

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Active
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA
Supplier Device Package	516-FPBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8247vrtiea

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- Floating-point unit (FPU) supports floating-point arithmetic
- Support for cache locking
- Low-power consumption
- Separate power supply for internal logic (1.5 V) and for I/O (3.3 V)
- Separate PLLs for G2_LE core and for the communications processor module (CPM)
 - G2_LE core and CPM can run at different frequencies for power/performance optimization
 - Internal core/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5:5:1, 6:1, 7:1, 8:1
 - Internal CPM/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1, 8:1 ratios
- 64-bit data and 32-bit address 60x bus
 - Bus supports multiple master designs—up to two external masters
 - Supports single transfers and burst transfers
 - 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
- 60x-to-PCI bridge
 - Programmable host bridge and agent
 - 32-bit data bus, 66 MHz, 3.3 V
 - Synchronous and asynchronous 60x and PCI clock modes
 - All internal address space available to external PCI host
 - DMA for memory block transfers
 - PCI-to-60x address remapping
- System interface unit (SIU)
 - Clock synthesizer
 - Reset controller
 - Real-time clock (RTC) register
 - Periodic interrupt timer
 - Hardware bus monitor and software watchdog timer
 - IEEE 1149.1 JTAG test access port
- Eight bank memory controller
 - Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash, and other user-definable peripherals
 - Byte write enables
 - 32-bit address decodes with programmable bank size
 - Three user-programmable machines, general-purpose chip-select machine, and page mode pipeline SDRAM machine
 - Byte selects for 64-bit bus width (60x)
 - Dedicated interface logic for SDRAM
- Disable CPU mode

Overview

- One of the FCCs supports ATM (MPC8272 and MPC8271 only)—full-duplex SAR at 155 Mbps, 8-bit UTOPIA interface 31 Mphys, AAL5, AAL1, AAL2, AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 64-K external connections
- Three serial communications controllers (SCCs) identical to those on the MPC860 supporting the digital portions of the following protocols:
 - Ethernet/IEEE 802.3 CDMA/CS
 - HDLC/SDLC and HDLC bus
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Binary synchronous (BiSync) communications
 - Transparent
 - QUICC multichannel controller (QMC) up to 64 channels
 - Independent transmit and receive routing, frame synchronization.
 - Serial-multiplexed (full-duplex) input/output 2048, 1544, and 1536 Kbps PCM highways
 - Compatible with T1/DS1 24-channel and CEPT E1 32-channel PCM highway, ISDN basic rate, ISDN primary rate, and user defined.
 - Subchanneling on each time slot.
 - Independent transmit and receive routing, frame synchronization and clocking
 - Concatenation of any not necessarily consecutive time slots to channels independently for receiver/transmitter
 - Supports H1,H11, and H12 channels
 - Allows dynamic allocation of channels
 - SCC3 in NMSI mode is not usable when USB is enabled.
- Two serial management controllers (SMCs), identical to those of the MPC860
 - Provides management for BRI devices as general-circuit interface (GCI) controllers in time-division-multiplexed (TDM) channels
 - Transparent
 - UART (low-speed operation)
- One serial peripheral interface identical to the MPC860 SPI
- One I²C controller (identical to the MPC860 I²C controller)
 - Microwire compatible
 - Multiple-master, single-master, and slave modes
- Up to two TDM interfaces
 - Supports one groups of two TDM channels
 - 1024 bytes of SI RAM
- Eight independent baud rate generators and 14 input clock pins for supplying clocks to FCC, SCC, SMC, and USB serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers

- PCI bridge
 - PCI Specification revision 2.2-compliant and supports frequencies up to 66 MHz
 - On-chip arbitration
 - Support for PCI to 60x memory and 60x memory to PCI streaming
 - PCI host bridge or peripheral capabilities
 - Includes four DMA channels for the following transfers:
 - PCI-to-60x to 60x-to-PCI
 - 60x-to-PCI to PCI-to-60x
 - PCI-to-60x to PCI-to-60x
 - 60x-to-PCI to 60x-to-PCI
 - Includes the configuration registers required by the PCI standard (which are automatically loaded from the EPROM to configure the MPC8272) and message and doorbell registers
 - Supports the I₂O standard
 - Hot-Swap friendly (supports the Hot Swap Specification as defined by PICMG 2.1 R1.0 August 3, 1998)
 - Support for 66 MHz, 3.3 V specification
 - 60x-PCI bus core logic, which uses a buffer pool to allocate buffers for each port

Operating Conditions 2

This table shows the maximum electrical ratings.

