

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; RISC CPM, Security; SEC
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8272czqtiea

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Integrated security engine (SEC) (MPC8272 and MPC8248 only)
 - Supports DES, 3DES, MD-5, SHA-1, AES, PKEU, RNG and RC-4 encryption algorithms in hardware
- Communications processor module (CPM)
 - Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support for communications peripherals
 - Interfaces to G2_LE core through on-chip dual-port RAM and DMA controller. (Dual-port RAM size is 16 KB plus 4 KB dedicated instruction RAM.)
 - Microcode tracing capabilities
 - Eight CPM trap registers
- Universal serial bus (USB) controller
 - Supports USB 2.0 full/low rate compatible
 - USB host mode
 - Supports control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - NRZI encoding/decoding with bit stuffing
 - Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and data rate configuration). Note that low-speed operation requires an external hub.
 - Flexible data buffers with multiple buffers per frame
 - Supports local loopback mode for diagnostics (12 Mbps only)
 - Supports USB slave mode
 - Four independent endpoints support control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - CRC5 checking
 - NRZI encoding/decoding with bit stuffing
 - 12- or 1.5-Mbps data rate
 - Flexible data buffers with multiple buffers per frame
 - Automatic retransmission upon transmit error
 - Serial DMA channels for receive and transmit on all serial channels
 - Parallel I/O registers with open-drain and interrupt capability
 - Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers
 - Two fast communication controllers (FCCs) supporting the following protocols:
 - 10-/100-Mbit Ethernet/IEEE 802.3 CDMA/CS interface through media independent interface (MII)
 - Transparent
 - HDLC—up to T3 rates (clear channel)

- PCI bridge
 - PCI Specification revision 2.2-compliant and supports frequencies up to 66 MHz
 - On-chip arbitration
 - Support for PCI to 60x memory and 60x memory to PCI streaming
 - PCI host bridge or peripheral capabilities
 - Includes four DMA channels for the following transfers:
 - PCI-to-60x to 60x-to-PCI
 - 60x-to-PCI to PCI-to-60x
 - PCI-to-60x to PCI-to-60x
 - 60x-to-PCI to 60x-to-PCI
 - Includes the configuration registers required by the PCI standard (which are automatically loaded from the EPROM to configure the MPC8272) and message and doorbell registers
 - Supports the I_2O standard
 - Hot-Swap friendly (supports the Hot Swap Specification as defined by PICMG 2.1 R1.0 August 3, 1998)
 - Support for 66 MHz, 3.3 V specification
 - 60x-PCI bus core logic, which uses a buffer pool to allocate buffers for each port

2 **Operating Conditions**

This table shows the maximum electrical ratings.

Table 3. Absolute Maximum Ratings¹

Rating	Symbol	Value	Unit
Core supply voltage ²	VDD	-0.3 - 2.25	V
PLL supply voltage ²	VCCSYN	-0.3 - 2.25	V
I/O supply voltage ³	VDDH	-0.3 - 4.0	V
Input voltage ⁴	VIN	GND(-0.3) - 3.6	V
Junction temperature	Тј	120	°C
Storage temperature range	T _{STG}	(–55) – (+150)	°C

¹ Absolute maximum ratings are stress ratings only; functional operation (see Table 4) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage.

- ² Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V during normal operation. It is recommended that VDD/VCCSYN should be raised before or simultaneous with VDDH during power-on reset. VDD/VCCSYN may exceed VDDH by more than 0.4 V during power-on reset for no more than 100 ms.
- ³ Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.5 V during normal operation.
- ⁴ Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset.

Operating Conditions

I/O supply voltage

Junction temperature (maximum)

Input voltage

1

This table lists recommended operational voltage conditions.

•	•	
Rating	Symbol	Value
Core supply voltage	VDD	1.425 – 575
PLL supply voltage	VCCSYN	1.425 – 575

VDDH

VIN

Τi

Table 4. Recommended Operating Conditions¹

 Ambient temperature
 T_A
 0-70²
 °C

 Caution: These are the recommended and tested operating conditions. Proper operation outside of these conditions is not guaranteed.
 State
 State

² Note that for extended temperature parts the range is $(-40)_{T_A} - 105_{T_i}$.

