

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; RISC CPM, Security; SEC
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8272zqtiea

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 MPC8272/8271 only

This figure shows the block diagram of the SoC.

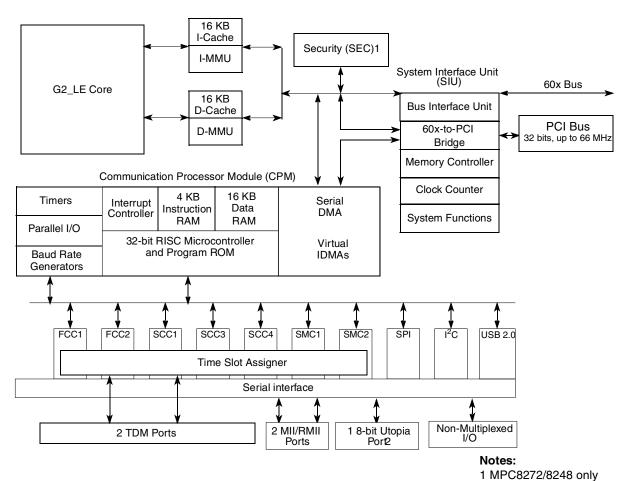


Figure 1. SoC Block Diagram

1.1 Features

The major features of the SoC are as follows:

- Dual-issue integer (G2_LE) core
 - A core version of the MPC603e microprocessor
 - System core microprocessor supporting frequencies of 266–400 MHz
 - Separate 16 KB data and instruction caches:
 - Four-way set associative
 - Physically addressed
 - LRU replacement algorithm
 - Power Architecture®-compliant memory management unit (MMU)
 - Common on-chip processor (COP) test interface
 - Supports bus snooping for cache coherency

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Overview

- One of the FCCs supports ATM (MPC8272 and MPC8271 only)—full-duplex SAR at 155 Mbps, 8-bit UTOPIA interface 31 Mphys, AAL5, AAL1, AAL2, AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 64-K external connections
- Three serial communications controllers (SCCs) identical to those on the MPC860 supporting the digital portions of the following protocols:
 - Ethernet/IEEE 802.3 CDMA/CS
 - HDLC/SDLC and HDLC bus
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Binary synchronous (BiSync) communications
 - Transparent
 - QUICC multichannel controller (QMC) up to 64 channels
 - Independent transmit and receive routing, frame synchronization.
 - Serial-multiplexed (full-duplex) input/output 2048, 1544, and 1536 Kbps PCM highways
 - Compatible with T1/DS1 24-channel and CEPT E1 32-channel PCM highway, ISDN basic rate, ISDN primary rate, and user defined.
 - Subchanneling on each time slot.
 - Independent transmit and receive routing, frame synchronization and clocking
 - Concatenation of any not necessarily consecutive time slots to channels independently for receiver/transmitter
 - Supports H1,H11, and H12 channels
 - Allows dynamic allocation of channels
 - SCC3 in NMSI mode is not usable when USB is enabled.
- Two serial management controllers (SMCs), identical to those of the MPC860
 - Provides management for BRI devices as general-circuit interface (GCI) controllers in time-division-multiplexed (TDM) channels
 - Transparent
 - UART (low-speed operation)
- One serial peripheral interface identical to the MPC860 SPI
- One I²C controller (identical to the MPC860 I²C controller)
 - Microwire compatible
 - Multiple-master, single-master, and slave modes
- Up to two TDM interfaces
 - Supports one groups of two TDM channels
 - 1024 bytes of SI RAM
- Eight independent baud rate generators and 14 input clock pins for supplying clocks to FCC, SCC, SMC, and USB serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers

Table 5. DC Electrical Characteristics¹ (continued)