Table 3. Absolute Maximum Ratings¹

Rating	Symbol	Value	Unit
Core supply voltage ²	VDD	-0.3 - 2.25	٧
PLL supply voltage ²	VCCSYN	-0.3 - 2.25	٧
I/O supply voltage ³	VDDH	-0.3 - 4.0	٧
Input voltage ⁴	VIN	GND(-0.3) - 3.6	٧
Junction temperature	Тј	120	°C
Storage temperature range	T _{STG}	(-55) - (+150)	°C

¹ Absolute maximum ratings are stress ratings only; functional operation (see Table 4) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage.

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3 Freescale Semiconductor

² Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V during normal operation. It is recommended that VDD/VCCSYN should be raised before or simultaneous with VDDH during power-on reset. VDD/VCCSYN may exceed VDDH by more than 0.4 V during power-on reset for no more than 100 ms.

³ Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.5 V during normal operation.

⁴ Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset.

Operating Conditions

This table lists recommended operational voltage conditions.

Table 4. Recommended Operating Conditions¹

Rating	Symbol	Value	Unit
Core supply voltage	VDD	1.425 – 575	V
PLL supply voltage	VCCSYN	1.425 – 575	V
I/O supply voltage	VDDH	3.135 – 3.465	V
Input voltage	VIN	GND (-0.3) - 3.465	V
Junction temperature (maximum)	Tj	105 ²	°C
Ambient temperature	T _A	0-70 ²	°C

Caution: These are the recommended and tested operating conditions. Proper operation outside of these conditions is not guaranteed.

This SoC contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or V_{CC}).

This figure shows the undershoot and overshoot voltage of the 60x bus memory interface of the SoC. Note that in PCI mode the I/O interface is different.

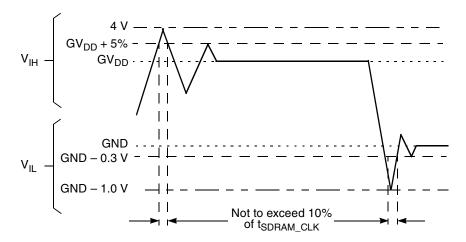


Figure 2. Overshoot/Undershoot Voltage

² Note that for extended temperature parts the range is $(-40)_{T_A}$ – 105_{T_j} .

3 DC Electrical Characteristics

This table shows DC electrical characteristics.

Table 5. DC Electrical Characteristics¹

Characteristic	Symbol	Min	Max	Unit
Input high voltage—all inputs except TCK, TRST and PORESET ²	V _{IH}	2.0	3.465	V
Input low voltage ³	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ⁴	I _{IN}	_	10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	I _{OZ}	_	10	μΑ
Signal low input current, V _{IL} = 0.8 V	ΙL	_	1	μΑ
Signal high input current, V _{IH} = 2.0 V	I _H	_	1	μΑ
Output high voltage, I _{OH} = -2 mA except UTOPIA mode, and open drain pins In UTOPIA mode ⁵ (UTOPIA pins only): I _{OH} = -8.0mA PA[8-31] PB[18-31] PC[0-1,4-29] PD[7-25, 29-31]	V _{ОН}	2.4	_	V
In UTOPIA mode ⁵ (UTOPIA pins only): I _{OL} = 8.0mA PA[8–31] PB[18–31] PC[0–1,4–29] PD[7–25, 29–31]	V _{OL}	_	0.5	V

Thermal Characteristics

⁴ MPC8280, MPC8275VR, MPC8275ZQ only.

4 Thermal Characteristics

This table describes thermal characteristics. See Table 2 for information on a given SoC's package. Discussions of each characteristic are provided in Section 4.1, "Estimation with Junction-to-Ambient Thermal Resistance," through Section 4.7, "References." For the these discussions, $P_D = (V_{DD} \times I_{DD}) + PI/O$, where PI/O is the power dissipation of the I/O drivers.

Table 7. Thermal Characteristics

Characteristic	Symbol	Value	Unit	Air Flow
Junction-to-ambient—	_	27	2011	Natural convection
single-layer board ¹	$R_{ hetaJA}$	21	°C/W	1 m/s
Junction-to-ambient—	$R_{ hetaJA}$	19	2011	Natural convection
four-layer board		16	°C/W	1 m/s
Junction-to-board ²	$R_{\theta JB}$	11	°C/W	_
Junction-to-case ³	$R_{ heta JC}$	8	°C/W	_
Junction-to-package top ⁴	$R_{\theta JT}$	2	°C/W	_

Assumes no thermal vias

4.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_I, in C can be obtained from the following equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$

where:

 T_A = ambient temperature (°C)

 $R_{\theta JA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity $T_I - T_A$) are possible.

Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

4.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta IC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

4.3 Estimation with Junction-to-Board Thermal Resistance

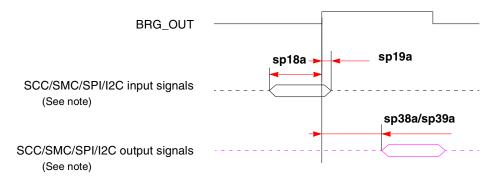
A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly dependent on the board temperature.

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$$

where:

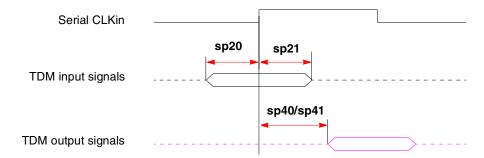
 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)


 T_B = board temperature (°C)

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground plane.

This figure shows the SCC/SMC/SPI/I²C internal clock.



Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I²C Internal Clock Diagram

This figure shows TDM input and output signals.

Note: There are four possible TDM timing conditions:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 7. TDM Signal Diagram

AC Electrical Characteristics

NOTE

The UPM machine outputs change on the internal tick determined by the memory controller programming; the AC specifications are relative to the internal tick. Note that SDRAM and GPCM machine outputs change on CLKin's rising edge.

6.3 JTAG Timings

This table lists the JTAG timings.

Table 15. JTAG Timings¹

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	_
JTAG external clock cycle time	t _{JTG}	30	_	ns	_
JTAG external clock pulse width measured at 1.4V	t _{JTKHKL}	15	_	ns	_
JTAG external clock rise and fall times	t _{JTGR} and t _{JTGF}	0	5	ns	6
TRST assert time	t _{TRST}	25	_	ns	3, 6
Input setup times Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4	_ _	ns ns	4, 7 4, 7
Input hold times Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns ns	4, 7 4, 7
Output valid times Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	_ _	10 10	ns ns	5, 7 5, 7
Output hold times Boundary-scan data TDO	t _{JTKLDX} t _{JTKLOX}	1 1		ns ns	5, 7 5, 7
JTAG external clock to output high impedance Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	1	10 10	ns ns	5, 6 5, 6

All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

³ TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

⁴ Non-JTAG signal input timing with respect to t_{TCLK}.

⁵ Non-JTAG signal output timing with respect to t_{TCLK}.

⁶ Guaranteed by design.

⁷ Guaranteed by design and device characterization.

Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	Bus (CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
1011_100	80.0	106.7	2.5	200.0	266.6	4	320.0	426.6	4	50.0	66.7
1011_101	80.0	106.7	2.5	200.0	266.6	4.5	360.0	480.0	4	50.0	66.7
1101_000	100.0	133.3	2.5	250.0	333.3	3	300.0	400.0	5	50.0	66.7
1101_001	100.0	133.3	2.5	250.0	333.3	3.5	350.0	466.6	5	50.0	66.7
1101_010	100.0	133.3	2.5	250.0	333.3	4	400.0	533.3	5	50.0	66.7
1101_011	100.0	133.3	2.5	250.0	333.3	4.5	450.0	599.9	5	50.0	66.7
1101_100	100.0	133.3	2.5	250.0	333.3	5	500.0	666.6	5	50.0	66.7
1101_101	125.0	166.7	2	250.0	333.3	3	375.0	500.0	5	50.0	66.7
1101_110	125.0	166.7	2	250.0	333.3	4	500.0	666.6	5	50.0	66.7
1110_000	100.0	133.3	3	300.0	400.0	3.5	350.0	466.6	6	50.0	66.7
1110_001	100.0	133.3	3	300.0	400.0	4	400.0	533.3	6	50.0	66.7
1110_010	100.0	133.3	3	300.0	400.0	4.5	450.0	599.9	6	50.0	66.7
1110_011	100.0	133.3	3	300.0	400.0	5	500.0	666.6	6	50.0	66.7
1110_100	100.0	133.3	3	300.0	400.0	5.5	550.0	733.3	6	50.0	66.7
1100_000	Reserved										
1100_001		Reserved									
1100_010		Reserved									

The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

 $CPM_CLK/PCI_CLK = (PCIDF + 1) / 2.$

² PCI_MODCK determines the PCI clock frequency range. SeeTable 18 for lower range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

