

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8271zqtiea

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Integrated security engine (SEC) (MPC8272 and MPC8248 only)
 - Supports DES, 3DES, MD-5, SHA-1, AES, PKEU, RNG and RC-4 encryption algorithms in hardware
- Communications processor module (CPM)
 - Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support for communications peripherals
 - Interfaces to G2_LE core through on-chip dual-port RAM and DMA controller. (Dual-port RAM size is 16 KB plus 4 KB dedicated instruction RAM.)
 - Microcode tracing capabilities
 - Eight CPM trap registers
- Universal serial bus (USB) controller
 - Supports USB 2.0 full/low rate compatible
 - USB host mode
 - Supports control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - NRZI encoding/decoding with bit stuffing
 - Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and data rate configuration). Note that low-speed operation requires an external hub.
 - Flexible data buffers with multiple buffers per frame
 - Supports local loopback mode for diagnostics (12 Mbps only)
 - Supports USB slave mode
 - Four independent endpoints support control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - CRC5 checking
 - NRZI encoding/decoding with bit stuffing
 - 12- or 1.5-Mbps data rate
 - Flexible data buffers with multiple buffers per frame
 - Automatic retransmission upon transmit error
 - Serial DMA channels for receive and transmit on all serial channels
 - Parallel I/O registers with open-drain and interrupt capability
 - Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers
 - Two fast communication controllers (FCCs) supporting the following protocols:
 - 10-/100-Mbit Ethernet/IEEE 802.3 CDMA/CS interface through media independent interface (MII)
 - Transparent
 - HDLC—up to T3 rates (clear channel)

- PCI bridge
 - PCI Specification revision 2.2-compliant and supports frequencies up to 66 MHz
 - On-chip arbitration
 - Support for PCI to 60x memory and 60x memory to PCI streaming
 - PCI host bridge or peripheral capabilities
 - Includes four DMA channels for the following transfers:
 - PCI-to-60x to 60x-to-PCI
 - 60x-to-PCI to PCI-to-60x
 - PCI-to-60x to PCI-to-60x
 - 60x-to-PCI to 60x-to-PCI
 - Includes the configuration registers required by the PCI standard (which are automatically loaded from the EPROM to configure the MPC8272) and message and doorbell registers
 - Supports the I₂O standard
 - Hot-Swap friendly (supports the Hot Swap Specification as defined by PICMG 2.1 R1.0 August 3, 1998)
 - Support for 66 MHz, 3.3 V specification
 - 60x-PCI bus core logic, which uses a buffer pool to allocate buffers for each port

Operating Conditions 2

This table shows the maximum electrical ratings.

Table 3. Absolute Maximum Ratings¹

Rating	Symbol	Value	Unit
Core supply voltage ²	VDD	-0.3 - 2.25	٧
PLL supply voltage ²	VCCSYN	-0.3 - 2.25	٧
I/O supply voltage ³	VDDH	-0.3 - 4.0	٧
Input voltage ⁴	VIN	GND(-0.3) - 3.6	٧
Junction temperature	Тј	120	°C
Storage temperature range	T _{STG}	(-55) - (+150)	°C

¹ Absolute maximum ratings are stress ratings only; functional operation (see Table 4) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage.

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3 Freescale Semiconductor

² Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V during normal operation. It is recommended that VDD/VCCSYN should be raised before or simultaneous with VDDH during power-on reset. VDD/VCCSYN may exceed VDDH by more than 0.4 V during power-on reset for no more than 100 ms.

³ Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.5 V during normal operation.

⁴ Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset.

Operating Conditions

This table lists recommended operational voltage conditions.

Table 4. Recommended Operating Conditions¹

Rating	Symbol	Value	Unit
Core supply voltage	VDD	1.425 – 575	V
PLL supply voltage	VCCSYN	1.425 – 575	V
I/O supply voltage	VDDH	3.135 – 3.465	V
Input voltage	VIN	GND (-0.3) - 3.465	V
Junction temperature (maximum)	Tj	105 ²	°C
Ambient temperature	T _A	0-70 ²	°C

Caution: These are the recommended and tested operating conditions. Proper operation outside of these conditions is not guaranteed.