I _{OL} = 5.3mA CS[0–5]				
$\frac{\overline{CS}}{CS}[0-5]$	V_{OL}	_	0.4	V
CS6/BCTL1/SMI				
CS7/TLBSYNC				
BADDR27/ IRQ1				
BADDR28/ IRQ2				
ALE/ IRQ4				
BCTL0				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4				
PSDAMUX/PGPL5				
PCI_CFG0 (PCI_HOST_EN)				
PCI_CFG1 (PCI_ARB_EN)				
PCI_CFG2 (DLL_ENABLE)				
MODCK1/RSRV/TC(0)/BNKSEL(0)				
MODCK2/CSE0/TC(1)/BNKSEL(1)				
MODCK2/C3E0/TC(1)/BNK3EL(1) MODCK3CSE1/TC(2)/BNKSEL(2)				
I _{OL} = 3.2mA PCI_PAR				
PCI FRAME				
PCI_TRDY				
PCI_IRDY				
PCI_RDY PCI_STOP				
PCI_DEVSEL				
PCI_IDSEL				
PCI_PERR				
PCI_SERR				
PCI_REQ0				
PCI_REQ1/ CPI_HS_ES				
PCI_GNTO				
PCI_GNT1/ CPI_HS_LES				
PCI_GNT2/ CPI_HS_ENUM				
PCI_RST				
PCI_INTA				
PCI_REQ2				
DLLOUT				
PCI_AD(0-31)				
PCI_C(0-3)/BE(0-3)				
PA[8–31]				
PB[18–31]				
PC[0-1,4-29]				
PD[7–25, 29–31]				
TDO				

The default configuration of the CPM pins (PA[8-31], PB[18-31], PC[0-1,4-29], PD[7-25, 29-31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

TCK, TRST and PORESET have min VIH = 2.5V.
 V_{IL} for IIC interface does not match IIC standard, but does meet IIC standard for V_{OL} and should not cause any compatibility issue.

⁴ The leakage current is measured for nominal VDDH, VCCSYN, and VDD.

Table 6.

Table 0.				
Characteristic	Symbol	Min	Max	Unit
I _{OL} = 5.3mA	V _{OL}	_	0.4	V
<u>CS</u> [0-9]				
CS(10)/BCTL1				
CS (11)/AP(0)				
BADDR[27–28]				
ALE				
BCTLO				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4/PPBS				
PSDAMUX/PGPL5				
LWE[0-3]LSDDQM[0-3]/LBS[0-3]/PCI_CFG[0-3]				
LSDA10/LGPL0/PCI_MODCKH0				
LSDWE/LGPL1/PCI_MODCKH1				
LOE/LSDRAS/LGPL2/PCI_MODCKH2				
LSDCAS/LGPL3/PCI_MODCKH3				
LGTA/LUPMWAIT/LGPL4/LPBS				
LSDAMUX/LGPL5/PCI_MODCK				
LWR				
MODCK[1-3]/AP[1-3]/TC[0-2]/BNKSEL[0-2]				
I _{OL} = 3.2mA				
IOL				
L_A15/FRAME/SMI				
L_A16/TRDY				
L_A17/IRDY/CKSTP_OUT				
L_A18/STOP				
L_A19/DEVSEL				
L_A20/IDSEL				
L_A21/PERR				
L_A22/SERR				
L_A23/REQ0				
L_A24/REQ1/HSEJSW				
L_A25/GNT0				
L_A26/GNT1/HSLED				
L_A27/GNT2/HSENUM				
L_A28/RST/CORE_SRESET				
L_A29/INTAL_A30/REQ2				
L_A31				
LCL_D[0-31)]/AD[0-31]				
LCL_DP[03]/C/BE[0-3]				
PA[0-31]				
PB[4–31]				
PC[0-31]				
PD[4–31]				
TDO				
QREQ				1

 $[\]overline{\text{TCK}}$, $\overline{\text{TRST}}$ and $\overline{\text{PORESET}}$ have min VIH = 2.5V.

The leakage current is measured for nominal VDDH,VCCSYN, and VDD.
 V_{IL} for IIC interface does not match IIC standard, but does meet IIC standard for V_{OL} and should not cause any compatibility issue.

4.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta IC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

4.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly dependent on the board temperature.

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 T_B = board temperature (°C)

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground plane.

