

Welcome to E-XFL.COM

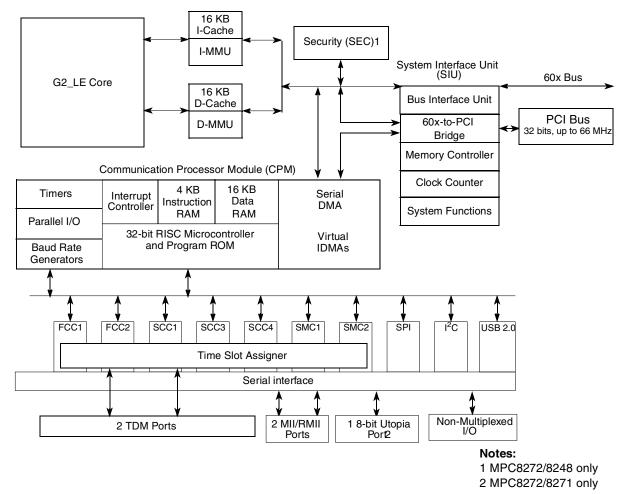
Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details


Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8271zqtmfa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This figure shows the block diagram of the SoC.

1.1 Features

The major features of the SoC are as follows:

- Dual-issue integer (G2_LE) core
 - A core version of the MPC603e microprocessor
 - System core microprocessor supporting frequencies of 266–400 MHz
 - Separate 16 KB data and instruction caches:
 - Four-way set associative
 - Physically addressed
 - LRU replacement algorithm
 - Power Architecture®-compliant memory management unit (MMU)
 - Common on-chip processor (COP) test interface
 - Supports bus snooping for cache coherency

Overview

- Floating-point unit (FPU) supports floating-point arithmetic
- Support for cache locking
- Low-power consumption
- Separate power supply for internal logic (1.5 V) and for I/O (3.3 V)
- Separate PLLs for G2_LE core and for the communications processor module (CPM)
 - G2_LE core and CPM can run at different frequencies for power/performance optimization
 - Internal core/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5.5:1, 6:1, 7:1, 8:1
 - Internal CPM/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1, 8:1 ratios
- 64-bit data and 32-bit address 60x bus
 - Bus supports multiple master designs—up to two external masters
 - Supports single transfers and burst transfers
 - 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
- 60x-to-PCI bridge
 - Programmable host bridge and agent
 - 32-bit data bus, 66 MHz, 3.3 V
 - Synchronous and asynchronous 60x and PCI clock modes
 - All internal address space available to external PCI host
 - DMA for memory block transfers
 - PCI-to-60x address remapping
- System interface unit (SIU)
 - Clock synthesizer
 - Reset controller
 - Real-time clock (RTC) register
 - Periodic interrupt timer
 - Hardware bus monitor and software watchdog timer
 - IEEE 1149.1 JTAG test access port
- Eight bank memory controller
 - Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash, and other user-definable peripherals
 - Byte write enables
 - 32-bit address decodes with programmable bank size
 - Three user-programmable machines, general-purpose chip-select machine, and page mode pipeline SDRAM machine
 - Byte selects for 64-bit bus width (60x)
 - Dedicated interface logic for SDRAM
- Disable CPU mode

- PCI bridge
 - PCI Specification revision 2.2-compliant and supports frequencies up to 66 MHz
 - On-chip arbitration
 - Support for PCI to 60x memory and 60x memory to PCI streaming
 - PCI host bridge or peripheral capabilities
 - Includes four DMA channels for the following transfers:
 - PCI-to-60x to 60x-to-PCI
 - 60x-to-PCI to PCI-to-60x
 - PCI-to-60x to PCI-to-60x
 - 60x-to-PCI to 60x-to-PCI
 - Includes the configuration registers required by the PCI standard (which are automatically loaded from the EPROM to configure the MPC8272) and message and doorbell registers
 - Supports the I_2O standard
 - Hot-Swap friendly (supports the Hot Swap Specification as defined by PICMG 2.1 R1.0 August 3, 1998)
 - Support for 66 MHz, 3.3 V specification
 - 60x-PCI bus core logic, which uses a buffer pool to allocate buffers for each port

2 **Operating Conditions**

This table shows the maximum electrical ratings.