This SoC contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or V_{CC}).

This figure shows the undershoot and overshoot voltage of the 60x bus memory interface of the SoC. Note that in PCI mode the I/O interface is different.

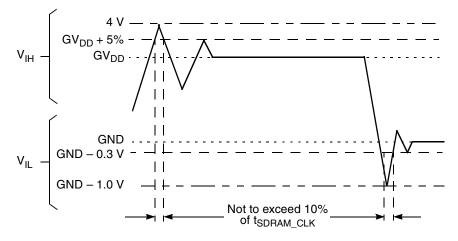


Figure 2. Overshoot/Undershoot Voltage

Unit

V

V

V

V

°C

3.135 - 3.465

GND (-0.3) - 3.465

105²

3 DC Electrical Characteristics

This table shows DC electrical characteristics.

Table 5. DC Electrical Characteristics¹

Characteristic	Symbol	Min	Max	Unit
Input high voltage—all inputs except TCK, TRST and PORESET ²	V _{IH}	2.0	3.465	V
Input low voltage ³	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ⁴	I _{IN}	_	10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	I _{OZ}	—	10	μA
Signal low input current, V _{IL} = 0.8 V	١L	_	1	μA
Signal high input current, V _{IH} = 2.0 V	ι _Η	—	1	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$ except UTOPIA mode, and open drain pins In UTOPIA mode ⁵ (UTOPIA pins only): $I_{OH} = -8.0\text{mA}$ PA[8-31] PB[18-31] PC[0-1,4-29] PD[7-25, 29-31]	V _{OH}	2.4	_	V
In UTOPIA mode ⁵ (UTOPIA pins only): I _{OL} = 8.0mA PA[8–31] PB[18–31] PC[0–1,4–29] PD[7–25, 29–31]	V _{OL}	_	0.5	V

DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
I _{OL} = 5.3mA	V _{OL}		0.4	V
<u>ČŠ</u> [0–5]	01			
CS6/BCTL1/SMI				
CS7/TLBSYNC				
BADDR27/ IRQ1				
BADDR28/ IRQ2				
ALE/ IRQ4				
BCTL0				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4				
PSDAMUX/PGPL5				
PCI_CFG0 (PCI_HOST_EN)				
PCI_CFG1 (PCI_ARB_EN)				
PCI_CFG2 (DLL_ENABLE)				
MODCK1/RSRV/TC(0)/BNKSEL(0)				
MODCK2/CSE0/TC(1)/BNKSEL(1)				
MODCK3CSE1/TC(2)/BNKSEL(2)				
$I_{OL} = 3.2 \text{mA}$				
PCI_PAR				
PCI_FRAME				
PCI_TRDY				
PCI_IRDY				
PCI_STOP				
PCI_DEVSEL				
PCI_IDSEL				
PCI_PERR				
PCI_SERR				
PCI_REQ0				
PCI_REQ1/ CPI_HS_ES				
PCI_GNT0				
PCI_GNT1/ CPI_HS_LES				
PCI_GNT2/ CPI_HS_ENUM				
PCI_RST				
PCI_INTA				
PCI_REQ2				
DLLOUT				
PCI_AD(0-31)				
PCI_AD(0-31) PCI_C(0-3)/BE(0-3)				
PA[8–31]				
PB[18–31]				
PC[0–1,4–29]				
PD[7–25, 29–31]				
TDO				

Table 5. DC Electrical Characteristics¹ (continued)

The default configuration of the CPM pins (PA[8-31], PB[18-31], PC[0-1,4-29], PD[7-25, 29-31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

 ² TCK, TRST and PORESET have min VIH = 2.5V.
 ³ V_{IL} for IIC interface does not match IIC standard, but does meet IIC standard for V_{OL} and should not cause any compatibility issue.

⁴ The leakage current is measured for nominal VDDH,VCCSYN, and VDD.

DC Electrical Characteristics

⁵ MPC8272 and MPC8271 only.

Table 6.