This table lists CPM input characteristics.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

Spec Number			Value (ns)										
		Characteristic		Se	tup			Н	old				
Setup	Hold		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz			
sp16a	sp17a	FCC inputs—internal clock (NMSI)	6	6	6	6	0	0	0	0			
sp16b	sp17b	FCC inputs—external clock (NMSI)	2.5	2.5	2.5	2.5	2	2	2	2			
sp18a	sp19a	SCC/SMC/SPI/I2C inputs—internal clock (NMSI)	6	6	6	6	0	0	0	0			
sp18b	sp19b	SCC/SMC/SPI/I2C inputs—external clock (NMSI)	4	4	4	4	2	2	2	2			
sp20	sp21	TDM inputs/SI	3	3	3	3	2.5	2.5	2.5	2.5			
sp22	sp23	PIO/TIMER/IDMA inputs	8	8	8	8	0.5	0.5	0.5	0.5			

Table 11. AC Characteristics for CPM Inputs¹

NOTE

Although the specifications generally reference the rising edge of the clock, the following AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the FCC internal clock.

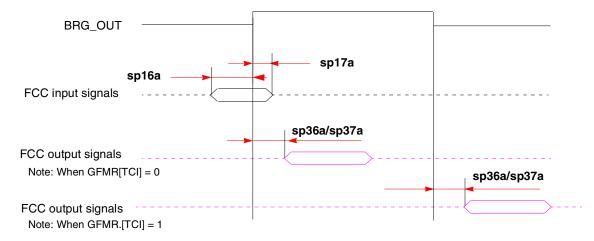


Figure 3. FCC Internal Clock Diagram

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

AC Electrical Characteristics

This figure shows the FCC external clock.

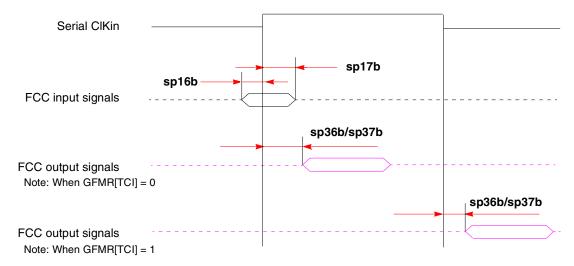
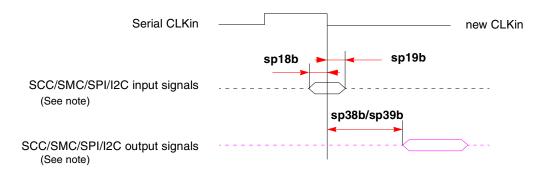



Figure 4. FCC External Clock Diagram

This figure shows the SCC/SMC/SPI/I²C external clock.

Note: There are four possible timing conditions for SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge.
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge (shown).
- 4. Input sampled on the falling edge and output driven on the rising edge.

Note: There are two possible timing conditions for SCC/SMC/I²C:

- 1. Input sampled on the falling edge and output driven on the falling edge (shown).
- 2. Input sampled on the falling edge and output driven on the rising edge.

Figure 5. SCC/SMC/SPI/I²C External Clock Diagram

NOTE: Conditions

The following conditions must be met in order to operate the MPC8272 family devices with 133 MHz bus: single PowerQUICC II Bus mode must be used (no external master, BCR[EBM] = 0); data bus must be in Pipeline mode (BRx[DR] = 1); internal arbiter and memory controller must be used. For expected load of above 40 pF, it is recommended that data and address buses be configured to low (25 Ω) impedance (SIUMCR[HLBE0] = 1, SIUMCR[HLBE1] = 1).

Table 12. AC Characteristics for SIU Inputs¹

Spec N	umber		Value (ns)									
		Characteristic	tup			Н	old					
Setup	Hold		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp11	sp10	AACK/TA/TS/DBG/BG/BR/ARTRY/TEA	6	5	3.5	N/A	0.5	0.5	0.5	N/A		
sp12	sp10	Data bus in normal mode	5	4	3.5	N/A	0.5	0.5	0.5	N/A		
sp13	sp10	Data bus in pipeline mode (without ECC and PARITY)	N/A	4	2.5	1.5	N/A	0.5	0.5	0.5		
sp15	sp10	All other pins	5	4	3.5	N/A	0.5	0.5	0.5	N/A		

Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

This table lists SIU output characteristics.