Table 3. Absolute Maximum Ratings¹

Rating	Symbol	Value	Unit
Core supply voltage ²	VDD	-0.3 - 2.25	V
PLL supply voltage ²	VCCSYN	-0.3 - 2.25	V
I/O supply voltage ³	VDDH	-0.3 - 4.0	V
Input voltage ⁴	VIN	GND(-0.3) - 3.6	V
Junction temperature	Тј	120	°C
Storage temperature range	T _{STG}	(–55) – (+150)	°C

¹ Absolute maximum ratings are stress ratings only; functional operation (see Table 4) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage.

- ² Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V during normal operation. It is recommended that VDD/VCCSYN should be raised before or simultaneous with VDDH during power-on reset. VDD/VCCSYN may exceed VDDH by more than 0.4 V during power-on reset for no more than 100 ms.
- ³ Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.5 V during normal operation.
- ⁴ Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset.

Operating Conditions

I/O supply voltage

Junction temperature (maximum)

Input voltage

1

This table lists recommended operational voltage conditions.

•	•	
Rating	Symbol	Value
Core supply voltage	VDD	1.425 – 575
PLL supply voltage	VCCSYN	1.425 – 575

VDDH

VIN

Τi

Table 4. Recommended Operating Conditions¹

 Ambient temperature
 T_A
 0-70²
 °C

 Caution: These are the recommended and tested operating conditions. Proper operation outside of these conditions is not guaranteed.
 State
 State

² Note that for extended temperature parts the range is $(-40)_{T_A} - 105_{T_i}$.

This SoC contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or V_{CC}).

This figure shows the undershoot and overshoot voltage of the 60x bus memory interface of the SoC. Note that in PCI mode the I/O interface is different.

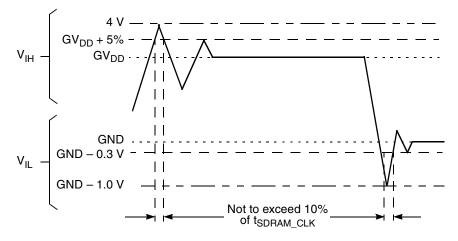


Figure 2. Overshoot/Undershoot Voltage

Unit

V

V

V

V

°C

3.135 - 3.465

GND (-0.3) - 3.465

105²

DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
I _{OL} = 5.3mA	V _{OL}		0.4	V
<u>ČŠ</u> [0–5]	01			
CS6/BCTL1/SMI				
CS7/TLBSYNC				
BADDR27/ IRQ1				
BADDR28/ IRQ2				
ALE/ IRQ4				
BCTL0				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4				
PSDAMUX/PGPL5				
PCI_CFG0 (PCI_HOST_EN)				
PCI_CFG1 (PCI_ARB_EN)				
PCI_CFG2 (DLL_ENABLE)				
MODCK1/RSRV/TC(0)/BNKSEL(0)				
MODCK2/CSE0/TC(1)/BNKSEL(1)				
MODCK3CSE1/TC(2)/BNKSEL(2)				
$I_{OL} = 3.2 \text{mA}$				
PCI_PAR				
PCI_FRAME				
PCI_TRDY				
PCI_IRDY				
PCI_STOP				
PCI_DEVSEL				
PCI_IDSEL				
PCI_PERR				
PCI_SERR				
PCI_REQ0				
PCI_REQ1/ CPI_HS_ES				
PCI_GNT0				
PCI_GNT1/ CPI_HS_LES				
PCI_GNT2/ CPI_HS_ENUM				
PCI_RST				
PCI_INTA				
PCI_REQ2				
DLLOUT				
PCI_AD(0-31)				
PCI_AD(0-31) PCI_C(0-3)/BE(0-3)				
PA[8–31]				
PB[18–31]				
PC[0–1,4–29]				
PD[7–25, 29–31]				
TDO				

Table 5. DC Electrical Characteristics¹ (continued)

The default configuration of the CPM pins (PA[8-31], PB[18-31], PC[0-1,4-29], PD[7-25, 29-31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

 ² TCK, TRST and PORESET have min VIH = 2.5V.
 ³ V_{IL} for IIC interface does not match IIC standard, but does meet IIC standard for V_{OL} and should not cause any compatibility issue.

⁴ The leakage current is measured for nominal VDDH,VCCSYN, and VDD.