This SoC contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or V_{CC}).

This figure shows the undershoot and overshoot voltage of the 60x bus memory interface of the SoC. Note that in PCI mode the I/O interface is different.

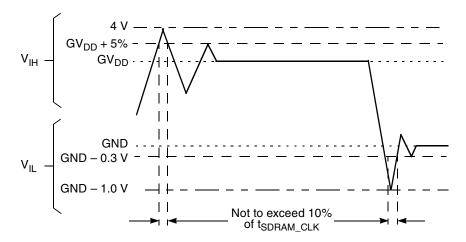


Figure 2. Overshoot/Undershoot Voltage

² Note that for extended temperature parts the range is $(-40)_{T_A}$ – 105_{T_j} .

3 DC Electrical Characteristics

This table shows DC electrical characteristics.

Table 5. DC Electrical Characteristics¹

Characteristic	Symbol	Min	Max	Unit
Input high voltage—all inputs except TCK, TRST and PORESET ²	V _{IH}	2.0	3.465	V
Input low voltage ³	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ⁴	I _{IN}	_	10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	I _{OZ}	_	10	μΑ
Signal low input current, V _{IL} = 0.8 V	ΙL	_	1	μΑ
Signal high input current, V _{IH} = 2.0 V	I _H	_	1	μΑ
Output high voltage, I _{OH} = -2 mA except UTOPIA mode, and open drain pins In UTOPIA mode ⁵ (UTOPIA pins only): I _{OH} = -8.0mA PA[8-31] PB[18-31] PC[0-1,4-29] PD[7-25, 29-31]	V _{ОН}	2.4	_	V
In UTOPIA mode ⁵ (UTOPIA pins only): I _{OL} = 8.0mA PA[8–31] PB[18–31] PC[0–1,4–29] PD[7–25, 29–31]	V _{OL}	_	0.5	V

Table 5. DC Electrical Characteristics¹ (continued)

<u>CS</u> [0–5]	V _{OL}			
<u>CS</u> [0–5]	VOI I		0.4	V
CS6/BCTL1/SMI				
CS7/TLBSYNC				
BADDR27/ IRQ1				
BADDR28/ IRQ2				
ALE/ IRQ4				
BCTL0				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4				
PSDAMUX/PGPL5				
PCI_CFG0 (PCI_HOST_EN)				
PCI_CFG1 (PCI_ARB_EN)				
PCI_CFG2 (DLL_ENABLE)				
MODCK1/RSRV/TC(0)/BNKSEL(0)				
MODCK2/CSE0/TC(1)/BNKSEL(1)				
MODCK2/C3E0/TC(1)/BNKSEL(1) MODCK3CSE1/TC(2)/BNKSEL(2)				
I _{OL} = 3.2mA PCI_PAR				
PCI FRAME				
PCI_TRDY				
PCI_IRDY				
PCI_RDY PCI_STOP				
PCI_DEVSEL				
PCI_IDSEL				
PCI_PERR				
PCI_SERR				
PCI_REQ0				
PCI_REQ1/ CPI_HS_ES				
PCI_GNT0				
PCI_GNT1/ CPI_HS_LES				
PCI_GNT2/ CPI_HS_ENUM				
PCI_RST				
PCI_INTA				
PCI_REQ2				
DLLOUT				
PCI_AD(0-31)				
PCI_C(0-3)/BE(0-3)				
PA[8-31]				
PB[18–31]				
PC[0-1,4-29]				
PD[7–25, 29–31]				
TDO				

The default configuration of the CPM pins (PA[8-31], PB[18-31], PC[0-1,4-29], PD[7-25, 29-31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

TCK, TRST and PORESET have min VIH = 2.5V.
 V_{IL} for IIC interface does not match IIC standard, but does meet IIC standard for V_{OL} and should not cause any compatibility issue.

⁴ The leakage current is measured for nominal VDDH, VCCSYN, and VDD.