Table 13. AC Characteristics for SIU Outputs¹

Spec Number			Value (ns)									
		Characteristic	ı	Maximu	m Delay	/		Minimu	m Delay	1		
Max	Min		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp31	sp30	PSDVAL/TEA/TA	7	6	5.5	N/A	1	1	1	N/A		
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	6.5	5.5	4.5 ²	1	1	1	1 ²		
sp33	sp30	Data bus ³	6.5	6.5	5.5	4.5	0.8	0.8	0.8	1		
sp34	sp30	Memory controller signals/ALE	6	5.5	5.5	4.5	1	1	1	1		
sp35	sp30	All other signals	6	5.5	5.5	N/A	1	1	1	N/A		

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

² Value is for ADD only; other sp32/sp30 signals are not applicable.

³ To achieve 1 ns of hold time at 66.67/83.33/100 MHZ, a minimum loading of 20 pF is required.

AC Electrical Characteristics

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.

This figure shows the interaction of several bus signals.

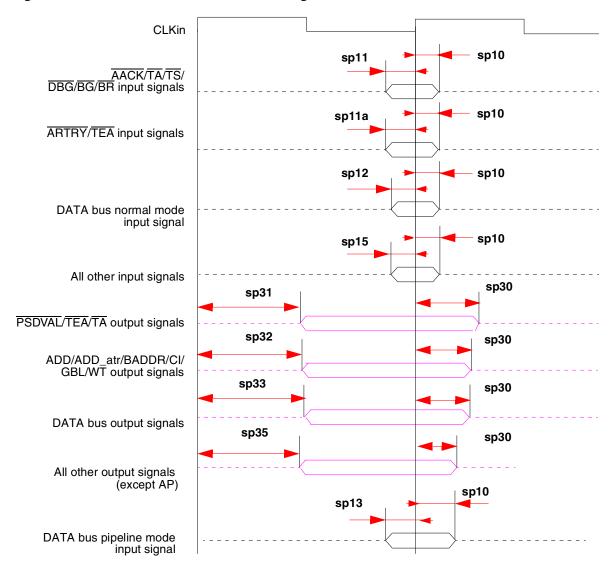


Figure 9. Bus Signals

This figure shows signal behavior in MEMC mode.

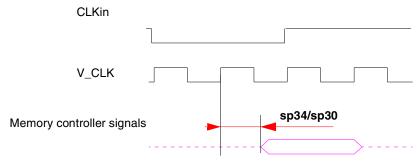


Figure 10. MEMC Mode Diagram

NOTE

Generally, all SoC bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 14.

Table 14. Tick Spacing for Memory Controller Signals

PLL Clock Ratio	Tick Spacing (T1 Occurs at the Rising Edge of CLKin)							
PLE CIOCK NATIO	T2	Т3	Т4					
1:2, 1:3, 1:4, 1:5, 1:6	1/4 CLKin	1/2 CLKin	3/4 CLKin					
1:2.5	3/10 CLKin	1/2 CLKin	8/10 CLKin					
1:3.5	4/14 CLKin	1/2 CLKin	11/14 CLKin					

This table is a representation of the information in Table 14.

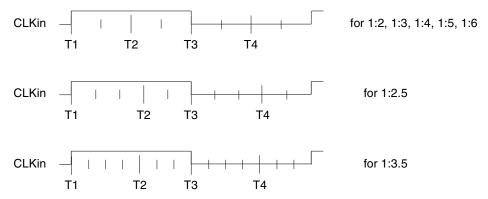


Figure 11. Internal Tick Spacing for Memory Controller Signals

Freescale Semiconductor 25

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

AC Electrical Characteristics

NOTE

The UPM machine outputs change on the internal tick determined by the memory controller programming; the AC specifications are relative to the internal tick. Note that SDRAM and GPCM machine outputs change on CLKin's rising edge.