DC Electrical Characteristics

⁵ MPC8272 and MPC8271 only.

Table 6.

Characteristic	Symbol	Min	Мах	Unit
Input high voltage—all inputs except TCK, TRST and PORESET ¹	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ²	I _{IN}		10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	I _{OZ}		10	μA
Signal low input current, $V_{IL} = 0.8 V^3$	١L	_	1	μA
Signal high input current, V _{IH} = 2.0 V	I _H	_	1	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$ except UTOPIA mode, and open drain pins In UTOPIA mode ⁴ (UTOPIA pins only): $I_{OH} = -8.0 \text{mA}$	V _{OH}	2.4	_	V
In UTOPIA mode ⁴ (UTOPIA pins only): I _{OL} = 8.0mA	V _{OL}	_	0.5	V
IoL = 6.0mA BR BG ABB/IRQ2 TS A[0-31] TTI[0-4] TBST TSIZE[0-3] AACK ARTRY DBG DBB/IRQ3 D[0-63] //EXT_BR3 //EXT_BR3 //EXT_BG3 /TEN/EXT_DBG3/CINT PSDVAL TA TEA GBL/IRQ1 CI/BADDR29/IRQ2 WT/BADDR30/IRQ3 BADDR31/IRQ5/CINT CPU_BR IRQ0/NMI_OUT /PCL_RST HRESET SRESET REQONF	V _{OL}		0.4	V

Thermal Characteristics

⁴ MPC8280, MPC8275VR, MPC8275ZQ only.

4 Thermal Characteristics

This table describes thermal characteristics. See Table 2 for information on a given SoC's package. Discussions of each characteristic are provided in Section 4.1, "Estimation with Junction-to-Ambient Thermal Resistance," through Section 4.7, "References." For the these discussions, $P_D = (V_{DD} \times I_{DD}) + PI/O$, where PI/O is the power dissipation of the I/O drivers.

Characteristic	Symbol	Value	Unit	Air Flow
Junction-to-ambient—		27	0000	Natural convection
single-layer board ¹	$R_{ heta JA}$	21	°C/W	1 m/s
Junction-to-ambient-	5	19	- -	Natural convection
four-layer board	$R_{ hetaJA}$	16	°C/W	1 m/s
Junction-to-board ²	R _{θJB}	11	°C/W	—
Junction-to-case ³	$R_{ extsf{ heta}JC}$	8	°C/W	—
Junction-to-package top ⁴	$R_{ extsf{ heta}JT}$	2	°C/W	_

Table 7. Thermal Characteristics

¹ Assumes no thermal vias

² Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

³ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

⁴ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

4.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, in C can be obtained from the following equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_A = ambient temperature (°C)

 $R_{\theta JA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity $T_I - T_A$) are possible.

Thermal Characteristics

4.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application, or a more accurate and complex model of the package can be used in the thermal simulation.

4.5 **Experimental Determination**

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the case to avoid measurement errors caused by cooling effects of the thermocouple wire.

4.6 Layout Practices

Each VDD and VDDH pin should be provided with a low-impedance path to the board's power supplies. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VDD and VDDH power supplies should be bypassed to ground using bypass capacitors located as close as possible to the four sides of the package. For filtering high frequency noise, a capacitor of 0.1uF on each VDD and VDDH pin is recommended. Further, for medium frequency noise, a total of 2 capacitors of 47uF for VDD and 2 capacitors of 47uF for VDDH are also recommended. The capacitor leads and associated printed circuit traces connecting to chip VDD, VDDH and ground should be kept to less than half an inch per capacitor lead. Boards should employ separate inner layers for power and GND planes.

All output pins on the SoC have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

AC Electrical Characteristics

6 AC Electrical Characteristics

The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for 66.67/83.33/100/133 MHz devices. Note that AC timings are based on a 50-pf load for MAX Delay and 10-pf load for MIN delay. Typical output buffer impedances are shown in this table.

Output Buffers	Typical Impedance (Ω)
60x bus	45 or 27 ²
Memory controller	45 or 27 ²
Parallel I/O	45
PCI	27

¹ These are typical values at 65° C. Impedance may vary by ±25% with process and temperature.

² Impedance value is selected through SIUMCR[20,21]. See the SoC reference manual.