Characteristic	Symbol	Min	Мах	Unit
Input high voltage—all inputs except TCK, TRST and PORESET ¹	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ²	I _{IN}		10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	I _{OZ}		10	μA
Signal low input current, $V_{IL} = 0.8 V^3$	١L	_	1	μA
Signal high input current, V _{IH} = 2.0 V	I _H	_	1	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$ except UTOPIA mode, and open drain pins In UTOPIA mode ⁴ (UTOPIA pins only): $I_{OH} = -8.0 \text{mA}$	V _{OH}	2.4	_	V
In UTOPIA mode ⁴ (UTOPIA pins only): I _{OL} = 8.0mA	V _{OL}	_	0.5	V
IoL = 6.0mA BR BG ABB/IRQ2 TS A[0-31] TTI[0-4] TBST TSIZE[0-3] AACK ARTRY DBG DBB/IRQ3 D[0-63] //EXT_BR3 //EXT_BR3 //EXT_BG3 /TEN/EXT_DBG3/CINT PSDVAL TA TEA GBL/IRQ1 CI/BADDR29/IRQ2 WT/BADDR30/IRQ3 BADDR31/IRQ5/CINT CPU_BR IRQ0/NMI_OUT /PCL_RST HRESET SRESET REQONF	V _{OL}		0.4	V

AC Electrical Characteristics

This figure shows the FCC external clock.

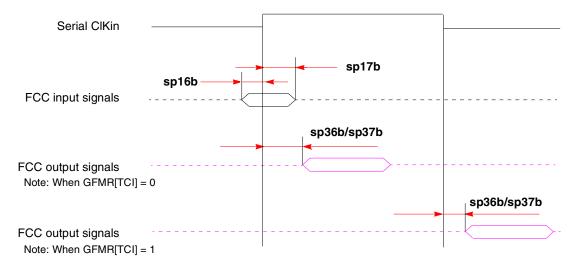
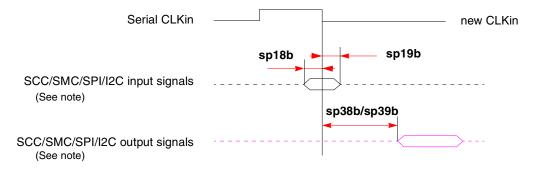



Figure 4. FCC External Clock Diagram

This figure shows the SCC/SMC/SPI/I²C external clock.

Note: There are four possible timing conditions for SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge.
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge (shown).
- 4. Input sampled on the falling edge and output driven on the rising edge.

Note: There are two possible timing conditions for SCC/SMC/I²C:

- 1. Input sampled on the falling edge and output driven on the falling edge (shown).
- 2. Input sampled on the falling edge and output driven on the rising edge.

Figure 5. SCC/SMC/SPI/I²C External Clock Diagram

NOTE: Conditions

The following conditions must be met in order to operate the MPC8272 family devices with 133 MHz bus: single PowerQUICC II Bus mode must be used (no external master, BCR[EBM] = 0); data bus must be in Pipeline mode (BRx[DR] = 1); internal arbiter and memory controller must be used. For expected load of above 40 pF, it is recommended that data and address buses be configured to low (25 Ω) impedance (SIUMCR[HLBE0] = 1, SIUMCR[HLBE1] = 1).

Spec N	bec Number				Value (ns)							
	Characteristic		Setup				Hold					
Setup	Hold		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp11	sp10	AACK/TA/TS/DBG/BG/BR/ARTRY/TEA	6	5	3.5	N/A	0.5	0.5	0.5	N/A		
sp12	sp10	Data bus in normal mode	5	4	3.5	N/A	0.5	0.5	0.5	N/A		
sp13	sp10	Data bus in pipeline mode (without ECC and PARITY)	N/A	4	2.5	1.5	N/A	0.5	0.5	0.5		
sp15	sp10	All other pins	5	4	3.5	N/A	0.5	0.5	0.5	N/A		

Table 12. AC Characteristics for SIU Inputs¹

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

This table lists SIU output characteristics.