⁶ CPM_CLK/PCI_CLK ratio. When PCI_MODCK = 0, the ratio of CPM_CLK/PCI_CLK should be calculated from SCCR[PCIDF] as follows:

Clock Configuration Modes

⁶ CPM_CLK/PCI_CLK ratio. When PCI_MODCK = 1, the ratio of CPM_CLK/PCI_CLK should be calculated from PCIDF as follows:

PCIDF = 3 > CPM_CLK/PCI_CLK = 4

PCIDF = 5 > CPM_CLK/PCI_CLK = 6

PCIDF = 7 > CPM_CLK/PCI_CLK = 8

PCIDF = 9 > CPM_CLK/PCI_CLK = 5

PCIDF = B > CPM_CLK/PCI_CLK = 6

7.2 PCI Agent Mode

These tables show configurations for PCI agent mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI agent mode the input clock is PCI clock.

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2}

Mode ³	PCI Clock (MHz)		CPM Multiplication		Clock Hz)	CPU - Multiplication -		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
			Defau	ılt Mod	es (MO	DCK_H=0000)					
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0000_010	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0000_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0000_100	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0000_101	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0000_110	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0000_111	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.7
			F	ull Con	figurat	ion Modes					
0001_001	60.0	66.7	2	120.0	133.3	5	150.0	166.7	4	30.0	33.3
0001_010	50.0	66.7	2	100.0	133.3	6	150.0	200.0	4	25.0	33.3
0001_011	50.0	66.7	2	100.0	133.3	7	175.0	233.3	4	25.0	33.3
0001_100	50.0	66.7	2	100.0	133.3	8	200.0	266.6	4	25.0	33.3
0010_001	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0010_010	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0010_011	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
0010_100	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	PCI (Clock Hz)	CPM Multiplication	_	Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
1100_101	50.0	66.7	6	300.0	400.0	4	400.0	533.3	3	100.0	133.3
1100_110	50.0	66.7	6	300.0	400.0	4.5	450.0	599.9	3	100.0	133.3
1100_111	50.0	66.7	6	300.0	400.0	5	500.0	666.6	3	100.0	133.3
1101_000	50.0	66.7	6	300.0	400.0	5.5	550.0	733.3	3	100.0	133.3
1101_001	50.0	66.7	6	300.0	400.0	3.5	420.0	559.9	2.5	120.0	160.0
1101_010	50.0	66.7	6	300.0	400.0	4	480.0	639.9	2.5	120.0	160.0
1101_011	50.0	66.7	6	300.0	400.0	4.5	540.0	719.9	2.5	120.0	160.0
1101_100	50.0	66.7	6	300.0	400.0	5	600.0	799.9	2.5	120.0	160.0
1110_000	50.0	66.7	5	250.0	333.3	2.5	312.5	416.6	2	125.0	166.7
1110_001	50.0	66.7	5	250.0	333.3	3	375.0	500.0	2	125.0	166.7
1110_010	50.0	66.7	5	250.0	333.3	3.5	437.5	583.3	2	125.0	166.7
1110_011	50.0	66.7	5	250.0	333.3	4	500.0	666.6	2	125.0	166.7
1110_100	50.0	66.7	5	250.0	333.3	4	333.3	444.4	3	83.3	111.1
1110_101	50.0	66.7	5	250.0	333.3	4.5	375.0	500.0	3	83.3	111.1
1110_110	50.0	66.7	5	250.0	333.3	5	416.7	555.5	3	83.3	111.1
1110_111	50.0	66.7	5	250.0	333.3	5.5	458.3	611.1	3	83.3	111.1
1100_000	Reserved										
1100_001		Reserved									
1100_010		Reserved									

The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

² PCI_MODCK determines the PCI clock frequency range. See Table 20 for lower range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
1110_000	25.0	50.0	5	125.0	250.0	2.5	156.3	312.5	2	62.5	125.0
1110_001	25.0	50.0	5	125.0	250.0	3	187.5	375.0	2	62.5	125.0
1110_010	28.6	50.0	5	142.9	250.0	3.5	250.0	437.5	2	71.4	125.0
1110_011	25.0	50.0	5	125.0	250.0	4	250.0	500.0	2	62.5	125.0
1110_100	25.0	50.0	5	125.0	250.0	4	166.7	333.3	3	41.7	83.3
1110_101	25.0	50.0	5	125.0	250.0	4.5	187.5	375.0	3	41.7	83.3
1110_110	25.0	50.0	5	125.0	250.0	5	208.3	416.7	3	41.7	83.3
1110_111	25.0	50.0	5	125.0	250.0	5.5	229.2	458.3	3	41.7	83.3
1100_000		Reserved									
1100_001		Reserved									
1100_010						Reserved					

The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

8 Pinout

This figure and table show the pin assignments and pinout for the 516 PBGA package.