6.1 CPM AC Characteristics

This table lists CPM output characteristics.

Spec Number				Value (ns)							
Max Min	Characteristic	N	laximu	m Dela	iy	Minimum Delay					
	n		83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp36a	sp37a	FCC outputs—internal clock (NMSI)	6	5.5	5.5	5.5	0.5	0.5	0.5	0.5	
sp36b	sp37b	FCC outputs—external clock (NMSI)	8	8	8	8	2	2	2	2	
sp38a	sp39a	SCC/SMC/SPI/I2C outputs—internal clock (NMSI)	10	10	10	10	0	0	0	0	
sp38b	sp39b	SCC/SMC/SPI/I2C outputs—external clock (NMSI)	8	8	8	8	2	2	2	2	
sp40	sp41	TDM outputs/SI	11	11	11	11	2.5	2.5	2.5	2.5	
sp42	sp43	TIMER/IDMA outputs	11	11	11	11	0.5	0.5	0.5	0.5	
sp42a	sp43a	PIO outputs	11	11	11	11	0.5	0.5	0.5	0.5	

Table 10. AC Characteristics for CPM Outputs¹

¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.

This figure shows the interaction of several bus signals.

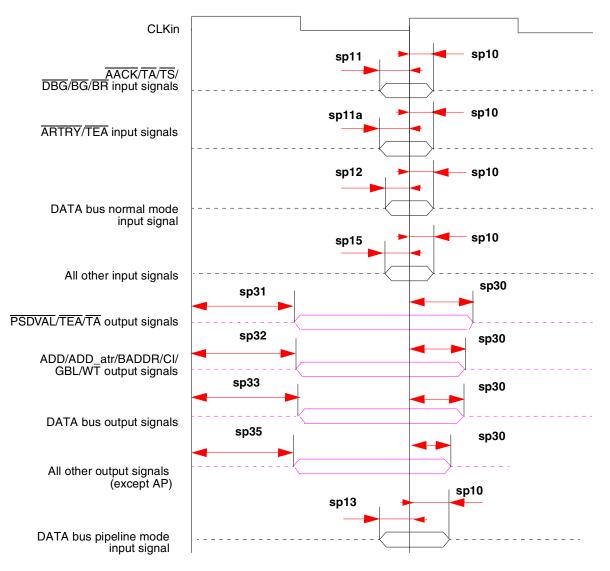


Figure 9. Bus Signals

AC Electrical Characteristics

This figure shows signal behavior in MEMC mode.

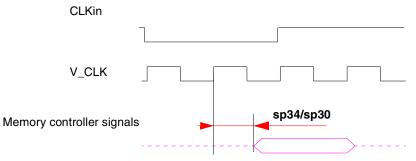


Figure 10. MEMC Mode Diagram

NOTE

Generally, all SoC bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 14.

Table 14.	. Tick Spacing for Memory Controller Signals
-----------	--

PLL Clock Ratio	Tick Spacing (T1 Occurs at the Rising Edge of CLKin)					
	T2	тз	Т4			
1:2, 1:3, 1:4, 1:5, 1:6	1/4 CLKin	1/2 CLKin	3/4 CLKin			
1:2.5	3/10 CLKin	1/2 CLKin	8/10 CLKin			
1:3.5	4/14 CLKin	1/2 CLKin	11/14 CLKin			

This table is a representation of the information in Table 14.

