

Welcome to E-XFL.COM

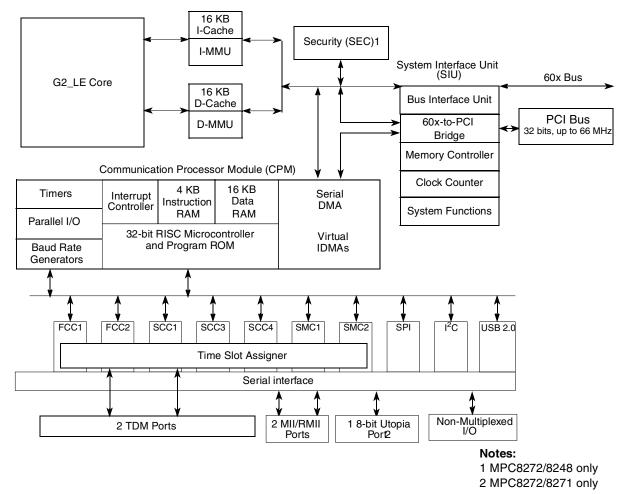
Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details


Product Status	Active
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8247cvrtiea

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This figure shows the block diagram of the SoC.

1.1 Features

The major features of the SoC are as follows:

- Dual-issue integer (G2_LE) core
 - A core version of the MPC603e microprocessor
 - System core microprocessor supporting frequencies of 266–400 MHz
 - Separate 16 KB data and instruction caches:
 - Four-way set associative
 - Physically addressed
 - LRU replacement algorithm
 - Power Architecture®-compliant memory management unit (MMU)
 - Common on-chip processor (COP) test interface
 - Supports bus snooping for cache coherency

3 DC Electrical Characteristics

This table shows DC electrical characteristics.

Table 5. DC Electrical Characteristics¹

Characteristic	Symbol	Min	Max	Unit
Input high voltage—all inputs except TCK, TRST and PORESET ²	V _{IH}	2.0	3.465	V
Input low voltage ³	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ⁴	I _{IN}	_	10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	I _{OZ}	—	10	μA
Signal low input current, V _{IL} = 0.8 V	١L	_	1	μA
Signal high input current, V _{IH} = 2.0 V	ι _Η	—	1	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$ except UTOPIA mode, and open drain pins In UTOPIA mode ⁵ (UTOPIA pins only): $I_{OH} = -8.0\text{mA}$ PA[8-31] PB[18-31] PC[0-1,4-29] PD[7-25, 29-31]	V _{OH}	2.4	_	V
In UTOPIA mode ⁵ (UTOPIA pins only): I _{OL} = 8.0mA PA[8–31] PB[18–31] PC[0–1,4–29] PD[7–25, 29–31]	V _{OL}	_	0.5	V

DC Electrical Characteristics

Characteristic	Symbol	Min	Мах	Unit
I _{OL} = 6.0mA	V _{OL}	—	0.4	V
BR	_			
BG/IRQ6				
ABB/IRQ2				
TS				
A[0-31]				
TT[0-4]				
TBST				
TSIZE[0-3]				
AACK				
ARTRY				
DBG/IRQ7				
DBB/IRQ3				
IRQ5/TBEN/EXT_DBG3/CINT				
PSDVAL TA				
GBL/IRQ1				
CI/BADDR29/IRQ2				
WT/BADDR30/IRQ3				
BADDR31/IRQ5/CINT				
CPU_BR/INT_OUT				
IRQ0/NMI_OUT				
PORESET/PCI_RST				
HRESET				
SRESET				
RSTCONF				

Table 5. DC Electrical Characteristics¹ (continued)

DC Electrical Characteristics

Та	h	P	6	
ıa	N	e.	υ.	