Table 13. AC Characteristics for SIU Outputs¹

Spec N	Number		Value (ns)							
	Characteristic	Maximum Delay				Minimum Delay				
Мах	Min			83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz
sp31	sp30	PSDVAL/TEA/TA	7	6	5.5	N/A	1	1	1	N/A
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	6.5	5.5	4.5 ²	1	1	1	1 ²
sp33	sp30	Data bus ³	6.5	6.5	5.5	4.5	0.8	0.8	0.8	1
sp34	sp30	Memory controller signals/ALE	6	5.5	5.5	4.5	1	1	1	1
sp35	sp30	All other signals	6	5.5	5.5	N/A	1	1	1	N/A

¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

² Value is for ADD only; other sp32/sp30 signals are not applicable.

³ To achieve 1 ns of hold time at 66.67/83.33/100 MHZ, a minimum loading of 20 pF is required.

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.

This figure shows the interaction of several bus signals.

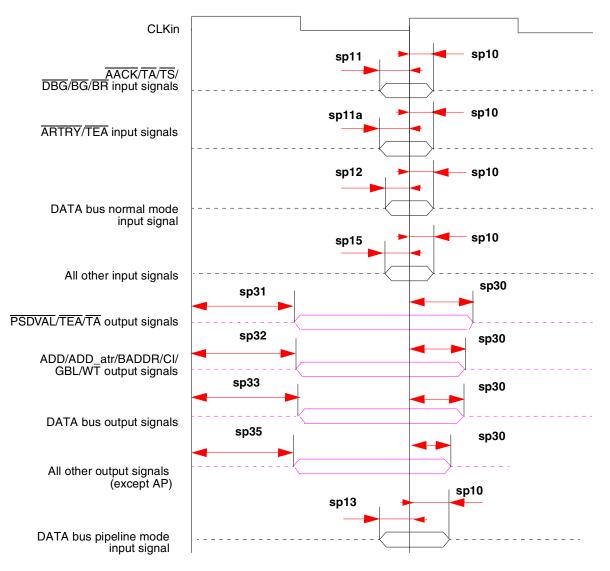


Figure 9. Bus Signals

AC Electrical Characteristics

This figure shows signal behavior in MEMC mode.

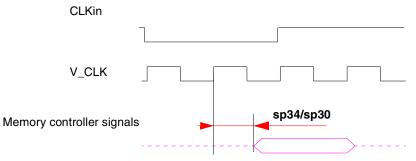


Figure 10. MEMC Mode Diagram

NOTE

Generally, all SoC bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 14.

Table 14.	. Tick Spacing for Memory Controller Signals
-----------	--

PLL Clock Ratio	Tick Spacing (T1 Occurs at the Rising Edge of CLKin)						
	T2	тз	Τ4				
1:2, 1:3, 1:4, 1:5, 1:6	1/4 CLKin	1/2 CLKin	3/4 CLKin				
1:2.5	3/10 CLKin	1/2 CLKin	8/10 CLKin				
1:3.5	4/14 CLKin	1/2 CLKin	11/14 CLKin				

This table is a representation of the information in Table 14.

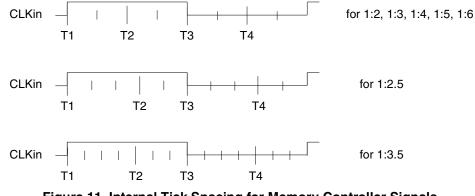


Figure 11. Internal Tick Spacing for Memory Controller Signals

AC Electrical Characteristics

NOTE

The UPM machine outputs change on the internal tick determined by the memory controller programming; the AC specifications are relative to the internal tick. Note that SDRAM and GPCM machine outputs change on CLKin's rising edge.

6.3 JTAG Timings

This table lists the JTAG timings.

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle time	t _{JTG}	30		ns	—
JTAG external clock pulse width measured at 1.4V	t _{JTKHKL}	15		ns	—
JTAG external clock rise and fall times	t _{JTGR} and t _{JTGF}	0	5	ns	6
TRST assert time	t _{TRST}	25	_	ns	3,6
Input setup times Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4	_	ns ns	4,7 4,7
Input hold times Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns ns	4,7 4,7
Output valid times Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}		10 10	ns ns	5 7 5 7
Output hold times Boundary-scan data TDO	t _{JTKLDX} t _{JTKLOX}	1 1		ns ns	5 7 5 7
JTAG external clock to output high impedance Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	1	10 10	ns ns	5,6 5,6