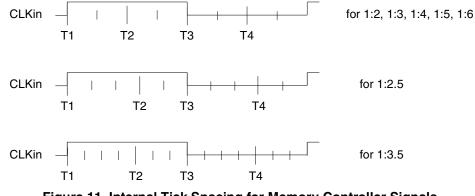


Figure 11. Internal Tick Spacing for Memory Controller Signals

			-					-	-	-	
Mode ³	Bus ((Mi	Clock Hz)	CPM Multiplication		I Clock /IHz)	CPU Multiplication	CPU Clock (MHz)		PCI Division		Clock Hz)
MODCK_H- Modck[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵			Factor ⁶	Low	High
1011_100	80.0	106.7	2.5	200.0	266.6	4	320.0	426.6	4	50.0	66.7
1011_101	80.0	106.7	2.5	200.0	266.6	4.5	360.0	480.0	4	50.0	66.7
1101_000	100.0	133.3	2.5	250.0	333.3	3	300.0	400.0	5	50.0	66.7
1101_001	100.0	133.3	2.5	250.0	333.3	3.5	350.0	466.6	5	50.0	66.7
1101_010	100.0	133.3	2.5	250.0	333.3	4	400.0	533.3	5	50.0	66.7
1101_011	100.0	133.3	2.5	250.0	333.3	4.5	450.0	599.9	5	50.0	66.7
1101_100	100.0	133.3	2.5	250.0	333.3	5	500.0	666.6	5	50.0	66.7
1101_101	125.0	166.7	2	250.0	333.3	3	375.0	500.0	5	50.0	66.7
1101_110	125.0	166.7	2	250.0	333.3	4	500.0	666.6	5	50.0	66.7
1110_000	100.0	133.3	3	300.0	400.0	3.5	350.0	466.6	6	50.0	66.7
1110_001	100.0	133.3	3	300.0	400.0	4	400.0	533.3	6	50.0	66.7
1110_010	100.0	133.3	3	300.0	400.0	4.5	450.0	599.9	6	50.0	66.7
1110_011	100.0	133.3	3	300.0	400.0	5	500.0	666.6	6	50.0	66.7
1110_100	100.0	133.3	3	300.0	400.0	5.5	550.0	733.3	6	50.0	66.7
1100_000						Reserved					
1100_001						Reserved					
1100_010						Reserved					

Table 17. Clock Configurations for PCI Host Mode (PC	I_MODCK=0) ^{1,2} (continued)
--	---------------------------------------

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

² PCI_MODCK determines the PCI clock frequency range. SeeTable 18 for lower range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

⁶ CPM_CLK/PCI_CLK ratio. When PCI_MODCK = 0, the ratio of CPM_CLK/PCI_CLK should be calculated from SCCR[PCIDF] as follows:

 $CPM_CLK/PCI_CLK = (PCIDF + 1) / 2.$

Mode ³		Clock Hz)	CPM Multiplication		CPM Clock (MHz) CPU		CPU Clock (MHz)		PCI Division	PCI Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Factor ⁶	Low	High
0100_001	25.0	50.0	6	150.0	300.0	6	150.0	300.0	6	25.0	50.0
0100_010	25.0	50.0	6	150.0	300.0	7	175.0	350.0	6	25.0	50.0
0100_011	25.0	50.0	6	150.0	300.0	8	200.0	400.0	6	25.0	50.0
0101_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0101_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0
0101_010	50.0	100.0	2	100.0	200.0	3.5	175.0	350.0	4	25.0	50.0
0101_011	50.0	100.0	2	100.0	200.0	4	200.0	400.0	4	25.0	50.0
0101_100	50.0	100.0	2	100.0	200.0	4.5	225.0	450.0	4	25.0	50.0
0101_101	42.9	83.3	3	128.6	250.0	3.5	150.0	291.7	5	25.7	50.0
0101_110	41.7	83.3	3	125.0	250.0	4	166.7	333.3	5	25.0	50.0
0101_111	41.7	83.3	3	125.0	250.0	4.5	187.5	375.0	5	25.0	50.0
	1	1	Γ	1	1	Γ	1	1		1	
0110_000	60.0	120.0	2.5	150.0	300.0	2.5	150.0	300.0	6	25.0	50.0
0110_001	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0110_010	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0110_011	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0110_100	60.0	120.0	2.5	150.0	300.0	4.5	270.0	540.0	6	25.0	50.0
0110_101	60.0	120.0	2.5	150.0	300.0	5	300.0	600.0	6	25.0	50.0
0110_110	60.0	120.0	2.5	150.0	300.0	6	360.0	720.0	6	25.0	50.0
0111_000						Reserved					
0111_001	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0111_010	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
0111_011	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
0111_100	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0
	I										
1000_000			ſ			Reserved		I			
1000_001	66.7	133.3	3	200.0	400.0	3	200.0	400.0	8	25.0	50.0