Characteristic	Symbol	Min	Max	Unit
I _{OL} = 5.3mA	V _{OL}		0.4	V
CS[0-9]	VOL VOL		0.4	v
CS(10)/BCTL1				
<u>CS(11)/AP(0)</u>				
BADDR[27–28]				
ALE				
BCTLO				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4/PPBS				
PSDAMUX/PGPL5				
LWE[0-3]LSDDQM[0-3]/LBS[0-3]/PCI_CFG[0-3]				
LSDA10/LGPL0/PCI_MODCKH0				
LSDWE/LGPL1/PCI_MODCKH1				
LOE/LSDRAS/LGPL2/PCI_MODCKH2				
LSDCAS/LGPL3/PCI_MODCKH3				
LGTA/LUPMWAIT/LGPL4/LPBS				
LSDAMUX/LGPL5/PCI_MODCK				
LWR				
MODCK[1-3]/AP[1-3]/TC[0-2]/BNKSEL[0-2]				
I _{OL} = 3.2mA				
L_A14/PAR				
L_A15/FRAME/SMI				
L_A16/TRDY				
L_A17/IRDY/CKSTP_OUT				
L_A18/STOP				
L_A19/DEVSEL				
L_A20/IDSEL				
L_A21/PERR				
L_A22/SERR				
L_A23/ <u>REQ0</u>				
L_A24/REQ1/HSEJSW				
L_A25/GNT0				
L_A26/GNT1/HSLED				
L_A27/GNT2/HSENUM				
L_A29/INTAL_A30/REQ2				
LCL_D[0-31)]/AD[0-31] LCL_DP[03]/C/BE[0-3]				
PA[0-31]				
PB[4–31]				
PC[0-31]				
PD[4–31]				
TDO				
QREQ				

TCK, $\overline{\text{TRST}}$ and $\overline{\text{PORESET}}$ have min VIH = 2.5V. 1

² The leakage current is measured for nominal VDDH,VCCSYN, and VDD.
 ³ V_{IL} for IIC interface does not match IIC standard, but does meet IIC standard for V_{OL} and should not cause any compatibility issue.

Thermal Characteristics

4.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

4.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly dependent on the board temperature.

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W) T_B = board temperature (°C) P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground plane.

Thermal Characteristics

4.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application, or a more accurate and complex model of the package can be used in the thermal simulation.

4.5 **Experimental Determination**

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the case to avoid measurement errors caused by cooling effects of the thermocouple wire.

4.6 Layout Practices

Each VDD and VDDH pin should be provided with a low-impedance path to the board's power supplies. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VDD and VDDH power supplies should be bypassed to ground using bypass capacitors located as close as possible to the four sides of the package. For filtering high frequency noise, a capacitor of 0.1uF on each VDD and VDDH pin is recommended. Further, for medium frequency noise, a total of 2 capacitors of 47uF for VDD and 2 capacitors of 47uF for VDDH are also recommended. The capacitor leads and associated printed circuit traces connecting to chip VDD, VDDH and ground should be kept to less than half an inch per capacitor lead. Boards should employ separate inner layers for power and GND planes.

All output pins on the SoC have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

4.7 References

Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd. Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) Specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

5 **Power Dissipation**

This table provides preliminary, estimated power dissipation for various configurations. Note that suitable thermal management is required to ensure the junction temperature does not exceed the maximum specified value. Also note that the I/O power should be included when determining whether to use a heat sink. For a complete list of possible clock configurations, see Section 7, "Clock Configuration Modes."

	СРМ		CPU		P _{INT} (W) ^{2,3}
Bus (MHz)	Multiplication Factor	CPM (MHz)	Multiplication Factor	CPU (MHz)	Vddi 1	.5 Volts
	Factor		Factor		Nominal	Maximum
66.67	3	200	4	266	1	1.2
100	2	200	3	300	1.1	1.3
100	2	200	4	400	1.3	1.5
133	2	267	3	400	1.5	1.8

Table 8. Estimated Power Dissipation for Various Configurations¹

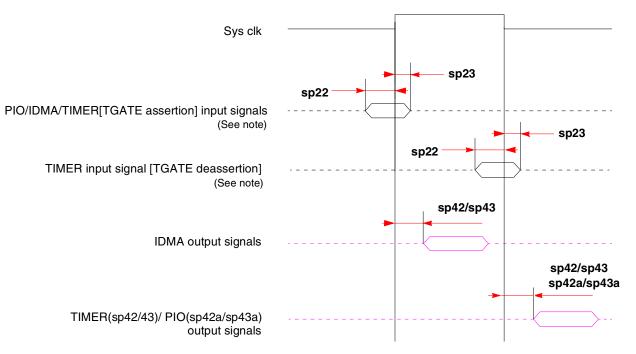
¹ Test temperature = 105° C

² $P_{INT} = I_{DD} \times V_{DD}$ Watts

³ Values do not include I/O. Add the following estimates for active I/O based on the following bus speeds:

66.7 MHz = 0.35 W (nominal), 0.4 W (maximum)

83.3 MHz = 0.4 W (nominal), 0.5 W (maximum)


100 MHz = 0.5 W (nominal), 0.6 W (maximum)

133 MHz = 0.7 W (nominal), 0.8 W (maximum)

AC Electrical Characteristics

This figure shows PIO and timer signals.