Table 15. JTAG Timings¹

^I All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

² The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t(_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

- ³ TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- ⁴ Non-JTAG signal input timing with respect to t_{TCLK}.
- ⁵ Non-JTAG signal output timing with respect to t_{TCLK}.
- ⁶ Guaranteed by design.
- ⁷ Guaranteed by design and device characterization.

			onngurations			······································		,	(contine	,					
Mode ³	Bus ((M	Clock Hz)	CPM Multiplication	CPM Clock (MHz)						CPU Multiplication	CPU Clock (MHz)		PCI Division	PCI Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Factor ⁵	High	Factor ⁶	Low	High				
1000_010	66.7	88.9	3	200.0	266.6	3.5	233.3	311.1	4	50.0	66.7				
1000_011	66.7	88.9	3	200.0	266.6	4	266.7	355.5	4	50.0	66.7				
1000_100	66.7	88.9	3	200.0	266.6	4.5	300.0	400.0	4	50.0	66.7				
1000_101	66.7	88.9	3	200.0	266.6	6	400.0	533.3	4	50.0	66.7				
1000_110	66.7	88.9	3	200.0	266.6	6.5	433.3	577.7	4	50.0	66.7				
	•	•			•		•								
1001_000						Reserved									
1001_001						Reserved									
1001_010	57.1	76.2	3.5	200.0	266.6	3.5	200.0	266.6	4	50.0	66.7				
1001_011	57.1	76.2	3.5	200.0	266.6	4	228.6	304.7	4	50.0	66.7				
1001_100	57.1	76.2	3.5	200.0	266.6	4.5	257.1	342.8	4	50.0	66.7				
	•														
1001_101	85.7	114.3	3.5	300.0	400.0	5	428.6	571.4	6	50.0	66.7				
1001_110	85.7	114.3	3.5	300.0	400.0	5.5	471.4	628.5	6	50.0	66.7				
1001_111	85.7	114.3	3.5	300.0	400.0	6	514.3	685.6	6	50.0	66.7				
1010_000	75.0	100.0	2	150.0	200.0	2	150.0	200.0	3	50.0	66.7				
1010_001	75.0	100.0	2	150.0	200.0	2.5	187.5	250.0	3	50.0	66.7				
1010_010	75.0	100.0	2	150.0	200.0	3	225.0	300.0	3	50.0	66.7				
1010_011	75.0	100.0	2	150.0	200.0	3.5	262.5	350.0	3	50.0	66.7				
1010_100	75.0	100.0	2	150.0	200.0	4	300.0	400.0	3	50.0	66.7				
1010_101	100.0	133.3	2	200.0	266.6	2.5	250.0	333.3	4	50.0	66.7				
1010_110	100.0	133.3	2	200.0	266.6	3	300.0	400.0	4	50.0	66.7				
1010_111	100.0	133.3	2	200.0	266.6	3.5	350.0	466.6	4	50.0	66.7				
1011_000						Reserved									
1011_001	80.0	106.7	2.5	200.0	266.6	2.5	200.0	266.6	4	50.0	66.7				
1011_010	80.0	106.7	2.5	200.0	266.6	3	240.0	320.0	4	50.0	66.7				
1011_011	80.0	106.7	2.5	200.0	266.6	3.5	280.0	373.3	4	50.0	66.7				

 Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

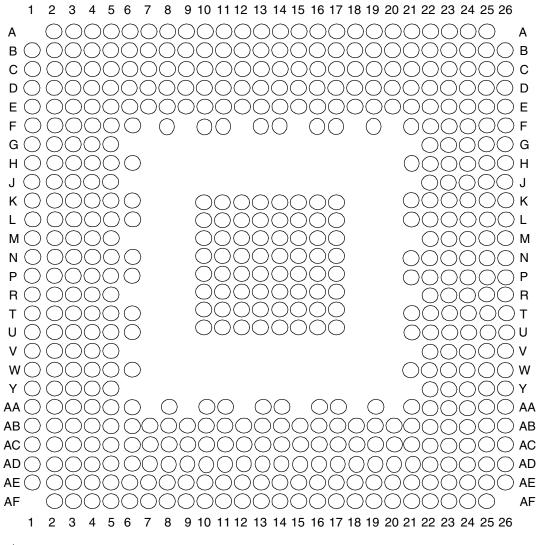


Table 20. Clock Config	urations for PCI Agent	Mode (PCI MODCK=	1) ^{1,2} (continued)