Clock Configuration Modes

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
0011_000		•		•	•	Reserved		•			
0011_001						Reserved					
0011_010						Reserved					
0011_011						Reserved					
0011_100						Reserved					
0100_000						Reserved					
0100_000	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0100_001	50.0	66.7	3		200.0	3.5	175.0		3	50.0	66.7
0100_011	50.0	66.7	3	150.0		4	200.0		3	50.0	66.7
0100_100	50.0	66.7	3		200.0	4.5	225.0		3	50.0	66.7
	I	I		I	I			I			I
0101_000	50.0	66.7	5	250.0	333.3	2.5	250.0	333.3	2.5	100.0	133.3
0101_001	50.0	66.7	5	250.0	333.3	3	300.0	400.0	2.5	100.0	133.3
0101_010	50.0	66.7	5	250.0	333.3	3.5	350.0	466.6	2.5	100.0	133.3
0101_011	50.0	66.7	5	250.0	333.3	4	400.0	533.3	2.5	100.0	133.3
0101_100	50.0	66.7	5	250.0	333.3	4.5	450.0	599.9	2.5	100.0	133.3
0101_101	50.0	66.7	5	250.0	333.3	5	500.0	666.6	2.5	100.0	133.3
0101_110	50.0	66.7	5	250.0	333.3	5.5	550.0	733.3	2.5	100.0	133.3
	I										
0110_000		n	1	n	n	Reserved	T	r		-	
0110_001	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
0110_010	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0110_011	50.0	66.7	4		266.6	4	266.7	355.5	3	66.7	88.9
0110_100	50.0	66.7	4	200.0	266.6	4.5	300.0	400.0	3	66.7	88.9
			1				1				<u> </u>
0111_000	50.0	66.7	3		200.0	2		200.0	2	75.0	100.0
0111_001	50.0	66.7	3		200.0	2.5	187.5		2	75.0	100.0
0111_010	50.0	66.7	3		200.0	3		300.0	2	75.0	100.0
0111_011	50.0	66.7	3	150.0	200.0	3.5	262.5	350.0	2	75.0	100.0

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication	CPU Clock (MHz)		Bus	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Division Factor	Low	High
	1										
1000_000			1			Reserved					
1000_001	50.0	66.7	3	150.0	200.0	2.5	150.0	166.7	2.5	60.0	80.0
1000_010	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
1000_011	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
1000_100	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
1000_101	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0
1001 000						Decembed					
1001_000						Reserved					
1001_001						Reserved					
1001_010						Reserved					
1001_011	50.0	66.7	4	200.0	266.6	4	200.0	266.6	4	50.0	66.7
1001_100	50.0	66.7	4	200.0	266.6	4.5	225.0	300.0	4	50.0	66.7
1010_000						Reserved					
1010_001	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
1010_010	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
1010_011	50.0	66.7	4	200.0	266.6	4	266.7	355.5	3	66.7	88.9
1010_100	50.0	66.7	4	200.0			300.0	400.0	3	66.7	88.9
	1								I		
1011_000						Reserved					
1011_001	50.0	66.7	4	200.0	266.6	2.5	200.0	266.6	2.5	80.0	106.
1011_010	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.
1011_011	50.0	66.7	4	200.0	266.6	3.5	280.0	373.3	2.5	80.0	106.
1011_100	50.0	66.7	4	200.0	266.6	4	320.0	426.6	2.5	80.0	106.
1011_101	50.0	66.7	4	200.0	266.6	2.5	250.0	333.3	2	100.0	133.
	50.0	66.7	4	200.0	266.6	3	300.0	400.0	2	100.0	133.
1011_110		1		I	l						