Note: TGATE is asserted on the rising edge of the clock; it is deasserted on the falling edge.

Figure 8. PIO and Timer Signal Diagram

6.2 SIU AC Characteristics

This table lists SIU input characteristics.

NOTE: CLKIN Jitter and Duty Cycle

The CLKIN input to the SoC should not exceed +/- 150 psec of jitter (peak-to-peak). This represents total input jitter—the combination of short term (peak-to-peak) and long term (cumulative). The duty cycle of CLKIN should not exceed the ratio of 40:60.

NOTE: Spread Spectrum Clocking

Spread spectrum clocking is allowed with 1% input frequency down-spread at maximum 60 KHz modulation rate regardless of input frequency.

NOTE: PCI AC Timing

The SoC meets the timing requirements of *PCI Specification Revision 2.2.* See Section 7, "Clock Configuration Modes," and "Note: Tval (Output Hold)" to determine if a specific clock configuration is compliant.

NOTE: Conditions

The following conditions must be met in order to operate the MPC8272 family devices with 133 MHz bus: single PowerQUICC II Bus mode must be used (no external master, BCR[EBM] = 0); data bus must be in Pipeline mode (BRx[DR] = 1); internal arbiter and memory controller must be used. For expected load of above 40 pF, it is recommended that data and address buses be configured to low (25 Ω) impedance (SIUMCR[HLBE0] = 1, SIUMCR[HLBE1] = 1).

Spec N	umber					Value	e (ns)			
		Characteristic		Se	tup			Но	old	
Setup	Hold		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz
sp11	sp10	AACK/TA/TS/DBG/BG/BR/ARTRY/TEA	6	5	3.5	N/A	0.5	0.5	0.5	N/A
sp12	sp10	Data bus in normal mode	5	4	3.5	N/A	0.5	0.5	0.5	N/A
sp13	sp10	Data bus in pipeline mode (without ECC and PARITY)	N/A	4	2.5	1.5	N/A	0.5	0.5	0.5
sp15	sp10	All other pins	5	4	3.5	N/A	0.5	0.5	0.5	N/A

Table 12. AC Characteristics for SIU Inputs¹

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

This table lists SIU output characteristics.

Table 13. AC Characteristics for SIU Outputs¹

Spec N	Number					Value	e (ns)			
		Characteristic	ſ	Maximu	m Delay	/		Minimu	m Delay	,
Мах	Min		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz
sp31	sp30	PSDVAL/TEA/TA	7	6	5.5	N/A	1	1	1	N/A
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	6.5	5.5	4.5 ²	1	1	1	1 ²
sp33	sp30	Data bus ³	6.5	6.5	5.5	4.5	0.8	0.8	0.8	1
sp34	sp30	Memory controller signals/ALE	6	5.5	5.5	4.5	1	1	1	1
sp35	sp30	All other signals	6	5.5	5.5	N/A	1	1	1	N/A

¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

² Value is for ADD only; other sp32/sp30 signals are not applicable.

³ To achieve 1 ns of hold time at 66.67/83.33/100 MHZ, a minimum loading of 20 pF is required.

7 Clock Configuration Modes

As shown in this table, the clocking mode is set according to two sources:

- PCI_CFG[0]— An input signal. Also defined as "PCI_HOST_EN." See Chapter 6, "External Signals," and Chapter 9, "PCI Bridge," in the SoC reference manual.
- PCI_MODCK—Bit 27 in the Hard Reset Configuration Word. See Chapter 5, "Reset," in the SoC reference manual.

