

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; RISC CPM, Security; SEC
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8272vrtiea

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

1 Overview

This table shows the functionality supported by each SoC in the MPC8272 family.

	SoCs							
Functionality		MPC8272	MPC8248	MPC8271	MPC8247			
	Package ¹	516 PBGA						
Serial communications controllers (SC	Cs)	3	3	3	3			
QUICC multi-channel controller (QMC)		Yes	Yes	Yes	Yes			
Fast communication controllers (FCCs))	2	2	2	2			
I-Cache (Kbyte)	16	16	16	16				
D-Cache (Kbyte)		16	16	16	16			
Ethernet (10/100)		2	2	2	2			
UTOPIA II Ports		1	0	1	0			
Multi-channel controllers (MCCs)		0	0	0	0			
PCI bridge		Yes	Yes	Yes	Yes			
Transmission convergence (TC) layer		_	—	_	—			
Inverse multiplexing for ATM (IMA)	_	_		—				
Universal serial bus (USB) 2.0 full/low	1	1	1	1				
Security engine (SEC)		Yes	Yes	—	—			

Table 1. MPC8272 PowerQUICC II Family Functionality

¹ See Table 2.

Devices in the MPC8272 family are available in two packages—the VR or ZQ package—as shown in . For package ordering information, see Section 10, "Ordering Information."

Code (Package)	VR (516 PBGA—Lead free)	ZQ (516 PBGA—Lead spheres)
	MPC8272VR	MPC8272ZQ
Device	MPC8248VR	MPC8248ZQ
Device	MPC8271VR	MPC8271ZQ
	MPC8247VR	MPC8247ZQ

Table 2. MPC8272 PowerQUICC II Device Packages

- Integrated security engine (SEC) (MPC8272 and MPC8248 only)
 - Supports DES, 3DES, MD-5, SHA-1, AES, PKEU, RNG and RC-4 encryption algorithms in hardware
- Communications processor module (CPM)
 - Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support for communications peripherals
 - Interfaces to G2_LE core through on-chip dual-port RAM and DMA controller. (Dual-port RAM size is 16 KB plus 4 KB dedicated instruction RAM.)
 - Microcode tracing capabilities
 - Eight CPM trap registers
- Universal serial bus (USB) controller
 - Supports USB 2.0 full/low rate compatible
 - USB host mode
 - Supports control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - NRZI encoding/decoding with bit stuffing
 - Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and data rate configuration). Note that low-speed operation requires an external hub.
 - Flexible data buffers with multiple buffers per frame
 - Supports local loopback mode for diagnostics (12 Mbps only)
 - Supports USB slave mode
 - Four independent endpoints support control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - CRC5 checking
 - NRZI encoding/decoding with bit stuffing
 - 12- or 1.5-Mbps data rate
 - Flexible data buffers with multiple buffers per frame
 - Automatic retransmission upon transmit error
 - Serial DMA channels for receive and transmit on all serial channels
 - Parallel I/O registers with open-drain and interrupt capability
 - Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers
 - Two fast communication controllers (FCCs) supporting the following protocols:
 - 10-/100-Mbit Ethernet/IEEE 802.3 CDMA/CS interface through media independent interface (MII)
 - Transparent
 - HDLC—up to T3 rates (clear channel)

Overview

- One of the FCCs supports ATM (MPC8272 and MPC8271 only)—full-duplex SAR at 155 Mbps, 8-bit UTOPIA interface 31 Mphys, AAL5, AAL1, AAL2, AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 64-K external connections
- Three serial communications controllers (SCCs) identical to those on the MPC860 supporting the digital portions of the following protocols:
 - Ethernet/IEEE 802.3 CDMA/CS
 - HDLC/SDLC and HDLC bus
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Binary synchronous (BiSync) communications
 - Transparent
 - QUICC multichannel controller (QMC) up to 64 channels
 - Independent transmit and receive routing, frame synchronization.
 - Serial-multiplexed (full-duplex) input/output 2048, 1544, and 1536 Kbps PCM highways
 - Compatible with T1/DS1 24-channel and CEPT E1 32-channel PCM highway, ISDN basic rate, ISDN primary rate, and user defined.
 - Subchanneling on each time slot.
 - Independent transmit and receive routing, frame synchronization and clocking
 - Concatenation of any not necessarily consecutive time slots to channels independently for receiver/transmitter
 - Supports H1,H11, and H12 channels
 - Allows dynamic allocation of channels
 - SCC3 in NMSI mode is not usable when USB is enabled.
- Two serial management controllers (SMCs), identical to those of the MPC860
 - Provides management for BRI devices as general-circuit interface (GCI) controllers in time-division-multiplexed (TDM) channels
 - Transparent
 - UART (low-speed operation)
- One serial peripheral interface identical to the MPC860 SPI
- One I^2C controller (identical to the MPC860 I^2C controller)
 - Microwire compatible
 - Multiple-master, single-master, and slave modes
- Up to two TDM interfaces
 - Supports one groups of two TDM channels
 - 1024 bytes of SI RAM
- Eight independent baud rate generators and 14 input clock pins for supplying clocks to FCC, SCC, SMC, and USB serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers

DC Electrical Characteristics

Та	b	e	6.	
	~	.	v .	

Characteristic	Symbol	Min	Мах	Unit
I _{OI} = 5.3mA	Vol	—	0.4	V
<u>ČŠ</u> [0-9]	0L			
CS(10)/BCTL1				
CS(11)/AP(0)				
BADDR[27-28]				
ALE				
BCTLO				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4/PPBS				
PSDAMUX/PGPL5				
LWE[0-3]LSDDQM[0-3]/LBS[0-3]/PCI_CFG[0-3]				
LSDA10/LGPL0/PCI MODCKH0				
LSDWE/LGPL1/PCI_MODCKH1				
LOE/LSDRAS/LGPL2/PCI MODCKH2				
LSDCAS/LGPL3/PCI MODCKH3				
LGTA/LUPMWAIT/LGPL4/LPBS				
LSDAMUX/LGPL5/PCI MODCK				
LWR				
MODCK[1-3]/AP[1-3]/TC[0-2]/BNKSEL[0-2]				
$I_{OI} = 3.2 \text{mA}$				
L A14/PAR				
L_A15/FRAME/SMI				
L_A16/TRDY				
L_A17/IRDY/CKSTP_OUT				
L_A18/STOP				
L_A19/DEVSEL				
L_A20/IDSEL				
L_A21/PERR				
L_A22/SERR				
L_A23/REQ0				
L_A24/REQ1/HSEJSW				
L_A25/GNT0				
L_A26/GNT1/HSLED				
L_A27/GNT2/HSENUM				
L_A28/RST/CORE_SRESET				
L_A29/INTAL_A30/REQ2				
L_A31				
LCL_D[0-31)]/AD[0-31]				
LCL_DP[03]/C/BE[0-3]				
PA[0-31]				
PB[4–31]	1			
PC[0-31]	1			
PD[4–31]	1			
TDO	1			
QREQ	1			

TCK, $\overline{\text{TRST}}$ and $\overline{\text{PORESET}}$ have min VIH = 2.5V. 1

² The leakage current is measured for nominal VDDH,VCCSYN, and VDD.
 ³ V_{IL} for IIC interface does not match IIC standard, but does meet IIC standard for V_{OL} and should not cause any compatibility issue.

Thermal Characteristics

4.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

4.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly dependent on the board temperature.

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W) T_B = board temperature (°C) P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground plane.

Thermal Characteristics

4.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application, or a more accurate and complex model of the package can be used in the thermal simulation.

4.5 **Experimental Determination**

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the case to avoid measurement errors caused by cooling effects of the thermocouple wire.

4.6 Layout Practices

Each VDD and VDDH pin should be provided with a low-impedance path to the board's power supplies. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VDD and VDDH power supplies should be bypassed to ground using bypass capacitors located as close as possible to the four sides of the package. For filtering high frequency noise, a capacitor of 0.1uF on each VDD and VDDH pin is recommended. Further, for medium frequency noise, a total of 2 capacitors of 47uF for VDD and 2 capacitors of 47uF for VDDH are also recommended. The capacitor leads and associated printed circuit traces connecting to chip VDD, VDDH and ground should be kept to less than half an inch per capacitor lead. Boards should employ separate inner layers for power and GND planes.

All output pins on the SoC have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

AC Electrical Characteristics

6 AC Electrical Characteristics

The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for 66.67/83.33/100/133 MHz devices. Note that AC timings are based on a 50-pf load for MAX Delay and 10-pf load for MIN delay. Typical output buffer impedances are shown in this table.

