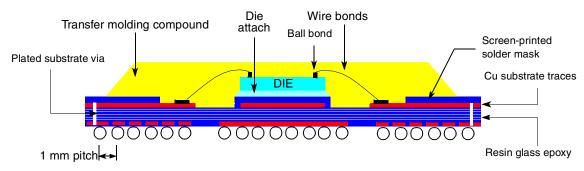


Figure 13. Side View of the PBGA Package Remove

9.1 Package Parameters

This table provides package parameters.

Table 22. Package Parameters

Code	Туре	Outline (mm)	Interconnects	Pitch (mm)	Nominal Unmounted Height (mm)
VR, ZQ	PBGA	27 x 27	516	1	2.25

NOTE: Temperature Reflow for the VR Package

In the VR package, sphere composition is lead-free (see Table 2). This requires higher temperature reflow than what is required for other PowerQUICC II packages. Consult "Freescale PowerQUICC II Pb-Free Packaging Information" (MPC8250PBFREEPKG) available on www.freescale.com.

Ordering Information

10 Ordering Information

This figure provides an example of the Freescale part numbering nomenclature for the SoC. In addition to the processor frequency, the part numbering scheme also consists of a part modifier that indicates any enhancement(s) in the part from the original production design. Each part number also contains a revision code that refers to the die mask revision number and is specified in the part numbering scheme for identification purposes only. For more information, contact your local Freescale sales office.

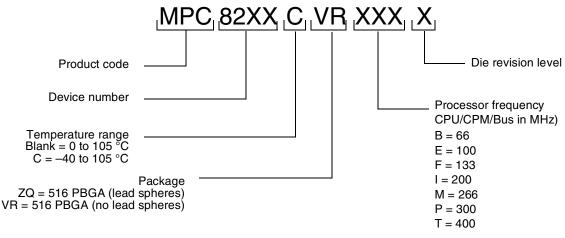


Figure 15. Freescale Part Number Key

11 Document Revision History

This table summarizes changes to this document.

Table 23. Document Revision History

Revision	Date	Substantive Changes
3	09/2011	In Figure 15, "Freescale Part Number Key," added speed decoding information below processor frequency information.
2	12/2008	 Modified Figure 5, "SCC/SMC/SPI/I2C External Clock Diagram," and added second section of figure notes. In Table 12, modified "Data bus in pipeline mode" row and showed 66 MHz as "N/A." In Section 10, "Ordering Information," added "F = 133" to CPU/CPM/Bus Frequency. Added footnote concerning CPM_CLK/PCI_CLK ratio to column "PCI Division Factor" in Table 17, "Clock Configurations for PCI Host Mode (PCI_MODCK=0)," and Table 18, "Clock Configurations for PCI Host Mode (PCI_MODCK=1),." Removed overbar from DLL_ENABLE in Table 21, "Pinout."
1.5	12/2006	• Section 6, "AC Electrical Characteristics," removed deratings statement and clarified AC timing descriptions.
1.4	05/2006	Added row for 133 MHz configurations to Table 8.
1.3	02/2006	Inserted Section 6.3, "JTAG Timings."