AC Electrical Characteristics

6 AC Electrical Characteristics

The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for 66.67/83.33/100/133 MHz devices. Note that AC timings are based on a 50-pf load for MAX Delay and 10-pf load for MIN delay. Typical output buffer impedances are shown in this table.

Table 9. Output Buffer Impedances¹

Output Buffers	Typical Impedance (Ω)
60x bus	45 or 27 ²
Memory controller	45 or 27 ²
Parallel I/O	45
PCI	27

¹ These are typical values at 65° C. Impedance may vary by ±25% with process and temperature.

6.1 CPM AC Characteristics

This table lists CPM output characteristics.

Table 10. AC Characteristics for CPM Outputs¹

Spec Number			Value (ns)								
		Characteristic		laximu	m Dela	ıy	Minimum Delay				
Max	Min		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz	
sp36a	sp37a	FCC outputs—internal clock (NMSI)	6	5.5	5.5	5.5	0.5	0.5	0.5	0.5	
sp36b	sp37b	FCC outputs—external clock (NMSI)	8	8	8	8	2	2	2	2	
sp38a	sp39a	SCC/SMC/SPI/I2C outputs—internal clock (NMSI)	10	10	10	10	0	0	0	0	
sp38b	sp39b	SCC/SMC/SPI/I2C outputs—external clock (NMSI)	8	8	8	8	2	2	2	2	
sp40	sp41	TDM outputs/SI	11	11	11	11	2.5	2.5	2.5	2.5	
sp42	sp43	TIMER/IDMA outputs	11	11	11	11	0.5	0.5	0.5	0.5	
sp42a	sp43a	PIO outputs	11	11	11	11	0.5	0.5	0.5	0.5	

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

Impedance value is selected through SIUMCR[20,21]. See the SoC reference manual.

NOTE: Conditions

The following conditions must be met in order to operate the MPC8272 family devices with 133 MHz bus: single PowerQUICC II Bus mode must be used (no external master, BCR[EBM] = 0); data bus must be in Pipeline mode (BRx[DR] = 1); internal arbiter and memory controller must be used. For expected load of above 40 pF, it is recommended that data and address buses be configured to low (25 Ω) impedance (SIUMCR[HLBE0] = 1, SIUMCR[HLBE1] = 1).

Table 12. AC Characteristics for SIU Inputs¹

Spec Number				Value (ns)								
		Characteristic		Se	tup		Hold					
Setup	Hold			83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp11	sp10	AACK/TA/TS/DBG/BG/BR/ARTRY/TEA	6	5	3.5	N/A	0.5	0.5	0.5	N/A		
sp12	sp10	Data bus in normal mode	5	4	3.5	N/A	0.5	0.5	0.5	N/A		
sp13	sp10	Data bus in pipeline mode (without ECC and PARITY)		4	2.5	1.5	N/A	0.5	0.5	0.5		
sp15	sp10	All other pins	5	4	3.5	N/A	0.5	0.5	0.5	N/A		

Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

This table lists SIU output characteristics.

Table 13. AC Characteristics for SIU Outputs¹

Spec Number				Value (ns)								
	Max Min	Characteristic		Maximu	m Delay	/	Minimum Delay					
Max				83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp31	sp30	PSDVAL/TEA/TA	7	6	5.5	N/A	1	1	1	N/A		
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	6.5	5.5	4.5 ²	1	1	1	1 ²		
sp33	sp30	Data bus ³	6.5	6.5	5.5	4.5	0.8	0.8	0.8	1		
sp34	sp30	Memory controller signals/ALE	6	5.5	5.5	4.5	1	1	1	1		
sp35	sp30	All other signals	6	5.5	5.5	N/A	1	1	1	N/A		

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

² Value is for ADD only; other sp32/sp30 signals are not applicable.

³ To achieve 1 ns of hold time at 66.67/83.33/100 MHZ, a minimum loading of 20 pF is required.

AC Electrical Characteristics

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.

This figure shows the interaction of several bus signals.