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	PCI Clock (MHz)		CPM Multiplication	. ,			Clock Hz)	Bus Division		Clock Hz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
			Defau	ult Mod	es (MO	DCK_H=0000)					
0000_000	30.0	50.0	4	120.0	200.0	2.5	150.0	250.0	2	60.0	100.0
0000_001	25.0	50.0	4	100.0	200.0	3	150.0	300.0	2	50.0	100.0
0000_010	25.0	50.0	6	150.0	300.0	3	150.0	300.0	3	50.0	100.0
0000_011	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0
0000_100	25.0	50.0	6	150.0	300.0	3	180.0	360.0	2.5	60.0	120.0
0000_101	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
0000_110	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3
0000_111	25.0	50.0	8	200.0	400.0	3	240.0	480.0	2.5	80.0	160.0
	1	1	F	-ull Cor	nfigurati	on Modes	1				1
0001_001	30.0	50.0	4	120.0	200.0	5	150.0	250.0	4	30.0	50.0
0001_010	25.0	50.0	4	100.0	200.0	6	150.0	300.0	4	25.0	50.0
0001_011	25.0	50.0	4	100.0	200.0	7	175.0	350.0	4	25.0	50.0
0001_100	25.0	50.0	4	100.0	200.0	8	200.0	400.0	4	25.0	50.0
0010_001	25.0	50.0	6	150.0	300.0	3	180.0	360.0	2.5	60.0	120.0
0010_010	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
0010_011	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0
0010_100	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0
0011_000						Reserved					
0011_001	37.5	50.0	4	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0011_010	32.1	50.0	4	128.6	200.0	3.5	150.0	233.3	3	42.9	66.7
0011_011	28.1	50.0	4	112.5	200.0	4	150.0	266.7	3	37.5	66.7
0011_100	25.0	50.0	4	100.0	200.0	4.5	150.0	300.0	3	33.3	66.7
0100_000						Reserved					
0100_001	25.0	50.0	6	150.0	300.0	3	150.0	300.0	3	50.0	100.0
0100_010	25.0	50.0	6	150.0	300.0	3.5	175.0	350.0	3	50.0	100.0
0100_011	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2}

Table 20. Clock Config	urations for PCI Agent	Mode (PCI MODCK=1) ^{1,2} (continued)

Mode ³	PCI ((MI		CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High	
0100_100	25.0	50.0	6	150.0	300.0	4.5	225.0	450.0	3	50.0	100.0	
0101_000	30.0	50.0	5	150.0	250.0	2.5	150.0	250.0	2.5	60.0	100.0	
0101_001	25.0	50.0	5	125.0	250.0	3	150.0	300.0	2.5	50.0	100.0	
0101_010	25.0	50.0	5	125.0	250.0	3.5	175.0	350.0	2.5	50.0	100.0	
0101_011	25.0	50.0	5	125.0	250.0	4	200.0	400.0	2.5	50.0	100.0	
0101_100	25.0	50.0	5	125.0	250.0	4.5	225.0	450.0	2.5	50.0	100.0	
0101_101	25.0	50.0	5	125.0	250.0	5	250.0	500.0	2.5	50.0	100.0	
0101_110	25.0	50.0	5	125.0	250.0	5.5	275.0	550.0	2.5	50.0	100.0	
0110_000						Reserved						
0110_001	25.0	50.0	8	200.0	400.0	3	200.0	400.0	3	66.7	133.3	
0110_010	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3	
0110_011	25.0	50.0	8	200.0	400.0	4	266.7	533.3	3	66.7	133.3	
0110_100	25.0	50.0	8	200.0	400.0	4.5	300.0	600.0	3	66.7	133.3	
0111_000	25.0	50.0	6	150.0	300.0	2	150.0	300.0	2	75.0	150.0	
0111_001	25.0	50.0	6	150.0	300.0	2.5	187.5	375.0	2	75.0	150.0	
0111_010	25.0	50.0	6	150.0	300.0	3	225.0	450.0	2	75.0	150.0	
0111_011	25.0	50.0	6	150.0	300.0	3.5	262.5	525.0	2	75.0	150.0	
1000_000						Reserved						
1000_001	25.0	50.0	6	150.0	300.0	2.5	150.0	300.0	2.5	60.0	120.0	
1000_010	25.0	50.0	6	150.0	300.0	3	180.0	360.0	2.5	60.0	120.0	
1000_011	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0	
1000_100	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0	
1000_101	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0	
			-			•						
1001_000						Reserved						
1001_001		Reserved										

Pin N			
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball	
A3	0	B15	
A3	1	A15	
TT	0	B3	
TT	1	E8	
TT	2	D7	
TT	3	C4	
TT	4	E7	
TBS	T	E3	
TSI	ZO	E4	
TSI	Z1	E5	
TSI	72	C3	
TSI	Z3	D5	
AAC	א כ	D3	
ART	RY	C2	
DBG/I	RQ7	F16	
DBB/I	RQ3	D18	
D)	AC1	
D	1	AA1	
Dź	2	V3	
D	3	R5	
D4	1	P4	
D	5	M4	
De	3	J4	
Dī	7	G1	
D	3	W6	
D)	Y3	
D1	0	V1	
D1	1	N6	
D1	2	P3	
D1	3	M2	
D1	4	J5	