Pi	ns	Clocking Mode	PCI Clock Frequency Range (MHz)	Reference
PCI_CFG[0] ¹	PCI_MODCK ²	Clocking Mode	Torolock rrequency hange (Milz)	Thereferice
0	0	PCI host	50–66	Table 17
0	1		25–50	Table 18
1	0	PCI agent	50–66	Table 19
1	1		25–50	Table 20

Table 16. SoC Clocking Modes

¹ PCI_HOST_EN

² Determines PCI clock frequency range.

Within each mode, the configuration of bus, core, PCI, and CPM frequencies is determined by seven bits during the power-on reset—three hardware configuration pins (MODCK[1–3]) and four bits from hardware configuration word[28–31] (MODCK_H). Both the PLLs and the dividers are set according to the selected clock operation mode as described in the following sections.

NOTE

Clock configurations change only after PORESET is asserted.

NOTE: Tval (Output Hold)

The minimum Tval = 2 ns when $PCI_MODCK = 1$, and the minimum Tval = 1 ns when $PCI_MODCK = 0$. Therefore, designers should use clock configurations that fit this condition to achieve PCI-compliant AC timing.

7.1 PCI Host Mode

These tables show configurations for PCI host mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI host mode the input clock is the bus clock.

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
0100_001	50.0	66.7	6	300.0	400.0	6	300.0	400.0	6	50.0	66.7
0100_010	50.0	66.7	6	300.0	400.0	7	350.0	466.6	6	50.0	66.7
0100_011	50.0	66.7	6	300.0	400.0	8	400.0	533.3	6	50.0	66.7
0101_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0101_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0101_010	50.0	66.7	2	100.0	133.3	3.5	175.0	233.3	2	50.0	66.7
0101_011	50.0	66.7	2	100.0	133.3	4	200.0	266.6	2	50.0	66.7
0101_100	50.0	66.7	2	100.0	133.3	4.5	225.0	300.0	2	50.0	66.7
0101_101	83.3	111.1	3	250.0	333.3	3.5	291.7	388.9	5	50.0	66.7
0101_110	83.3	111.1	3	250.0	333.3	4	333.3	444.4	5	50.0	66.7
0101_111	83.3	111.1	3	250.0	333.3	4.5	375.0	500.0	5	50.0	66.7
	1	1					1				
0110_000	60.0	80.0	2.5	150.0	200.0	2.5	150.0	200.0	3	50.0	66.7
0110_001	60.0	80.0	2.5	150.0	200.0	3	180.0	240.0	3	50.0	66.7
0110_010	60.0	80.0	2.5	150.0	200.0	3.5	210.0	280.0	3	50.0	66.7
0110_011	60.0	80.0	2.5	150.0	200.0	4	240.0	320.0	3	50.0	66.7
0110_100	60.0	80.0	2.5	150.0	200.0	4.5	270.0	360.0	3	50.0	66.7
0110_101	60.0	80.0	2.5	150.0	200.0	5	300.0	400.0	3	50.0	66.7
0110_110	60.0	80.0	2.5	150.0	200.0	6	360.0	480.0	3	50.0	66.7
0111_000						Reserved					
0111_001	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0111_010	50.0	66.7	3	150.0	200.0	3.5	175.0	233.3	3	50.0	66.7
0111_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0111_100	50.0	66.7	3	150.0	200.0	4.5	225.0	300.0	3	50.0	66.7
	1										
1000_000						Reserved	1				
1000_001	66.7	88.9	3	200.0	266.6	3	200.0	266.6	4	50.0	66.7

Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0) ^{1,2} (continued)