Figure 9. Bus Signals

AC Electrical Characteristics

NOTE

The UPM machine outputs change on the internal tick determined by the memory controller programming; the AC specifications are relative to the internal tick. Note that SDRAM and GPCM machine outputs change on CLKin's rising edge.

6.3 JTAG Timings

This table lists the JTAG timings.

Table 15. JTAG Timings¹

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	_
JTAG external clock cycle time	t _{JTG}	30	_	ns	_
JTAG external clock pulse width measured at 1.4V	t _{JTKHKL}	15	_	ns	_
JTAG external clock rise and fall times	t _{JTGR} and t _{JTGF}	0	5	ns	6
TRST assert time	t _{TRST}	25	_	ns	3, 6
Input setup times Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4		ns ns	4, 7 4, 7
Input hold times Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns ns	4, 7 4, 7
Output valid times Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	_ _	10 10	ns ns	5, 7 5, 7
Output hold times Boundary-scan data TDO	t _{JTKLDX} t _{JTKLOX}	1 1		ns ns	5, 7 5, 7
JTAG external clock to output high impedance Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	1 1	10 10	ns ns	5, 6 5, 6

All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

³ TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

⁴ Non-JTAG signal input timing with respect to t_{TCLK}.

⁵ Non-JTAG signal output timing with respect to t_{TCLK}.

⁶ Guaranteed by design.

⁷ Guaranteed by design and device characterization.

Clock Configuration Modes

Table 17. Clock Configurations for PCI Host Mode $(PCI_MODCK=0)^{1,2}$

Mode ³		Clock Hz)	CPM		Clock Hz)	CPU		Clock Hz)	PCI		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Multiplication Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Division Factor ⁶	Low	High
			Defau	ılt Mod	es (MO	DCK_H=0000)					
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0000_010	60.0	80.0	2.5	150.0	200.0	3	180.0	240.0	3	50.0	66.7
0000_011	60.0	80.0	2.5	150.0	200.0	3.5	210.0	280.0	3	50.0	66.7
0000_100	60.0	80.0	2.5	150.0	200.0	4	240.0	320.0	3	50.0	66.7
0000_101	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0000_110	50.0	66.7	3.5	150.0	200.0	3.5	175.0	233.3	3	50.0	66.7
0000_111	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
	ı	ı	F	ull Cor	nfigurati	on Modes	ı	I			1
0001_000	50.0	66.7	3	150.0	200.0	5	250.0	333.3	3	50.0	66.7
0001_001	50.0	66.7	3	150.0	200.0	6	300.0	400.0	3	50.0	66.7
0001_010	50.0	66.7	3	150.0	200.0	7	350.0	466.6	3	50.0	66.7
0001_011	50.0	66.7	3	150.0	200.0	8	400.0	533.3	3	50.0	66.7
				I				I			
0010_000	50.0	66.7	4	200.0	266.6	5	250.0	333.3	4	50.0	66.7
0010_001	50.0	66.7	4	200.0	266.6	6	300.0	400.0	4	50.0	66.7
0010_010	50.0	66.7	4	200.0	266.6	7	350.0	466.6	4	50.0	66.7
0010_011	50.0	66.7	4	200.0	266.6	8	400.0	533.3	4	50.0	66.7
				I				I			
0010_100	75.0	100.0	4	300.0	400.0	5	375.0	500.0	6	50.0	66.7
0010_101	75.0	100.0	4	300.0	400.0	5.5	412.5	549.9	6	50.0	66.7
0010_110	75.0	100.0	4	300.0	400.0	6	450.0	599.9	6	50.0	66.7
		1			1	ı					
0011_000	50.0	66.7	5	250.0	333.3	5	250.0	333.3	5	50.0	66.7
0011_001	50.0	66.7	5	250.0	333.3	6	300.0	400.0	5	50.0	66.7
0011_010	50.0	66.7	5	250.0	333.3	7	350.0	466.6	5	50.0	66.7
0011_011	50.0	66.7	5	250.0	333.3	8	400.0	533.3	5	50.0	66.7
0100_000						Reserved					