Table 21. Pinout (continued)

Pin N	ame			
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball		
CLKI	N2	C21		
No con	nect ⁴	D19 ⁴ , J3 ⁴ , AD24 ⁵		
l/O po	ower	B4, F3, J2, N4, AD1, AD5, AE8, AC13, AD18, AB24, AB26, W23, R25, M25, F25, C25, C22, B17, B12, B8, E6, F6, H6, L5, L6, P6, T6, U6, V5, Y5, AA6, AA8, AA10, AA11, AA14, AA16, AA17, AB19, AB20, W21, U21, T21, P21, N21, M22, J22, H21, F21, F19, F17, E16, F14, E13, E12, F10, E10, E9		
Core F	ower	F5, K5, M5, AA5, AB7, AA13, AA19, AA21, Y22, AC25, U22, R22, L21, H22, E22, E20, E15, F13, F11, F8, L3, V4, W3, AC11, AD11, AB15, U25, T24, J24, H25, F23, B19, D17, C17, D10, C10		
Grou	Ind	E19, E2, K1, Y2, AE1, AE4, AD9, AC14, AE17, AC19, AE25, V24, P26, M26, G26, E26, B21, C12, C11, C8, A8, B18, A18, A2, B1, B2, A5, C5, D4, D6, G2, L4, P1, R1, R4, AC4, AE7, AC23, Y25, N24, J23, A23, D23, D20, E18, A13, A16, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, R10, R11,R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17		

Table 21. Pinout (continued)

¹ Must be tied to ground.

 2 Should be tied to VDDH via a 2K Ω external pull-up resistor.

³ The default configuration of the CPM pins (PA[8–31], PB[18–31], PC[0–1,4–29], PD[7–25, 29–31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

⁴ This pin is not connected. It should be left floating.

⁵ Must be pulled down or left floating

Revision	Date	Substantive Changes
1.2	09/2005	 Added 133-MHz to the list of frequencies in the opening sentence of Section 6, "AC Electrical Characteristics". Added 133 MHz columns to Table 9, Table 11, Table 12, and Table 13. Added footnote 2 to Table 13. Added the conditions note directly above Table 12.
1.1	01/2005	Modification for correct display of assertion level ("overbar") for some signals
1.0	12/2004	 Section 1.1: Added 8:1 ratio to Internal CPM/bus clock multiplier values Section 2: removed voltage tracking note Table 3: Note 2 updated regarding VDD/VCCSYN relationship to VDDH during power-on reset Table 4: Updated VDD and VCCSYN to 1.425 V - 1.575 V Table 8: Note 2 updated to reflect VIH=2.5 for TCK, TRST, PORESET; request for external pull-up removed. Section 4.6: Updated description of layout practices Table 8: Note 3 added regarding IIC compatibility Table 8: Note 3 added regarding IIC compatibility Table 8: Note 3 added regarding IIC compatibility Table 9: updated PCI impedance to 27Ω, updated 60x and MEMC values and added note to reflect configurable impedance Section 6: Added sentence providing derating factor Section 6.1: added Note: Rise/Fall Time on CPM Input Pins Table 9: updated values for following specs: sp36b, sp37a, sp38a, sp39a, sp38b, sp40, sp41, sp42, sp43, sp42a Table 11: updated values for following specs: sp16a, sp16b, sp18a, sp18b, sp20, sp21, sp22 Section 6.2: added Spread spectrum clocking note Section 7: unit of ns added to Tval notes Section 7: unit of ns added to Tval notes Section 7: Updated all notes to reflect updated CPU Fmin of 150 MHz commercial temp devices, 175 MHz extended temp; CPM Fmin of 120 MHz. Section 7: "Clock Configuration Modes": Updated all table footnotes reflect updated CPU Fmin of 150 MHz commercial temp devices, 175 MHz extended temp; CPM Fmin of 120 MHz. Section 7: Table 21: cornect superscript of footnote number after pin AD22 Table 21: remove DONE3 from PC12 Table 21: signals referring to TDMs C2 and D2 removed