Mode ³	PCI ((MI		CPM Multiplication	. ,		CPU Multiplication	CPU Clock (MHz)		Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
0100_100	25.0	50.0	6	150.0	300.0	4.5	225.0	450.0	3	50.0	100.0
0101_000	30.0	50.0	5	150.0	250.0	2.5	150.0	250.0	2.5	60.0	100.0
0101_001	25.0	50.0	5	125.0	250.0	3	150.0	300.0	2.5	50.0	100.0
0101_010	25.0	50.0	5	125.0	250.0	3.5	175.0	350.0	2.5	50.0	100.0
0101_011	25.0	50.0	5	125.0	250.0	4	200.0	400.0	2.5	50.0	100.0
0101_100	25.0	50.0	5	125.0	250.0	4.5	225.0	450.0	2.5	50.0	100.0
0101_101	25.0	50.0	5	125.0	250.0	5	250.0	500.0	2.5	50.0	100.0
0101_110	25.0	50.0	5	125.0	250.0	5.5	275.0	550.0	2.5	50.0	100.0
0110_000						Reserved					
0110_001	25.0	50.0	8	200.0	400.0	3	200.0	400.0	3	66.7	133.3
0110_010	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3
0110_011	25.0	50.0	8	200.0	400.0	4	266.7	533.3	3	66.7	133.3
0110_100	25.0	50.0	8	200.0	400.0	4.5	300.0	600.0	3	66.7	133.3
				1	1					1	
0111_000	25.0	50.0	6	150.0	300.0	2	150.0	300.0	2	75.0	150.0
0111_001	25.0	50.0	6	150.0	300.0	2.5	187.5	375.0	2	75.0	150.0
0111_010	25.0	50.0	6	150.0	300.0	3	225.0	450.0	2	75.0	150.0
0111_011	25.0	50.0	6	150.0	300.0	3.5	262.5	525.0	2	75.0	150.0
				1	1					1	
1000_000	Reserved										
1000_001	25.0	50.0	6	150.0	300.0	2.5	150.0	300.0	2.5	60.0	120.0
1000_010	25.0	50.0	6	150.0	300.0	3	180.0	360.0	2.5	60.0	120.0
1000_011	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
1000_100	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0
1000_101	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0
						1					
1001_000	Reserved										
1001_001	Reserved										

This figure shows the pinout of the 516 PBGA package as viewed from the top surface.

Not to Scale

Figure 12. Pinout of the 516 PBGA Package (View from Top)

This table lists the pins of the MPC8272. Note that the pins in the "MPC8272/8271 Only" column relate to Utopia functionality.

Table 2	21. P	inout
---------	-------	-------

Pin I		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	
Ē	BR	
BG/IRQ6		D2
ABB/IRQ2		C1

Pin N		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
D15		G3
D1	16	AB3
D17		Y1
D1	18	Τ4
D1	19	Т3
D2	20	P2
D2	21	M1
D2	22	J1
D2	23	G4
D2	24	AB2
D2	25	W4
D2	26	V2
D2	27	T1
D2	28	N5
D29		L1
D30		H1
D31		G5
D32		W5
D33		W2
Da	34	Т5
DS	35	T2
DS	36	N1
DS	37	K3
DS	38	H2
D39		F1
D40		AA2
D41		W1
D4	D42	
D4	43	R2
D4	14	N2
D4	45	L2

Table 21. Pinout (continued)

Pinout

Table 21. Pinout (continued)