6.3 JTAG Timings

This table lists the JTAG timings.

Table 15. JTAG Timings¹

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	_
JTAG external clock cycle time	t _{JTG}	30	_	ns	_
JTAG external clock pulse width measured at 1.4V	t _{JTKHKL}	15	_	ns	_
JTAG external clock rise and fall times	t _{JTGR} and t _{JTGF}	0	5	ns	6
TRST assert time	t _{TRST}	25	_	ns	3, 6
Input setup times Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4	_ _	ns ns	4, 7 4, 7
Input hold times Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns ns	4, 7 4, 7
Output valid times Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	_ _	10 10	ns ns	5, 7 5, 7
Output hold times Boundary-scan data TDO	t _{JTKLDX} t _{JTKLOX}	1 1		ns ns	5, 7 5, 7
JTAG external clock to output high impedance Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	1	10 10	ns ns	5, 6 5, 6

All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

³ TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

⁴ Non-JTAG signal input timing with respect to t_{TCLK}.

⁵ Non-JTAG signal output timing with respect to t_{TCLK}.

⁶ Guaranteed by design.

⁷ Guaranteed by design and device characterization.

Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	Bus (CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Eactor ⁵		High	Factor ⁶	Low	High
1011_100	80.0	106.7	2.5	200.0	266.6	4	320.0	426.6	4	50.0	66.7
1011_101	80.0	106.7	2.5	200.0	266.6	4.5	360.0	480.0	4	50.0	66.7
1101_000	100.0	133.3	2.5	250.0	333.3	3	300.0	400.0	5	50.0	66.7
1101_001	100.0	133.3	2.5	250.0	333.3	3.5	350.0	466.6	5	50.0	66.7
1101_010	100.0	133.3	2.5	250.0	333.3	4	400.0	533.3	5	50.0	66.7
1101_011	100.0	133.3	2.5	250.0	333.3	4.5	450.0	599.9	5	50.0	66.7
1101_100	100.0	133.3	2.5	250.0	333.3	5	500.0	666.6	5	50.0	66.7
1101_101	125.0	166.7	2	250.0	333.3	3	375.0	500.0	5	50.0	66.7
1101_110	125.0	166.7	2	250.0	333.3	4	500.0	666.6	5	50.0	66.7
1110_000	100.0	133.3	3	300.0	400.0	3.5	350.0	466.6	6	50.0	66.7
1110_001	100.0	133.3	3	300.0	400.0	4	400.0	533.3	6	50.0	66.7
1110_010	100.0	133.3	3	300.0	400.0	4.5	450.0	599.9	6	50.0	66.7
1110_011	100.0	133.3	3	300.0	400.0	5	500.0	666.6	6	50.0	66.7
1110_100	100.0	133.3	3	300.0	400.0	5.5	550.0	733.3	6	50.0	66.7
1100_000						Reserved					
1100_001		Reserved									
1100_010		Reserved									

The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

 $CPM_CLK/PCI_CLK = (PCIDF + 1) / 2.$

² PCI_MODCK determines the PCI clock frequency range. SeeTable 18 for lower range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

⁶ CPM_CLK/PCI_CLK ratio. When PCI_MODCK = 0, the ratio of CPM_CLK/PCI_CLK should be calculated from SCCR[PCIDF] as follows:

Clock Configuration Modes

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³		Clock Hz)	CPM		Clock Hz)	CPU		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Multiplication Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Factor	Low	High
1000_000						Reserved					
1000_000	50.0	66.7	3	150.0	200.0	2.5	150.0	166.7	2.5	60.0	80.0
1000_011	50.0	66.7	3	150.0	200.0	3		240.0	2.5	60.0	80.0
1000_011	50.0	66.7	3	150.0	200.0	3.5		280.0	2.5	60.0	80.0
1000_011	50.0	66.7	3	150.0	200.0	4		320.0	2.5	60.0	80.0
1000_100	50.0	66.7	3	150.0	200.0	4.5		360.0	2.5	60.0	80.0
	00.0	00.7		10010	= 00.0			000.0		00.0	00.0
1001_000						Reserved					
1001_001						Reserved					
1001_010						Reserved					
1001_011	50.0	66.7	4	200.0	266.6	4	200.0	266.6	4	50.0	66.7
1001_100	50.0	66.7	4	200.0	266.6	4.5	225.0	300.0	4	50.0	66.7
				I			I			I	I
1010_000						Reserved					
1010_001	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
1010_010	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
1010_011	50.0	66.7	4	200.0	266.6	4	266.7	355.5	3	66.7	88.9
1010_100	50.0	66.7	4	200.0	266.6	4.5	300.0	400.0	3	66.7	88.9
											•
1011_000						Reserved					
1011_001	50.0	66.7	4	200.0	266.6	2.5	200.0	266.6	2.5	80.0	106.
1011_010	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.
1011_011	50.0	66.7	4	200.0	266.6	3.5	280.0	373.3	2.5	80.0	106.
1011_100	50.0	66.7	4	200.0	266.6	4	320.0	426.6	2.5	80.0	106.
1011_101	50.0	66.7	4	200.0	266.6	2.5	250.0	333.3	2	100.0	133.
	50.0	66.7	4	200.0	266.6	3	300.0	400.0	2	100.0	133.
1011_110					1						

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³	PCI (Clock Hz)	CPM Multiplication	_	Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
0100_100	25.0	50.0	6	150.0	300.0	4.5	225.0	450.0	3	50.0	100.0
0101_000	30.0	50.0	5	150.0	250.0	2.5	150.0	250.0	2.5	60.0	100.0
0101_001	25.0	50.0	5	125.0	250.0	3	150.0	300.0	2.5	50.0	100.0
0101_010	25.0	50.0	5	125.0	250.0	3.5	175.0	350.0	2.5	50.0	100.0
0101_011	25.0	50.0	5	125.0	250.0	4	200.0	400.0	2.5	50.0	100.0
0101_100	25.0	50.0	5	125.0	250.0	4.5	225.0	450.0	2.5	50.0	100.0
0101_101	25.0	50.0	5	125.0	250.0	5	250.0	500.0	2.5	50.0	100.0
0101_110	25.0	50.0	5	125.0	250.0	5.5	275.0	550.0	2.5	50.0	100.0
				•	•						•
0110_000						Reserved					
0110_001	25.0	50.0	8	200.0	400.0	3	200.0	400.0	3	66.7	133.3
0110_010	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3
0110_011	25.0	50.0	8	200.0	400.0	4	266.7	533.3	3	66.7	133.3
0110_100	25.0	50.0	8	200.0	400.0	4.5	300.0	600.0	3	66.7	133.3
	I						I	I			
0111_000	25.0	50.0	6	150.0	300.0	2	150.0	300.0	2	75.0	150.0
0111_001	25.0	50.0	6	150.0	300.0	2.5	187.5	375.0	2	75.0	150.0
0111_010	25.0	50.0	6	150.0	300.0	3	225.0	450.0	2	75.0	150.0
0111_011	25.0	50.0	6	150.0	300.0	3.5	262.5	525.0	2	75.0	150.0
	I						I	I			
1000_000						Reserved					
1000_001	25.0	50.0	6	150.0	300.0	2.5	150.0	300.0	2.5	60.0	120.0
1000_010	25.0	50.0	6	150.0	300.0	3	180.0	360.0	2.5	60.0	120.0
1000_011	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
1000_100	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0
1000_101	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0
			1	1							
1001_000		Reserved									
1001_001						Reserved					

Table 21. Pinout (continued)

Pin N		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
T:	S	D1
A	0	A3
A	1	B5
A	2	D8
A	3	C6
A	4	A4
A	5	A6
A	6	В6
A	7	C7
A	8	B7
A	9	A7
A1	0	D9
A1	1	E11
A1	2	C9
A1	3	B9
A1	4	D11
A1	5	A9
A1	6	B10
A1	7	A10
A1	8	B11
A1	9	A11
A2	20	D12
A2	21	A12
A2	22	D13
A2	23	B13
A2	24	C13
A2	25	C14
A2	26	B14
A2	27	D14
A2		E14
A2		A14