Output Buffers	Typical Impedance (Ω)
60x bus	45 or 27 ²
Memory controller	45 or 27 ²
Parallel I/O	45
PCI	27

¹ These are typical values at 65° C. Impedance may vary by ±25% with process and temperature.

² Impedance value is selected through SIUMCR[20,21]. See the SoC reference manual.

6.1 CPM AC Characteristics

This table lists CPM output characteristics.

Spec N	lumber			Value (ns)								
Max Min	Characteristic		laximu	m Dela	ıy	Minimum Delay						
	Min		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp36a	sp37a	FCC outputs—internal clock (NMSI)	6	5.5	5.5	5.5	0.5	0.5	0.5	0.5		
sp36b	sp37b	FCC outputs—external clock (NMSI)	8	8	8	8	2	2	2	2		
sp38a	sp39a	SCC/SMC/SPI/I2C outputs—internal clock (NMSI)	10	10	10	10	0	0	0	0		
sp38b	sp39b	SCC/SMC/SPI/I2C outputs—external clock (NMSI)	8	8	8	8	2	2	2	2		
sp40	sp41	TDM outputs/SI	11	11	11	11	2.5	2.5	2.5	2.5		
sp42	sp43	TIMER/IDMA outputs	11	11	11	11	0.5	0.5	0.5	0.5		
sp42a	sp43a	PIO outputs	11	11	11	11	0.5	0.5	0.5	0.5		

Table 10. AC Characteristics for CPM Outputs¹

¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

This table lists CPM input characteristics.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

Spec Number				Value (ns)							
Setup Hold	Characteristic		Setup				Hold				
	Hold			83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz	
sp16a	sp17a	FCC inputs—internal clock (NMSI)	6	6	6	6	0	0	0	0	
sp16b	sp17b	FCC inputs—external clock (NMSI)	2.5	2.5	2.5	2.5	2	2	2	2	
sp18a	sp19a	SCC/SMC/SPI/I2C inputs—internal clock (NMSI)	6	6	6	6	0	0	0	0	
sp18b	sp19b	SCC/SMC/SPI/I2C inputs—external clock (NMSI)	4	4	4	4	2	2	2	2	
sp20	sp21	TDM inputs/SI	3	3	3	3	2.5	2.5	2.5	2.5	
sp22	sp23	PIO/TIMER/IDMA inputs	8	8	8	8	0.5	0.5	0.5	0.5	

Table 11. AC Characteristics for CPM Inputs¹

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

NOTE

Although the specifications generally reference the rising edge of the clock, the following AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the FCC internal clock.

Figure 3. FCC Internal Clock Diagram

AC Electrical Characteristics

This figure shows the FCC external clock.

Figure 4. FCC External Clock Diagram

This figure shows the SCC/SMC/SPI/I²C external clock.

Note: There are four possible timing conditions for SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge.
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge (shown).
- 4. Input sampled on the falling edge and output driven on the rising edge.

Note: There are two possible timing conditions for SCC/SMC/I²C:

- 1. Input sampled on the falling edge and output driven on the falling edge (shown).
- 2. Input sampled on the falling edge and output driven on the rising edge.

Figure 5. SCC/SMC/SPI/I²C External Clock Diagram

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.

This figure shows the interaction of several bus signals.

Figure 9. Bus Signals

AC Electrical Characteristics

This figure shows signal behavior in MEMC mode.

Figure 10. MEMC Mode Diagram

NOTE

Generally, all SoC bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 14.

Table 14.	Tick Spacing for Memory Controller Signals	
-----------	--	--

PLL Clock Patio	Tick Spacing (T1 Occurs at the Rising Edge of CLKin)					
	Т2	Т3	T4			
1:2, 1:3, 1:4, 1:5, 1:6	1/4 CLKin	1/2 CLKin	3/4 CLKin			
1:2.5	3/10 CLKin	1/2 CLKin	8/10 CLKin			
1:3.5	4/14 CLKin	1/2 CLKin	11/14 CLKin			

This table is a representation of the information in Table 14.