Mode ³	Bus Clock		Mode ³ Bus Clock (MHz)		СРМ		Clock	CPU	CPU Clock				PCI Clock (MHz)	
	(IVII	1Z)	CPM Multiplication	(MHz)			HZ) CPU Multiplication		(MHz)		Division	(IVI	ΠZ)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High			
1000_010	66.7	133.3	3	200.0	400.0	3.5	233.3	466.7	8	25.0	50.0			
1000_011	66.7	133.3	3	200.0	400.0	4	266.7	533.3	8	25.0	50.0			
1000_100	66.7	133.3	3	200.0	400.0	4.5	300.0	600.0	8	25.0	50.0			
1000_101	66.7	133.3	3	200.0	400.0	6	400.0	800.0	8	25.0	50.0			
1000_110	66.7	133.3	3	200.0	400.0	6.5	433.3	866.7	8	25.0	50.0			
					1			1		1				
1001_000						Reserved								
1001_001						Reserved								
1001_010	57.1	114.3	3.5	200.0	400.0	3.5	200.0	400.0	8	25.0	50.0			
1001_011	57.1	114.3	3.5	200.0	400.0	4	228.6	457.1	8	25.0	50.0			
1001_100	57.1	114.3	3.5	200.0	400.0	4.5	257.1	514.3	8	25.0	50.0			
1001_101	42.9	85.7	3.5	150.0	300.0	5	214.3	428.6	6	25.0	50.0			
1001_110	42.9	85.7	3.5	150.0	300.0	5.5	235.7	471.4	6	25.0	50.0			
1001_111	42.9	85.7	3.5	150.0	300.0	6	257.1	514.3	6	25.0	50.0			
					1			1		1				
1010_000	75.0	150.0	2	150.0	300.0	2	150.0	300.0	6	25.0	50.0			
1010_001	75.0	150.0	2	150.0	300.0	2.5	187.5	375.0	6	25.0	50.0			
1010_010	75.0	150.0	2	150.0	300.0	3	225.0	450.0	6	25.0	50.0			
1010_011	75.0	150.0	2	150.0	300.0	3.5	262.5	525.0	6	25.0	50.0			
1010_100	75.0	150.0	2	150.0	300.0	4	300.0	600.0	6	25.0	50.0			
					1			1		1				
1010_101	100.0	200.0	2	200.0	400.0	2.5	250.0	500.0	8	25.0	50.0			
1010_110	100.0	200.0	2	200.0	400.0	3	300.0	600.0	8	25.0	50.0			
1010_111	100.0	200.0	2	200.0	400.0	3.5	350.0	700.0	8	25.0	50.0			
1011_000						Reserved								
1011_001	80.0	160.0	2.5	200.0	400.0	2.5	200.0	400.0	8	25.0	50.0			
1011_010	80.0	160.0	2.5	200.0	400.0	3	240.0	480.0	8	25.0	50.0			
1011_011	80.0	160.0	2.5	200.0	400.0	3.5	280.0	560.0	8	25.0	50.0			
1011_100	80.0	160.0	2.5	200.0	400.0	4	320.0	640.0	8	25.0	50.0			

Mode ³	Bus Clock (MHz)		CPM Multiplication	-	Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	or ⁴ Factor ⁵	Low	High	Factor ⁶	Low	High		
1011_101	80.0	160.0	2.5	200.0	400.0	4.5	360.0	720.0	8	25.0	50.0
1101_000	50.0	100.0	2.5	125.0	250.0	3	150.0	300.0	5	25.0	50.0
1101_001	50.0	100.0	2.5	125.0	250.0	3.5	175.0	350.0	5	25.0	50.0
1101_010	50.0	100.0	2.5	125.0	250.0	4	200.0	400.0	5	25.0	50.0
1101_011	50.0	100.0	2.5	125.0	250.0	4.5	225.0	450.0	5	25.0	50.0
1101_100	50.0	100.0	2.5	125.0	250.0	5	250.0	500.0	5	25.0	50.0
1101_101	62.5	125.0	2	125.0	250.0	3	187.5	375.0	5	25.0	50.0
1101_110	62.5	125.0	2	125.0	250.0	4	250.0	500.0	5	25.0	50.0
1110_000	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
1110_001	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
1110_010	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0
1110_011	50.0	100.0	3	150.0	300.0	5	250.0	500.0	6	25.0	50.0
1110_100	50.0	100.0	3	150.0	300.0	5.5	275.0	550.0	6	25.0	50.0
1100_000	Reserved										
1100_001	Reserved										
1100_010		Reserved									

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

² PCI_MODCK determines the PCI clock frequency range. See Table 17 for higher range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

Clock Configuration Modes

- ⁶ CPM_CLK/PCI_CLK ratio. When PCI_MODCK = 1, the ratio of CPM_CLK/PCI_CLK should be calculated from PCIDF as follows: PCIDF = 3 > CPM_CLK/PCI_CLK = 4 PCIDF = 5 > CPM_CLK/PCI_CLK = 6 PCIDF = 7 > CPM_CLK/PCI_CLK = 8
 - PCIDF = 9 > CPM_CLK/PCI_CLK = 5
 - PCIDF = B > CPM_CLK/PCI_CLK = 6

7.2 PCI Agent Mode

These tables show configurations for PCI agent mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI agent mode the input clock is PCI clock.