Pinout

Table 21. Pinout (continued)

Pin N	lame	
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
A3	30	B15
A3	31	A15
тт	-0	В3
тт	T1	E8
тт	-2	D7
тт	-3	C4
тт	⁻ 4	E7
TB	ST	E3
TSI	Z0	E4
TSI	Z1	E5
TSI	Z2	C3
TSI	Z3	D5
ĀĀ	CK	D3
ĀRT	RY	C2
DBG/	IRQ7	F16
DBB/I	IRQ3	D18
D	0	AC1
D	1	AA1
D	2	V3
D	3	R5
D	4	P4
D	5	M4
D	6	J4
D	7	G1
D	8	W6
D	9	Y3
D1	0	V1
D1	1	N6
D1	2	P3
D1	3	M2
D1	4	J5

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Pinout

Table 21. Pinout (continued)

Pin N	Pin Name	
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
PCI_	IRDY	AF15
PCI_	STOP	AE15
PCI_D	EVSEL	AE14
PCI_I	DSEL	AC17
PCI_I	PERR	AD14
PCI_S	SERR	AD13
PCI_I	REQ0	AE20
PCI_REQ1/0	CPCI_HS_ES	AF14
PCI_	GNT0	AD20
PCI_GNT1/C	PCI_HS_LED	AE13
PCI_GNT2/CF	PCI_HS_ENUM	AF21
PCI_	RST	AF22
PCI_	INTA	AE21
PCI_I	REQ2	AB14
DLL	OUT	AC22
PCI_	AD0	AF7
PCI_	AD1	AE10
PCI_	AD2	AB10
PCI_	AD3	AD10
PCI_	AD4	AE9
PCI_	AD5	AF8
PCI_	AD6	AC10
PCI_	AD7	AE11
PCI_	_AD8	AB11
PCI_	_AD9	AF10
PCI_	AD10	AF9
PCI_	AD11	AB12
PCI_	AD12	AC12
PCI_	AD13	AD12
PCI_	AD14	AF11
PCI_	AD15	AB13

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 21. Pinout (continued)

Pin N	Pin Name	
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
PCI_	AD16	AE16
PCI_	AD17	AF17
PCI	AD18	AD16
PCI	AD19	AC16
PCI	AD20	AF18
PCI	AD21	AB16
PCI	AD22	AD17
PCI	AD23	AF19
PCI	AD24	AB17
PCI	AD25	AF20
PCI	AD26	AE19
PCI	AD27	AC18
PCI	AD28	AB18
PCI	AD29	AD19
PCI	AD30	AD21
PCI	AD31	AC20
PCI_C	0/BE0	AE12
PCI_C	1/BE1	AF13
PCI_C	2/BE2	AC15
PCI_C	3/BE3	AE18
ĪRQ0/NI	MI_OUT	A17
TR	ST ²	E21
TC	CK	B22
TN	AS .	C23
TI	Ol	B24
ТС	00	A22
TF	IIS	B23
PORESET	² /PCI_RST	C24
HRE	SET	D22
SRE	SET	F22
RSTO	CONF	A24

Table 21. Pinout (continued)