Figure 11. Internal Tick Spacing for Memory Controller Signals

Mode ³	Bus ((M	Clock Hz)	CPM Multiplication	CPM Clock (MHz)		CPU	CPU (M	Clock IHz) PCI		PCI ((M	Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low High		Factor ⁶	Low	High
0100_001	25.0	50.0	6	150.0	300.0	6	150.0	300.0	6	25.0	50.0
0100_010	25.0	50.0	6	150.0	300.0	7	175.0	350.0	6	25.0	50.0
0100_011	25.0	50.0	6	150.0	300.0	8	200.0	400.0	6	25.0	50.0
0101_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0101_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0
0101_010	50.0	100.0	2	100.0	200.0	3.5	175.0	350.0	4	25.0	50.0
0101_011	50.0	100.0	2	100.0	200.0	4	200.0	400.0	4	25.0	50.0
0101_100	50.0	100.0	2	100.0	200.0	4.5	225.0	450.0	4	25.0	50.0
0101_101	42.9	83.3	3	128.6	250.0	3.5	150.0	291.7	5	25.7	50.0
0101_110	41.7	83.3	3	125.0	250.0	4	166.7	333.3	5	25.0	50.0
0101_111	41.7	83.3	3	125.0	250.0	4.5	187.5	375.0	5	25.0	50.0
0110_000	60.0	120.0	2.5	150.0	300.0	2.5	150.0	300.0	6	25.0	50.0
0110_001	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0110_010	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0110_011	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0110_100	60.0	120.0	2.5	150.0	300.0	4.5	270.0	540.0	6	25.0	50.0
0110_101	60.0	120.0	2.5	150.0	300.0	5	300.0	600.0	6	25.0	50.0
0110_110	60.0	120.0	2.5	150.0	300.0	6	360.0	720.0	6	25.0	50.0
0111_000						Reserved					
0111_001	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0111_010	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
0111_011	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
0111_100	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0
1000_000						Reserved					
1000_001	66.7	133.3	3	200.0	400.0	3	200.0	400.0	8	25.0	50.0

	Table 18. Clock Co	onfigurations for	PCI Host Mode (PCI MODCK=1)	^{1,2} (continued)
--	--------------------	-------------------	-----------------	--------------	----------------------------

Clock Configuration Modes

Mode ³	PCI ((MI	Clock Hz)	CPM Multiplication	CPM (M	Clock Hz)	CPU Multiplication	CPU (M	Clock Hz)	Bus	Bus ((M	Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
0011_000						Reserved					
0011_001						Reserved					
0011_010						Reserved					
0011_011						Reserved					
0011_100						Reserved					
0100_000						Reserved					
0100_001	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0100_010	50.0	66.7	3	150.0	200.0	3.5	175.0	200.0	3	50.0	66.7
0100_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0100_100	50.0	66.7	3	150.0	200.0	4.5	225.0	300.0	3	50.0	66.7
0101_000	50.0	66.7	5	250.0	333.3	2.5	250.0	333.3	2.5	100.0	133.3
0101_001	50.0	66.7	5	250.0	333.3	3	300.0	400.0	2.5	100.0	133.3
0101_010	50.0	66.7	5	250.0	333.3	3.5	350.0	466.6	2.5	100.0	133.3
0101_011	50.0	66.7	5	250.0	333.3	4	400.0	533.3	2.5	100.0	133.3
0101_100	50.0	66.7	5	250.0	333.3	4.5	450.0	599.9	2.5	100.0	133.3
0101_101	50.0	66.7	5	250.0	333.3	5	500.0	666.6	2.5	100.0	133.3
0101_110	50.0	66.7	5	250.0	333.3	5.5	550.0	733.3	2.5	100.0	133.3
0110_000						Reserved					
0110_001	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
0110_010	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0110_011	50.0	66.7	4	200.0	266.6	4	266.7	355.5	3	66.7	88.9
0110_100	50.0	66.7	4	200.0	266.6	4.5	300.0	400.0	3	66.7	88.9
0111_000	50.0	66.7	3	150.0	200.0	2	150.0	200.0	2	75.0	100.0
0111_001	50.0	66.7	3	150.0	200.0	2.5	187.5	250.0	2	75.0	100.0
0111_010	50.0	66.7	3	150.0	200.0	3	225.0	300.0	2	75.0	100.0
0111_011	50.0	66.7	3	150.0	200.0	3.5	262.5	350.0	2	75.0	100.0

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Table 21	Pinout	(continued)
	. Fillout	(continueu)

Pin N		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
	S	D1
A	0	A3
A	B5	
A	2	D8
A	3	C6
А	4	A4
А	5	A6
A	6	B6
А	7	C7
А	8	B7
А	9	Α7
A1	0	D9
A11		E11
A12		C9
A1	3	B9
A1	4	D11
A15		A9
A16		B10
A1	7	A10
A1	8	B11
A1	9	A11
A2	20	D12
A21		A12
A22		D13
A23		B13
A24		C13
A25		C14
A2	26	B14
A2	27	D14
A2	28	E14
A29		A14