Mode ³		Clock Hz)	CPM Multiplication	()		CPU Multiplication	CPU Clock (MHz)		Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Factor	Low	High
Default Modes (MODCK_H=0000)											
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0000_010	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0000_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0000_100	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0000_101	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0000_110	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0000_111	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.7
			F	ull Con	figurat	ion Modes					
0001_001	60.0	66.7	2	120.0	133.3	5	150.0	166.7	4	30.0	33.3
0001_010	50.0	66.7	2	100.0	133.3	6	150.0	200.0	4	25.0	33.3
0001_011	50.0	66.7	2	100.0	133.3	7	175.0	233.3	4	25.0	33.3
0001_100	50.0	66.7	2	100.0	133.3	8	200.0	266.6	4	25.0	33.3
0010_001	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0010_010	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0010_011	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
0010_100	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2}

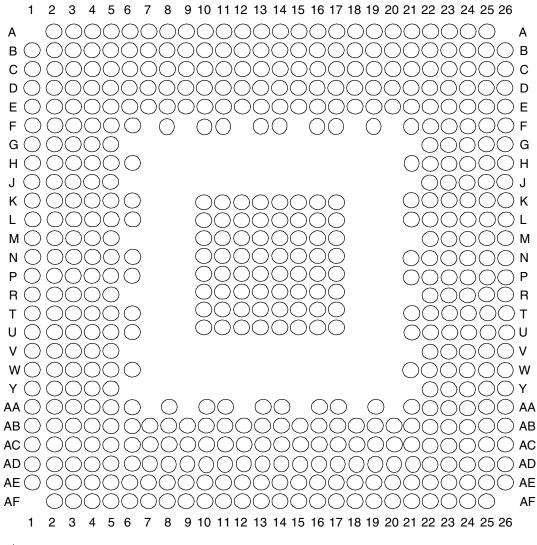


Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

MODCK[1-3] 1001_010 1001_011	Low 25.0 25.0	High 50.0 50.0	Multiplication Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Division Factor	Low	High			
1001_011 1001_100			8					ingn	Factor	LOW	i ngil			
1001_100			8		Reserved									
	25.0	50.0	1	200.0	400.0	4	200.0	400.0	4	50.0	100.0			
1010_000			8	200.0	400.0	4.5	225.0	450.0	4	50.0	100.0			
1010_000						Reserved								
1010_001	25.0	50.0	8	200.0	400.0	3	200.0	400.0	3	66.7	133.3			
	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3			
	25.0	50.0	8	200.0	400.0	4	266.7	533.3	3	66.7	133.3			
1010_100	25.0	50.0	8	200.0	400.0	4.5	300.0	600.0	3	66.7	133.3			
1011_000	Reserved													
1011_001	25.0	50.0	8	200.0	400.0	2.5	200.0	400.0	2.5	80.0	160.0			
1011_010	25.0	50.0	8	200.0	400.0	3	240.0	480.0	2.5	80.0	160.0			
1011_011	25.0	50.0	8	200.0	400.0	3.5	280.0	560.0	2.5	80.0	160.0			
1011_100	25.0	50.0	8	200.0	400.0	4	320.0	640.0	2.5	80.0	160.0			
					1		1				r			
1011_101	25.0	50.0	8	200.0	400.0	2.5	250.0	500.0	2	100.0	200.0			
1011_110	25.0	50.0	8	200.0	400.0	3	300.0	600.0	2	100.0	200.0			
1011_111	25.0	50.0	8	200.0	400.0	3.5	350.0	700.0	2	100.0	200.0			
1100_101	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0			
	25.0	50.0	6	150.0	300.0	4.5	225.0	450.0	3	50.0	100.0			
1100_111	25.0	50.0	6	150.0	300.0	5	250.0	500.0	3	50.0	100.0			
1101_000	25.0	50.0	6	150.0	300.0	5.5	275.0	550.0	3	50.0	100.0			
			•			•								
1101_001	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0			
1101_010	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0			
1101_011	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0			
1101_100	25.0	50.0	6	150.0	300.0	5	300.0	600.0	2.5	60.0	120.0			

This figure shows the pinout of the 516 PBGA package as viewed from the top surface.