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³	Bus (Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	Factor ⁶		Low	High
0100_001	25.0	50.0	6	150.0	300.0	6	150.0	300.0	6	25.0	50.0
0100_010	25.0	50.0	6	150.0	300.0	7	175.0	350.0	6	25.0	50.0
0100_011	25.0	50.0	6	150.0	300.0	8	200.0	400.0	6	25.0	50.0
0101_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0101_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0
0101_010	50.0	100.0	2	100.0	200.0	3.5	175.0	350.0	4	25.0	50.0
0101_011	50.0	100.0	2	100.0	200.0	4	200.0	400.0	4	25.0	50.0
0101_100	50.0	100.0	2	100.0	200.0	4.5	225.0	450.0	4	25.0	50.0
	·	·		·		1	·				·
0101_101	42.9	83.3	3	128.6	250.0	3.5	150.0	291.7	5	25.7	50.0
0101_110	41.7	83.3	3	125.0	250.0	4	166.7	333.3	5	25.0	50.0
0101_111	41.7	83.3	3	125.0	250.0	4.5	187.5	375.0	5	25.0	50.0
					•			•			
0110_000	60.0	120.0	2.5	150.0	300.0	2.5	150.0	300.0	6	25.0	50.0
0110_001	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0110_010	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0110_011	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0110_100	60.0	120.0	2.5	150.0	300.0	4.5	270.0	540.0	6	25.0	50.0
0110_101	60.0	120.0	2.5	150.0	300.0	5	300.0	600.0	6	25.0	50.0
0110_110	60.0	120.0	2.5	150.0	300.0	6	360.0	720.0	6	25.0	50.0
	·	·		·		1	·				·
0111_000						Reserved					
0111_001	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0111_010	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
0111_011	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
0111_100	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0
					1	1		1		1	
1000_000						Reserved					
1000_001	66.7	133.3	3	200.0	400.0	3	200.0	400.0	8	25.0	50.0

Clock Configuration Modes

⁶ CPM_CLK/PCI_CLK ratio. When PCI_MODCK = 1, the ratio of CPM_CLK/PCI_CLK should be calculated from PCIDF as follows:

PCIDF = 3 > CPM_CLK/PCI_CLK = 4

PCIDF = 5 > CPM_CLK/PCI_CLK = 6

PCIDF = 7 > CPM_CLK/PCI_CLK = 8

PCIDF = 9 > CPM_CLK/PCI_CLK = 5

PCIDF = B > CPM_CLK/PCI_CLK = 6

7.2 PCI Agent Mode

These tables show configurations for PCI agent mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI agent mode the input clock is PCI clock.

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2}

Mode ³	PCI (Clock Hz)	CPM Multiplication	CPM Clock (MHz) CPU Multiplication		CPU Clock (MHz)		Bus Division	Bus Clock (MHz)		
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
			Defau	ılt Mod	es (MO	DCK_H=0000)					
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0000_010	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0000_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0000_100	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0000_101	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0000_110	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0000_111	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.7
			F	ull Con	figurat	ion Modes					
0001_001	60.0	66.7	2	120.0	133.3	5	150.0	166.7	4	30.0	33.3
0001_010	50.0	66.7	2	100.0	133.3	6	150.0	200.0	4	25.0	33.3
0001_011	50.0	66.7	2	100.0	133.3	7	175.0	233.3	4	25.0	33.3
0001_100	50.0	66.7	2	100.0	133.3	8	200.0	266.6	4	25.0	33.3
0010_001	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0010_010	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0010_011	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
0010_100	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Clock Configuration Modes