Pin N		
MPC8272/MPC8248 and MPC8271/MPC8247	Ball	
PA31/FCC1_MII_COL	FCC1_UT_TXENB	G22 ³
PB18/FCC2_M	II_HDLC_RXD3	T25 ³
PB19/FCC2_M	ILHDLC_RXD2	P22 ³
PB20/FCC2_MII_H	IDLC_RMII_RXD1	L25 ³
PB21/FCC2_MII_HDLC_RM	II_RXD0/FCC2_TRAN_RXD	J26 ³
PB22/FCC2_MII_HDLC_ FCC2_RI	TXD0/FCC2_TRAN_TXD/ /III_TXD0	U23 ³
PB23/FCC2_MII_HDLC_	TXD1/FCC2_RMII_TXD1	U26 ³
PB24/FCC2_MII_HDL	C_TXD2/L1RSYNCB2	M24 ³
PB25/FCC2_MII_HDL	C_TXD3/L1TSYNCB2	M23 ³
PB26/FCC2_MII	_CRS/L1RXDB2	H24 ³
PB27/FCC2_MII	E25 ³	
PB28/FCC2_MII_RMII_F	D26 ³	
PB29/FCC2_M	K21 ³	
PB30/FCC2_MII_RX_D	D24 ³	
PB31/FCC2	_MII_TX_ER	E23 ³
PC0/DREQ3/BRGO7	AF23 ³	
PC1/BRGC	AD23 ³	
PC4/SMRXD1/SI2	AB22 ³	
PC5/SMTXD1/SI2_L1ST3/FCC2_CTS		AE24 ³
PC6/FCC1_CD/SI2_L1ST2	FCC1_UT_RXADDR2	AF24 ³
PC7/FCC1_CTS	FCC1_UT_TXADDR2	AE26 ³
PC8/CD4/RTS1/S	AC24 ³	
PC9/CTS4/L	AA23 ³	
PC10/CD3	AB25 ³	
PC11/CTS3/USE	V22 ³	
PC12 FCC1_UT_RXADDR1		AA26 ³
PC13/BRGO5	FCC1_UT_TXADDR1	V23 ³
PC14/CD1	FCC1_UT_RXADDR0	W24 ³
PC15/CTS1	FCC1_UT_TXADDR0	U24 ³
PC16/	T23 ³	

Pinout

Table 21. Pinout (continued)

Pin N				
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball		
PC17/CLK15/B	RG08/DONE2	T26 ³		
PC18/CLK	14/TGATE2	R26 ³		
PC19/CLK13/B	RG07/TGATE1	P24 ³		
PC20/CLK	12/USBOE	L26 ³		
PC21/CLK11/B	RGO6/CP_INT	L24 ³		
PC22/CLK10/DONE3	FCC1_UT_TXPRTY	L23 ³		
PC23/CLK9/BRG	GO5/DACK3/CD1	K24 ³		
PC24/CLK8/TIN3/TO	UT4/DREQ2/BRGO1	K23 ³		
PC25/CLK7/BRGC	04/DACK2/SPISEL	F26 ³		
PC26/CLK6/T	OUT3/TMCLK	H23 ³		
PC27/CLK5/BRGO3/TOUT1	FCC1_UT_RXPRTY	K22 ³		
PC28/CLK4/TIN1	PC28/CLK4/TIN1/TOUT2/SPICLK			
PC29/CLK3/TIN	PC29/CLK3/TIN2/BRGO2/CTS1			
PD7/SMSYN2	FCC1_UT_TXADDR3	AB21 ³		
PD14/I	2CSCL	AC26 ³		
PD15/I	Y23 ³			
PD16/SPIMISO	FCC1_UT_TXPRTY	AA25 ³		
PD17/BRGO2/SPIMOSI	FCC1_UT_RXPRTY	Y26 ³		
PD18/SPICLK	FCC1_UT_RXADDR4	W25 ³		
PD19/SPISEL/BRGO1 FCC1_UT_TXADDR4		V25 ³		
PD20/RTS4/	R24 ³			
PD21/TXD4	P23 ³			
PD22/RXD4	N25 ³			
PD23/RTS	K26 ³			
PD24/TXD3/USB_TN		K25 ³		
PD25/RXD3	J25 ³			
PD29/RTS1	FCC1_UT_RXADDR3	C26 ³		
PD30/	TXD1	E24 ³		
PD31/	/RXD1	B25 ³		
VCC	SYN	C18		
VCCS	К6			

Package Description

9 Package Description

This figure shows the side profile of the PBGA package to indicate the direction of the top surface view.