Not to Scale

Figure 12. Pinout of the 516 PBGA Package (View from Top)

This table lists the pins of the MPC8272. Note that the pins in the "MPC8272/8271 Only" column relate to Utopia functionality.

Table 2	21. P	inout
---------	-------	-------

Pin I	Pin Name					
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball				
Ē	BR					
BG/	BG/IRQ6					
ABB	ABB/IRQ2					

Pinout

Table 21. Pinout (continued)

Pin Na			
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball	
MODCK1/RSRV/	TC0/BNKSEL0	A20	
MODCK2/CSE0/	FC1/BNKSEL1	C20	
MODCK3/CSE1/	FC2/BNKSEL2	A21	
CLKI	N1	D21	
PA8/SMI	RXD2	AF25 ³	
PA9/SM	TXD2	AA22 ³	
PA10/MSNUM5	FCC1_UT_RXD0	AB23 ³	
PA11/MSNUM4	FCC1_UT_RXD1	AD26 ³	
PA12/MSNUM3	FCC1_UT_RXD2	AD25 ³	
PA13/MSNUM2	FCC1_UT_RXD3	AA24 ³	
PA14/FCC1_MII_HDLC_RXD3	FCC1_UT_RXD4	W22 ³	
PA15/FCC1_MII_HDLC_RXD2	FCC1_UT_RXD5	Y24 ³	
PA16/FCC1_MII_HDLC_RXD1	FCC1_UT_RXD6	T22 ³	
PA17/FCC1_MII_HDLC_RXD0/ FCC1_MII_TRAN_RXD/FCC1_RMII_RX D0	FCC1_UT_RXD7	W26 ³	
PA18/FCC1_MII_HDLC_TXD0/FCC1_MII _TRAN_TXD/ FCC1_RMII_TXD0	FCC1_UT_TXD7	V26 ³	
PA19/FCC1_MII_HDLC_TXD1/FCC1_RM II_TXD1	FCC1_UT_TXD6	R23 ³	
PA20/FCC1_MII_HDLC_TXD2	FCC1_UT_TXD5	P25 ³	
PA21/FCC1_MII_HDLC_TXD3	FCC1_UT_TXD4	N22 ³	
PA22	FCC1_UT_TXD3	N26 ³	
PA23	FCC1_UT_TXD2	N23 ³	
PA24/MSNUM1	FCC1_UT_TXD1	H26 ³	
PA25/MSNUM0	FCC1_UT_TXD0	G25 ³	
PA26/FCC1_MII_RMIIRX_ER	FCC1_UT_RXCLAV	L22 ³	
PA27/FCC1_MII_RX_DV/FCC1_RMII_CR S_DV	FCC1_UT_RXSOC	G24 ³	
PA28/FCC1_MII_RMII_TX_EN	FCC1_UT_RXENB	G23 ³	
PA29/FCC1_MII_TX_ER	FCC1_UT_TXSOC	B26 ³	
PA30/FCC1_MII_CRS/FCC1_RTS	FCC1_UT_TXCLAV	A25 ³	