Pin Na		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
PCI_II	RDY CONTRACT	AF15
PCI_S	TOP	AE15
PCI_DE	VSEL	AE14
PCI_ID	DSEL	AC17
PCI_P	ERR	AD14
PCI_S	ERR	AD13
PCI_R	EQ0	AE20
PCI_REQ1/CI	PCI_HS_ES	AF14
PCI_G	NTO	AD20
PCI_GNT1/CP	CI_HS_LED	AE13
PCI_GNT2/CPC	CI_HS_ENUM	AF21
PCI_F	AST	AF22
PCI_I	NTA	AE21
PCI_R	EQ2	AB14
DLLOUT		AC22
PCI_AD0		AF7
PCI_AD1		AE10
PCI_/	AD2	AB10
PCI_/	AD3	AD10
PCI_/	AD4	AE9
PCI_/	AD5	AF8
PCI_/	AD6	AC10
PCI_/	AD7	AE11
PCI_/	AD8	AB11
PCI_/	AD9	AF10
PCI_A	D10	AF9
PCI_A	D11	AB12
PCI_A	D12	AC12
PCI_A	D13	AD12
PCI_A	D14	AF11
PCI_A	D15	AB13

Pinout

Table 21. Pinout (continued)

Pin Na		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
MODCK1/RSRV/	TC0/BNKSEL0	A20
MODCK2/CSE0/	FC1/BNKSEL1	C20
MODCK3/CSE1/	FC2/BNKSEL2	A21
CLKI	N1	D21
PA8/SMI	RXD2	AF25 ³
PA9/SM	TXD2	AA22 ³
PA10/MSNUM5	FCC1_UT_RXD0	AB23 ³
PA11/MSNUM4	FCC1_UT_RXD1	AD26 ³
PA12/MSNUM3	FCC1_UT_RXD2	AD25 ³
PA13/MSNUM2	FCC1_UT_RXD3	AA24 ³
PA14/FCC1_MII_HDLC_RXD3	FCC1_UT_RXD4	W22 ³
PA15/FCC1_MII_HDLC_RXD2	FCC1_UT_RXD5	Y24 ³
PA16/FCC1_MII_HDLC_RXD1	FCC1_UT_RXD6	T22 ³
PA17/FCC1_MII_HDLC_RXD0/ FCC1_MII_TRAN_RXD/FCC1_RMII_RX D0	FCC1_UT_RXD7	W26 ³
PA18/FCC1_MII_HDLC_TXD0/FCC1_MII _TRAN_TXD/ FCC1_RMII_TXD0	FCC1_UT_TXD7	V26 ³
PA19/FCC1_MII_HDLC_TXD1/FCC1_RM II_TXD1	FCC1_UT_TXD6	R23 ³
PA20/FCC1_MII_HDLC_TXD2	FCC1_UT_TXD5	P25 ³
PA21/FCC1_MII_HDLC_TXD3	FCC1_UT_TXD4	N22 ³
PA22	FCC1_UT_TXD3	N26 ³
PA23	FCC1_UT_TXD2	N23 ³
PA24/MSNUM1	FCC1_UT_TXD1	H26 ³
PA25/MSNUM0	FCC1_UT_TXD0	G25 ³
PA26/FCC1_MII_RMIIRX_ER	FCC1_UT_RXCLAV	L22 ³
PA27/FCC1_MII_RX_DV/FCC1_RMII_CR S_DV	FCC1_UT_RXSOC	G24 ³
PA28/FCC1_MII_RMII_TX_EN	FCC1_UT_RXENB	G23 ³
PA29/FCC1_MII_TX_ER	FCC1_UT_TXSOC	B26 ³
PA30/FCC1_MII_CRS/FCC1_RTS	FCC1_UT_TXCLAV	A25 ³

Pin N	Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball	
CLKI	N2	C21	
No con	nect ⁴	D19 ⁴ , J3 ⁴ , AD24 ⁵	
l/O po	ower	B4, F3, J2, N4, AD1, AD5, AE8, AC13, AD18, AB24, AB26, W23, R25, M25, F25, C25, C22, B17, B12, B8, E6, F6, H6, L5, L6, P6, T6, U6, V5, Y5, AA6, AA8, AA10, AA11, AA14, AA16, AA17, AB19, AB20, W21, U21, T21, P21, N21, M22, J22, H21, F21, F19, F17, E16, F14, E13, E12, F10, E10, E9	
Core F	ower	F5, K5, M5, AA5, AB7, AA13, AA19, AA21, Y22, AC25, U22, R22, L21, H22, E22, E20, E15, F13, F11, F8, L3, V4, W3, AC11, AD11, AB15, U25, T24, J24, H25, F23, B19, D17, C17, D10, C10	
Grou	Ind	E19, E2, K1, Y2, AE1, AE4, AD9, AC14, AE17, AC19, AE25, V24, P26, M26, G26, E26, B21, C12, C11, C8, A8, B18, A18, A2, B1, B2, A5, C5, D4, D6, G2, L4, P1, R1, R4, AC4, AE7, AC23, Y25, N24, J23, A23, D23, D20, E18, A13, A16, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, R10, R11,R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17	