Figure 13. Side View of the PBGA Package Remove

9.1 Package Parameters

This table provides package parameters.

Table 22. Package Parameters

Code	Туре	Outline (mm)	Interconnects	Pitch (mm)	Nominal Unmounted Height (mm)
VR, ZQ	PBGA	27 x 27	516	1	2.25

NOTE: Temperature Reflow for the VR Package

In the VR package, sphere composition is lead-free (see Table 2). This requires higher temperature reflow than what is required for other PowerQUICC II packages. Consult "Freescale PowerQUICC II Pb-Free Packaging Information" (MPC8250PBFREEPKG) available on www.freescale.com.

9.2 Mechanical Dimensions

This figure provides the mechanical dimensions and bottom surface nomenclature of the 516 PBGA package.

Figure 14. Mechanical Dimensions and Bottom Surface Nomenclature—516 PBGA

Document Revision History

Revision	Date	Substantive Changes
0.2	12/2003	 Table 1: New Table 2: New Table 4: Modification of VDD and VCCSYN to 1.45–1.60 V Table 8: Addition of note 2 regarding TRST and PORESET (see V_{IH} row of Table 8) Table 8: Addition of note 2 regarding TRST and PORESET (see V_{IH} row of Table 8) Table 8: Addition of note 2 regarding TRST and PORESET (see V_{IH} row of Table 8) Table 8: Addition of note 2 regarding TRST and PORESET (see V_{IH} row of Table 8) Table 8: Addition of note 2 regarding TRST and PORESET (see V_{IH} row of Table 8) Table 8: Addition of note 2 regarding TRST and PORESET (see V_{IH} row of Table 8) Table 8: Addition of POL_GNT1 (AE13) CPCI_HS_ENUM to POL_GNT2 (AF21) Table 8: Addition of POL_GNT2 (AF21) Table 8: Addition of POWerQUICO II devices: PCI_CFG0 (PCI_HOST_EN) (AC21) PCI_CFG2 (DLL_ENABLE) (AE22) PCI_CCG2 (DLL_ENABLE) (AE23) PCI_RD7 (AF16) PCI_TRD7 (AF16) PCI_TRD7 (AF16) PCI_TRD7 (AF16) PCI_DEV (AF15) PCI_COSTOP (AE15) DEVSEL (AC17) PCI_DERE (AD13) PCI_REQO-2 (AAE20, AF14, AB14) PCI_GINT0-2 (AD20, AE13, AF21) PCI_CO-3 (AE12, AF13, AC15, AE18) PCI_CABD-31 Table 8: Addition of R_{0,IT} and note 4 Sections 4: 1-4.5 and 4.7 on thermal characteristics: New Section 7, "Clock Configuration Modes": Modification to first paragraph. Note that PCI_MODCK is a bit in the Hard Reset Configuration Word. It is not an input signal as it is in the MPCR280 Family. Addition of These 1 to TRST (E21) and PORESET (C24) Table 21: Addition of These (AD24). This pin is now a "No connect." Note 5 unchanged. Table 21: Removal of Thermal0 (D19) and Thermal1(J3). These pins are now "No connects." Note 4 unchanged. Table 21: Removal of Spare0 (AD24). This pin is now a "No connect." Note 5 unchanged.
0.1	9/2003	 Addition of the MPC8271 and the MPC8247 (these devices do not have a security engine) Table 8: Addition of note 2 to V_{IH} Table 8: Changed I_{OL} for 60x signals to 6.0 mA Modification of note 1 for Table 17, Table 18, Table 19, and Table 20 Table 21: Addition of ball AD9 to GND. In rev 0 of this document, AD8 was listed as assigned to both CS5 and GND. AD8 is only assigned to CS5. Table 21: Addition of note 4 to Thermal0 (D19) and Thermal1(J3) Addition of ZQ package code to Figure 15
0	5/2003	NDA release

Table 23. Document Revision History (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, QorlQ, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ Qonverge, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2002–2011 Freescale Semiconductor, Inc.

Document Number: MPC8272EC Rev. 3 09/2011