Pin Na		
MPC8272/MPC8248 and MPC8271/MPC8247	Ball	
PA31/FCC1_MII_COL	G22 ³	
PB18/FCC2_MII_	HDLC_RXD3	T25 ³
PB19/FCC2_MII_	HDLC_RXD2	P22 ³
PB20/FCC2_MII_HE	DLC_RMII_RXD1	L25 ³
PB21/FCC2_MII_HDLC_RMII	_RXD0/FCC2_TRAN_RXD	J26 ³
PB22/FCC2_MII_HDLC_T> FCC2_RMI		U23 ³
PB23/FCC2_MII_HDLC_T	XD1/FCC2_RMII_TXD1	U26 ³
PB24/FCC2_MII_HDLC	_TXD2/L1RSYNCB2	M24 ³
PB25/FCC2_MII_HDLC	_TXD3/L1TSYNCB2	M23 ³
PB26/FCC2_MII_0	CRS/L1RXDB2	H24 ³
PB27/FCC2_MII_0	COL/L1TXDB2	E25 ³
PB28/FCC2_MII_RMII_RX	_ER/FCC2_RTS/TXD1	D26 ³
PB29/FCC2_MII_	_RMII_TX_EN	K21 ³
PB30/FCC2_MII_RX_DV/	FCC2_RMII_CRS_DV	D24 ³
PB31/FCC2_M	E23 ³	
PC0/DREQ3/BRGO7/S	MSYN1/L1CLKOA2	AF23 ³
PC1/BRGO6	/L1RQA2	AD23 ³
PC4/SMRXD1/SI2_I	_1ST4/FCC2_CD	AB22 ³
PC5/SMTXD1/SI2_L	1ST3/FCC2_CTS	AE24 ³
PC6/FCC1_CD/SI2_L1ST2	FCC1_UT_RXADDR2	AF24 ³
PC7/FCC1_CTS	FCC1_UT_TXADDR2	AE26 ³
PC8/CD4/RTS1/SI	2_L1ST2/CTS3	AC24 ³
PC9/CTS4/L1	TSYNCA2	AA23 ³
PC10/CD3/0	JSB_RN	AB25 ³
PC11/CTS3/USB_	RP/L1TXD3A2	V22 ³
PC12	FCC1_UT_RXADDR1	AA26 ³
PC13/BRGO5	FCC1_UT_TXADDR1	V23 ³
PC14/CD1	FCC1_UT_RXADDR0	W24 ³
PC15/CTS1	FCC1_UT_TXADDR0	U24 ³
PC16/C	LK16	T23 ³

Pin N	Pin Name					
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball				
CLKI	CLKIN2					
No con	nect ⁴	D19 ⁴ , J3 ⁴ , AD24 ⁵				
l/O po	ower	B4, F3, J2, N4, AD1, AD5, AE8, AC13, AD18, AB24, AB26, W23, R25, M25, F25, C25, C22, B17, B12, B8, E6, F6, H6, L5, L6, P6, T6, U6, V5, Y5, AA6, AA8, AA10, AA11, AA14, AA16, AA17, AB19, AB20, W21, U21, T21, P21, N21, M22, J22, H21, F21, F19, F17, E16, F14, E13, E12, F10, E10, E9				
Core F	Core Power					
Grou	Ind	E19, E2, K1, Y2, AE1, AE4, AD9, AC14, AE17, AC19, AE25, V24, P26, M26, G26, E26, B21, C12, C11, C8, A8, B18, A18, A2, B1, B2, A5, C5, D4, D6, G2, L4, P1, R1, R4, AC4, AE7, AC23, Y25, N24, J23, A23, D23, D20, E18, A13, A16, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, R10, R11,R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17				

Table 21. Pinout (continued)

¹ Must be tied to ground.

 2 Should be tied to VDDH via a 2K Ω external pull-up resistor.

³ The default configuration of the CPM pins (PA[8–31], PB[18–31], PC[0–1,4–29], PD[7–25, 29–31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

⁴ This pin is not connected. It should be left floating.

⁵ Must be pulled down or left floating

Package Description

9 Package Description

This figure shows the side profile of the PBGA package to indicate the direction of the top surface view.

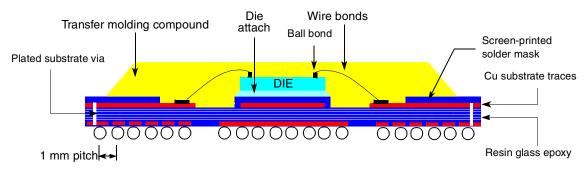


Figure 13. Side View of the PBGA Package Remove

9.1 Package Parameters

This table provides package parameters.

Table 22. Package Parameters

Code	Туре	Outline (mm)	Interconnects	Pitch (mm)	Nominal Unmounted Height (mm)	
VR, ZQ	PBGA	27 x 27	516	1	2.25	

NOTE: Temperature Reflow for the VR Package

In the VR package, sphere composition is lead-free (see Table 2). This requires higher temperature reflow than what is required for other PowerQUICC II packages. Consult "Freescale PowerQUICC II Pb-Free Packaging Information" (MPC8250PBFREEPKG) available on www.freescale.com.