Table 21. Pinout (continued)

¹ Must be tied to ground.

 2 Should be tied to VDDH via a 2K Ω external pull-up resistor.

³ The default configuration of the CPM pins (PA[8–31], PB[18–31], PC[0–1,4–29], PD[7–25, 29–31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

⁴ This pin is not connected. It should be left floating.

⁵ Must be pulled down or left floating

Package Description

9 Package Description

This figure shows the side profile of the PBGA package to indicate the direction of the top surface view.

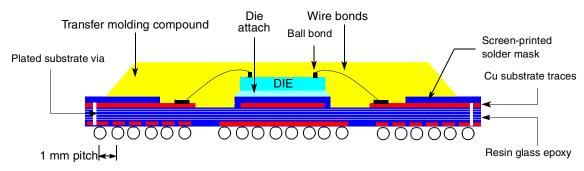


Figure 13. Side View of the PBGA Package Remove

9.1 Package Parameters

This table provides package parameters.

Table 22. Package Parameters

Code	Туре	Outline (mm)	Interconnects	Pitch (mm)	Nominal Unmounted Height (mm)
VR, ZQ	PBGA	27 x 27	516	1	2.25

NOTE: Temperature Reflow for the VR Package

In the VR package, sphere composition is lead-free (see Table 2). This requires higher temperature reflow than what is required for other PowerQUICC II packages. Consult "Freescale PowerQUICC II Pb-Free Packaging Information" (MPC8250PBFREEPKG) available on www.freescale.com.

Ordering Information

10 Ordering Information

This figure provides an example of the Freescale part numbering nomenclature for the SoC. In addition to the processor frequency, the part numbering scheme also consists of a part modifier that indicates any enhancement(s) in the part from the original production design. Each part number also contains a revision code that refers to the die mask revision number and is specified in the part numbering scheme for identification purposes only. For more information, contact your local Freescale sales office.

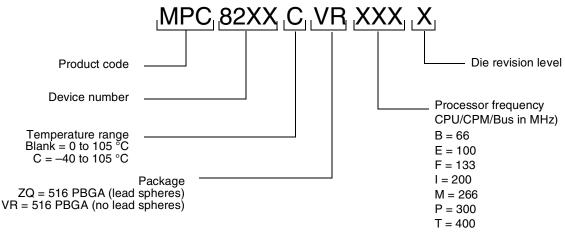


Figure 15. Freescale Part Number Key

11 Document Revision History

This table summarizes changes to this document.

Table 23. Document Revision History

Revision	Date	Substantive Changes
3	09/2011	In Figure 15, "Freescale Part Number Key," added speed decoding information below processor frequency information.
2	12/2008	 Modified Figure 5, "SCC/SMC/SPI/I2C External Clock Diagram," and added second section of figure notes. In Table 12, modified "Data bus in pipeline mode" row and showed 66 MHz as "N/A." In Section 10, "Ordering Information," added "F = 133" to CPU/CPM/Bus Frequency. Added footnote concerning CPM_CLK/PCI_CLK ratio to column "PCI Division Factor" in Table 17, "Clock Configurations for PCI Host Mode (PCI_MODCK=0)," and Table 18, "Clock Configurations for PCI Host Mode (PCI_MODCK=1),." Removed overbar from DLL_ENABLE in Table 21, "Pinout."
1.5	12/2006	• Section 6, "AC Electrical Characteristics," removed deratings statement and clarified AC timing descriptions.
1.4	05/2006	Added row for 133 MHz configurations to Table 8.
1.3	02/2006	Inserted Section 6.3, "JTAG Timings."