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	PCI Clock (MHz)		CPM		Clock Hz)	CPU		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Multiplication – Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Factor	Low	High
1000_000						Posorvod					
1000_000	50.0	66.7	3	150.0	200.0	Reserved 2.5	150.0	166.7	2.5	60.0	80.0
1000_001	50.0	66.7	3	150.0	200.0	3		240.0	2.5	60.0	80.0
1000_010	50.0	66.7	3	150.0	200.0	3.5		280.0	2.5	60.0	80.0
1000_011	50.0	66.7	3	150.0	200.0	4		320.0	2.5	60.0	80.0
1000_100	50.0	66.7	3	150.0	200.0	4.5		360.0	2.5	60.0	80.0
1000_101	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0
1001_000						Reserved					
1001_001						Reserved					
1001_010		Reserved									
1001_011	50.0	66.7	4	200.0	266.6	4	200.0	266.6	4	50.0	66.7
1001_100	50.0	66.7	4	200.0	266.6	4.5	225.0	300.0	4	50.0	66.7
											•
1010_000						Reserved					
1010_001	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
1010_010	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
1010_011	50.0	66.7	4	200.0	266.6	4	266.7	355.5	3	66.7	88.9
1010_100	50.0	66.7	4	200.0	266.6	4.5	300.0	400.0	3	66.7	88.9
1011_000						Reserved					
1011_001	50.0	66.7	4	200.0	266.6	2.5	200.0	266.6	2.5	80.0	106.
1011_010	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.
1011_011	50.0	66.7	4	200.0	266.6	3.5	280.0	373.3	2.5	80.0	106.
1011_100	50.0	66.7	4	200.0	266.6	4	320.0	426.6	2.5	80.0	106.
			T			T		T		T	
1011_101	50.0	66.7	4	200.0	266.6	2.5	250.0	333.3	2	100.0	133.
1011_110	50.0	66.7	4	200.0	266.6	3	300.0	400.0	2	100.0	133.
1011_111	50.0	66.7	4	200.0	266.6	3.5	250.0	466.6	2	100.0	133

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	PCI Clock (MHz)		CPM Multiplication	_	Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
1100_101	50.0	66.7	6	300.0	400.0	4	400.0	533.3	3	100.0	133.3
1100_110	50.0	66.7	6	300.0	400.0	4.5	450.0	599.9	3	100.0	133.3
1100_111	50.0	66.7	6	300.0	400.0	5	500.0	666.6	3	100.0	133.3
1101_000	50.0	66.7	6	300.0	400.0	5.5	550.0	733.3	3	100.0	133.3
1101_001	50.0	66.7	6	300.0	400.0	3.5	420.0	559.9	2.5	120.0	160.0
1101_010	50.0	66.7	6	300.0	400.0	4	480.0	639.9	2.5	120.0	160.0
1101_011	50.0	66.7	6	300.0	400.0	4.5	540.0	719.9	2.5	120.0	160.0
1101_100	50.0	66.7	6	300.0	400.0	5	600.0	799.9	2.5	120.0	160.0
1110_000	50.0	66.7	5	250.0	333.3	2.5	312.5	416.6	2	125.0	166.7
1110_001	50.0	66.7	5	250.0	333.3	3	375.0	500.0	2	125.0	166.7
1110_010	50.0	66.7	5	250.0	333.3	3.5	437.5	583.3	2	125.0	166.7
1110_011	50.0	66.7	5	250.0	333.3	4	500.0	666.6	2	125.0	166.7
1110_100	50.0	66.7	5	250.0	333.3	4	333.3	444.4	3	83.3	111.1
1110_101	50.0	66.7	5	250.0	333.3	4.5	375.0	500.0	3	83.3	111.1
1110_110	50.0	66.7	5	250.0	333.3	5	416.7	555.5	3	83.3	111.1
1110_111	50.0	66.7	5	250.0	333.3	5.5	458.3	611.1	3	83.3	111.1
1100_000						Reserved					
1100_001						Reserved					
1100_010		Reserved									

The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

² PCI_MODCK determines the PCI clock frequency range. See Table 20 for lower range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