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
PA31/FCC1_MII_COL	FCC1_UT_TXENB	G22 ³
PB18/FCC2_M	II_HDLC_RXD3	T25 ³
PB19/FCC2_M	II_HDLC_RXD2	P22 ³
PB20/FCC2_MII_H	HDLC_RMII_RXD1	L25 ³
PB21/FCC2_MII_HDLC_RM	II_RXD0/FCC2_TRAN_RXD	J26 ³
PB22/FCC2_MII_HDLC_TXD0/FCC2_TRAN_TXD/ FCC2_RMII_TXD0		U23 ³
PB23/FCC2_MII_HDLC_	TXD1/FCC2_RMII_TXD1	U26 ³
PB24/FCC2_MII_HDL	C_TXD2/L1RSYNCB2	M24 ³
PB25/FCC2_MII_HDL	C_TXD3/L1TSYNCB2	M23 ³
PB26/FCC2_MII	_CRS/L1RXDB2	H24 ³
PB27/FCC2_MII	_COL/L1TXDB2	E25 ³
PB28/FCC2_MII_RMII_F	RX_ER/ FCC2_RTS /TXD1	D26 ³
PB29/FCC2_M	II_RMII_TX_EN	K21 ³
PB30/FCC2_MII_RX_D	V/FCC2_RMII_CRS_DV	D24 ³
PB31/FCC2	_MII_TX_ER	E23 ³
PC0/DREQ3/BRGO7/SMSYN1/L1CLKOA2		AF23 ³
PC1/BRGO6/L1RQA2		AD23 ³
PC4/SMRXD1/SI2	_L1ST4/FCC2_CD	AB22 ³
PC5/SMTXD1/SI2_L1ST3/FCC2_CTS		AE24 ³
PC6/FCC1_CD/SI2_L1ST2	FCC1_UT_RXADDR2	AF24 ³
PC7/FCC1_CTS	FCC1_UT_TXADDR2	AE26 ³
PC8/CD4/RTS1/S	SI2_L1ST2/CTS3	AC24 ³
PC9/CTS4/L1TSYNCA2		AA23 ³
PC10/CD3/USB_RN		AB25 ³
PC11/CTS3/USB_RP/L1TXD3A2		V22 ³
PC12	FCC1_UT_RXADDR1	AA26 ³
PC13/BRGO5	FCC1_UT_TXADDR1	V23 ³
PC14/CD1	FCC1_UT_RXADDR0	W24 ³
PC15/CTS1	FCC1_UT_TXADDR0	U24 ³
PC16/CLK16		T23 ³

Table 21. Pinout (continued)

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
PC17/CLK15/BR	GO8/DONE2	T26 ³
PC18/CLK14	/TGATE2	R26 ³
PC19/CLK13/BR0	GO7/TGATE1	P24 ³
PC20/CLK12/ USBOE		L26 ³
PC21/CLK11/BR	GO6/CP_INT	L24 ³
PC22/CLK10/DONE3	FCC1_UT_TXPRTY	L23 ³
PC23/CLK9/BRGC	95/DACK3/CD1	K24 ³
PC24/CLK8/TIN3/TOU	T4/DREQ2/BRGO1	K23 ³
PC25/CLK7/BRGO4	/DACK2/SPISEL	F26 ³
PC26/CLK6/TOI	JT3/TMCLK	H23 ³
PC27/CLK5/BRGO3/TOUT1	FCC1_UT_RXPRTY	K22 ³
PC28/CLK4/TIN1/T	OUT2/SPICLK	D25 ³
PC29/CLK3/TIN2/	BRGO2/CTS1	F24 ³
PD7/SMSYN2	FCC1_UT_TXADDR3	AB21 ³
PD14/I20	CSCL	AC26 ³
PD15/I20	CSDA	Y23 ³
PD16/SPIMISO	FCC1_UT_TXPRTY	AA25 ³
PD17/BRGO2/SPIMOSI	FCC1_UT_RXPRTY	Y26 ³
PD18/SPICLK	FCC1_UT_RXADDR4	W25 ³
PD19/SPISEL/BRGO1	FCC1_UT_TXADDR4	V25 ³
PD20/RTS4/L1	RSYNCA2	R24 ³
PD21/TXD4/L	1RXD0A2	P23 ³
PD22/RXD4/L	1TXD0A2	N25 ³
PD23/RTS3/	USB_TP	K26 ³
PD24/TXD3/	USB_TN	K25 ³
PD25/RXD3/USB_RXD		J25 ³
PD29/RTS1	FCC1_UT_RXADDR3	C26 ³
PD30/TXD1		E24 ³
PD31/RXD1		B25 ³
VCCSYN		C18
VCCSYN1		K6