Revision	Date	Substantive Changes
1.2	09/2005	 Added 133-MHz to the list of frequencies in the opening sentence of Section 6, "AC Electrical Characteristics". Added 133 MHz columns to Table 9, Table 11, Table 12, and Table 13. Added footnote 2 to Table 13. Added the conditions note directly above Table 12.
1.1	01/2005	Modification for correct display of assertion level ("overbar") for some signals
1.0	12/2004	 Section 1.1: Added 8:1 ratio to Internal CPM/bus clock multiplier values Section 2: removed voltage tracking note Table 3: Note 2 updated regarding VDD/VCCSYN relationship to VDDH during power-on reset Table 4: Updated VDD and VCCSYN to 1.425 V - 1.575 V Table 8: Note 2 updated to reflect VIH=2.5 for TCK, TRST, PORESET; request for external pull-up removed. Section 4.6: Updated description of layout practices Table 8: Note 3 added regarding IIC compatibility Table 8: Note 3 added regarding IIC compatibility Table 8: Note 3 added regarding IIC compatibility Table 9: updated PCI impedance to 27Ω, updated 60x and MEMC values and added note to reflect configurable impedance Section 6: Added sentence providing derating factor Section 6.1: added Note: Rise/Fall Time on CPM Input Pins Table 9: updated values for following specs: sp36b, sp37a, sp38a, sp39a, sp38b, sp40, sp41, sp42, sp43, sp42a Table 11: updated values for following specs: sp16a, sp16b, sp18a, sp18b, sp20, sp21, sp22 Section 6.2: added Spread spectrum clocking note Section 7: unit of ns added to Tval notes Section 7: unit of ns added to Tval notes Section 7: Updated all notes to reflect updated CPU Fmin of 150 MHz commercial temp devices, 175 MHz extended temp; CPM Fmin of 120 MHz. Section 7: "Clock Configuration Modes": Updated all table footnotes reflect updated CPU Fmin of 150 MHz commercial temp devices, 175 MHz extended temp; CPM Fmin of 120 MHz. Section 7: Table 21: cornect superscript of footnote number after pin AD22 Table 21: remove DONE3 from PC12 Table 21: signals referring to TDMs C2 and D2 removed

Document Revision History

Revision	Date	Substantive Changes
Revision 0.2	Date 12/2003	 Table 1: New Table 2: New Table 4: Modification of VDD and VCCSYN to 1.45–1.60 V Table 8: Addition of note 2 regarding TRST and PORESET (see V_{IH} row of Table 8) Table 8 and Table 21: Addition of muxed signals CPCL_HS_ES to PCL_REQT (AF14) CPCL_HS_LED to PCL_GNT1 (AE13) CPCL_HS_ENUM to PCL_GNT2 (AF21) Table 8 and Table 21: Modification of PCI signal names for consistency with PCI signal names on other PowerQUICC II devices: PCL_CFG0 (PCI_HOST_EN) (AC21) PCL_CFG1 (PCI_ARB_EN) (AE22) PCL_CFG2 (DLL_ENABLE) (AE23) PCL_PAR (AF12) PCL_FRAME (AD15) PCI_TRD7 (AF16) PCI_TRD7 (AF16) PCI_TRD7 (AF15) DEVSEL (AE14) PCL_DSEL (AC17) PCI_RER (AD13) PCI_RER (AD13) PCI_REQO-2 (AAE20, AF14, AB14) PCI_CO-3 (AE12, AF13, AC15, AE18) PCL_AD0-31 Table 8 and Table 21: Corrected assertion level (added "-") PCI_HOST_EN (AC21) and PCI_ARB_EN (AE22) Table 7: Addition of H_{8UT} and note 4 Section 7, "Clock Configuration Modes": Modification to first paragraph. Note that PCI_MODCK is a bit in the Hard Reset Configuration Word. It is not an input signal as it is in the MPCR260 Family and MC260 Family. Addition of note 2 to TRST (E21) and PORESET (C24) Table 21: Addition of note 2 to TRST (E21) and PORESET (C24)
		 Table 21: Removal of Spare0 (AD24). This pin is now a "No connect." Note 5 unchanged. Table 21: Addition of PCI_MODE (AD22). This pin was previously listed as "Ground." Addition of note 1.
0.1	9/2003	 Addition of the MPC8271 and the MPC8247 (these devices do not have a security engine) Table 8: Addition of note 2 to V_{IH} Table 8: Changed I_{OL} for 60x signals to 6.0 mA Modification of note 1 for Table 17, Table 18, Table 19, and Table 20 Table 21: Addition of ball AD9 to GND. In rev 0 of this document, AD8 was listed as assigned to both CS5 and GND. AD8 is only assigned to CS5. Table 21: Addition of note 4 to Thermal0 (D19) and Thermal1(J3) Addition of ZQ package code to Figure 15
0	5/2003	NDA release

Table 23. Document Revision History (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, QorlQ, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ Qonverge, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2002–2011 Freescale Semiconductor, Inc.

Document Number: MPC8272EC Rev. 3 09/2011