Clock Configuration Modes

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³	PCI Clock (MHz)		CPM C (MHz			CPU	CPU Clock (MHz)		Bus	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Multiplication - Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Division Factor	Low	High
1001_010				•	•	Reserved	•				
1001_011	25.0	50.0	8	200.0	400.0	4	200.0	400.0	4	50.0	100.0
1001_100	25.0	50.0	8	200.0	400.0	4.5	225.0	450.0	4	50.0	100.0
1010_000						Reserved					
1010_001	25.0	50.0	8	200.0	400.0	3	200.0	400.0	3	66.7	133.3
1010_010	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3
1010_011	25.0	50.0	8	200.0	400.0	4	266.7	533.3	3	66.7	133.3
1010_100	25.0	50.0	8	200.0	400.0	4.5	300.0	600.0	3	66.7	133.3
1011_000						Reserved					
1011_001	25.0	50.0	8	200.0	400.0	2.5	200.0	400.0	2.5	80.0	160.0
1011_010	25.0	50.0	8	200.0	400.0	3		480.0	2.5	80.0	160.0
1011_011	25.0	50.0	8	200.0	400.0	3.5		560.0	2.5	80.0	160.0
1011_100	25.0	50.0	8	200.0	400.0	4		640.0	2.5	80.0	160.0
		•									
1011_101	25.0	50.0	8	200.0	400.0	2.5	250.0	500.0	2	100.0	200.0
1011_110	25.0	50.0	8	200.0	400.0	3	300.0	600.0	2	100.0	200.0
1011_111	25.0	50.0	8	200.0	400.0	3.5	350.0	700.0	2	100.0	200.0
	ı	ı		ı	1		1	1		ı	
1100_101	25.0	50.0	6		300.0	4		400.0	3	50.0	100.0
1100_110	25.0	50.0	6		300.0	4.5		450.0	3	50.0	100.0
1100_111	25.0	50.0	6	150.0	300.0	5		500.0	3	50.0	100.0
1101_000	25.0	50.0	6	150.0	300.0	5.5	275.0	550.0	3	50.0	100.0
1101_001	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
1101_010	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0
1101_011	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0
1101_100	25.0	50.0	6	150.0	300.0	5	300.0	600.0	2.5	60.0	120.0

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³		Clock Hz)	CPM Multiplication	()		CPU Multiplication	CPU Clock (MHz)		Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
1110_000	25.0	50.0	5	125.0	250.0	2.5	156.3	312.5	2	62.5	125.0
1110_001	25.0	50.0	5	125.0	250.0	3	187.5	375.0	2	62.5	125.0
1110_010	28.6	50.0	5	142.9	250.0	3.5	250.0	437.5	2	71.4	125.0
1110_011	25.0	50.0	5	125.0	250.0	4	250.0	500.0	2	62.5	125.0
1110_100	25.0	50.0	5	125.0	250.0	4	166.7	333.3	3	41.7	83.3
1110_101	25.0	50.0	5	125.0	250.0	4.5	187.5	375.0	3	41.7	83.3
1110_110	25.0	50.0	5	125.0	250.0	5	208.3	416.7	3	41.7	83.3
1110_111	25.0	50.0	5	125.0	250.0	5.5	229.2	458.3	3	41.7	83.3
1100_000	Reserved										
1100_001		Reserved									
1100_010						Reserved					

The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

8 Pinout

This figure and table show the pin assignments and pinout for the 516 PBGA package.

² PCI_MODCK determines the PCI clock frequency range. See Table 19 for higher range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

Pinout

Table 21. Pinout (continued)

Pin N	Pin Name					
MPC8272/MPC8248 and MPC8271/MPC8247	Ball					
A3	30	B15				
A3	31	A15				
ТТ	0	B3				
ТТ	1	E8				
тт	2	D7				
тт	3	C4				
тт	74	E7				
TB:	ST	E3				
TSI	Z0	E4				
TSI	Z1	E5				
TSI	Z2	C3				
TSI	Z3	D5				
AAG	AACK					
ĀRT	C2					
DBG/	DBG/IRQ7					
DBB/I	RQ3	D18				
D	0	AC1				
D	1	AA1				
D	2	V3				
D	3	R5				
D	4	P4				
D	5	M4				
D	6	J4				
D	7	G1				
D	8	W6				
D	D9					
D1	D10					
D1	1	N6				
D1	2	P3				
D1	3	M2				
D1		J5				

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 21. Pinout (continued)

Pin 1	Pin Name						
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball					
C	CS2						
C	53	AC8					
C	\$4	AF6					
C	\$ 55	AD8					
CS6/BC	TL1/SMI	AC9					
CS7/TL	BISYNC	AB9					
BADDR	27/ IRQ1	AB8					
BADDR	28/IRQ2	AC7					
ALE/	ĪRQ4	AF4					
BC	TLO	AF3					
PWE0/PSDI	DQM0/PBS0	AD6					
PWE1/PSDI	DQM1/PBS1	AE5					
PWE2/PSDI	PWE2/PSDDQM2/PBS2						
PWE3/PSDI	DQM3/PBS3	AF2					
PWE4/PSDI	DQM4/PBS4	AC6					
PWE5/PSDI	DQM5/PBS5	AC5					
PWE6/PSDI	DQM6/PBS6	AD4					
PWE7/PSDI	DQM7/PBS7	AB5					
PSDA10)/PGPL0	AE2					
PSDWE	PGPL1	AD3					
POE/PSDF	RAS/PGPL2	AB4					
PSDCAS	5/PGPL3	AC3					
PGTA/PUPM	WAIT/PGPL4	AD2					
PSDAMU	IX/PGPL5	AC2					
PCI_N	PCI_MODE ¹						
PCI_CFG0 (Pi	PCI_CFG0 (PCI_HOST_EN)						
PCI_CFG1 (F	PCI_CFG1 (PCI_ARB_EN)						
PCI_CFG2 (E	DLL_ENABLE)	AE23					
PCI_	PAR	AF12					
PCI_F	RAME	AD15					
PCI_	TRDY	AF16					

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 23. Document Revision History (continued)

Revision	Date	Substantive Changes
1.2	09/2005	 Added 133-MHz to the list of frequencies in the opening sentence of Section 6, "AC Electrical Characteristics". Added 133 MHz columns to Table 9, Table 11, Table 12, and Table 13. Added footnote 2 to Table 13. Added the conditions note directly above Table 12.
1.1	01/2005	Modification for correct display of assertion level ("overbar") for some signals
1.0	12/2004	 Section 1.1: Added 8:1 ratio to Internal CPM/bus clock multiplier values Section 2: removed voltage tracking note Table 3: Note 2 updated regarding VDD/VCCSYN relationship to VDDH during power-on reset Table 4: Updated VDD and VCCSYN to 1.425 V - 1.575 V Table 8: Note 2 updated to reflect VIH=2.5 for TCK, TRST, PORESET; request for external pull-up removed. Section 4.6: Updated description of layout practices Table 8: Note 3 added regarding IIC compatibility Table 8: Updated nominal and maximum power dissipation values Table 9: updated PCI impedance to 27Ω, updated 60x and MEMC values and added note to reflect configurable impedance Section 6: Added sentence providing derating factor Section 6.1: added Note: Rise/Fall Time on CPM Input Pins Table 9: updated values for following specs: sp36b, sp37a, sp38a, sp39a, sp38b, sp40, sp41, sp42, sp43, sp42a Table 11: updated values for following specs: sp16a, sp16b, sp18a, sp18b, sp20, sp21, sp22 Section 6.2: added spread spectrum clocking note Section 6.2: added CLKIN jitter note Table 12: combined specs sp11 and sp11a Table 13: sp30 Data Bus minimum delay values changed to 0.8 Section 7: unit of ns added to Tval notes Section 7: Updated all notes to reflect updated CPU Fmin of 150 MHz commercial temp devices, 175 MHz extended temp; CPM Fmin of 120 MHz. Section 7, "Clock Configuration Modes": Updated all table footnotes reflect updated CPU Fmin of 150 MHz commercial temp devices, 175 MHz extended temp; CPM Fmin of 120 MHz. Table 21: remove DONE3 from PC12 Table 21: signals referring to TDMs C2 and D2 removed

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
@ hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, QorlQ, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ Qonverge, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2002–2011 Freescale Semiconductor, Inc.

Document Number: MPC8272EC

Rev. 3 09/2011