² PCI_MODCK determines the PCI clock frequency range. See Table 19 for higher range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

Pinout

Table 21. Pinout (continued)

Pin Na	Pin Name							
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball						
D4	D46							
D4	7	F2						
D4	8	AB1						
D4	9	U4						
D5	0	U1						
D5	1	R3						
D5	2	N3						
D5	3	K2						
D5	4	H5						
D5	5	F4						
D5	6	AA3						
D5	7	U5						
D5	8	U2						
D5	9	P5						
D6	0	M3						
D6	1	K4						
D6	2	H3						
D6	3	E1						
ĪRQ3/CKSTP_C	OUT/EXT_BR3	B16						
IRQ4/CORE_SRE	SET/EXT_BG3	C15						
IRQ5/TBEN/EX	T_DBG3/CINT	Y4						
PSDV	/AL	C19						
TA		AA4						
TE.	Ā	AB6						
GBL/II	RQ1	D15						
CI/BADDR	29/IRQ2	D16						
WT/BADDF	R30/IRQ3	C16						
BADDR31/ĪĪ	RQ5/CINT	E17						
CPU_BR/I	NT_OUT	B20						
CS	0	AE6						
CS	1	AD7						

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 21. Pinout (continued)

Pin 1	Name						
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball					
C	CS2						
C	S 3	AC8					
C	S4	AF6					
C	S 5	AD8					
CS6/BC	TL1/SMI	AC9					
CS7/TL	BISYNC	AB9					
BADDR	27/ IRQ1	AB8					
BADDR	28/IRQ2	AC7					
ALE/	ÎRQ4	AF4					
BC	TLO	AF3					
PWE0/PSDI	DQM0/PBS0	AD6					
PWE1/PSDI	DQM1/PBS1	AE5					
PWE2/PSDI	DQM2/PBS2	AE3					
PWE3/PSDI	DQM3/PBS3	AF2					
PWE4/PSDI	DQM4/PBS4	AC6					
PWE5/PSDI	DQM5/PBS5	AC5					
PWE6/PSDI	DQM6/PBS6	AD4					
PWE7/PSDI	DQM7/PBS7	AB5					
PSDA10)/PGPL0	AE2					
PSDWE	PGPL1	AD3					
POE/PSDF	RAS/PGPL2	AB4					
PSDCAS	S/PGPL3	AC3					
PGTA/PUPM	WAIT/PGPL4	AD2					
PSDAMU	JX/PGPL5	AC2					
PCI_N	MODE ¹	AD22					
PCI_CFG0 (Pi	CI_HOST_EN)	AC21					
PCI_CFG1 (F	PCI_CFG1 (PCI_ARB_EN)						
PCI_CFG2 (E	DLL_ENABLE)	AE23					
PCI_	PAR	AF12					
PCI_F	RAME	AD15					
PCI_	TRDY	AF16					

Pinout

Table 21. Pinout (continued)

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
PCI_	IRDY	AF15
PCI_	STOP	AE15
PCI_D	EVSEL	AE14
PCI_I	DSEL	AC17
PCI_I	PERR	AD14
PCI_S	SERR	AD13
PCI_I	REQ0	AE20
PCI_REQ1/0	CPCI_HS_ES	AF14
PCI_	GNT0	AD20
PCI_GNT1/C	PCI_HS_LED	AE13
PCI_GNT2/CF	PCI_HS_ENUM	AF21
PCI_	RST	AF22
PCI_	INTA	AE21
PCI_I	REQ2	AB14
DLL	OUT	AC22
PCI_	PCI_AD0	
PCI_	AD1	AE10
PCI_	PCI_AD2	
PCI_AD3		AD10
PCI_AD4		AE9
PCI_	AD5	AF8
PCI_AD6		AC10
PCI_AD7		AE11
PCI_	_AD8	AB11
PCI_AD9		AF10
PCI_AD10		AF9
PCI_AD11		AB12
PCI_	AD12	AC12
PCI_	AD13	AD12
PCI_AD14		AF11
PCI_	PCI_AD15	

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 21. Pinout (continued)

Pin Name			
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball	
PCI_	AD16	AE16	
PCI_	AD17	AF17	
PCI	AD18	AD16	
PCI	AD19	AC16	
PCI	AD20	AF18	
PCI	AD21	AB16	
PCI	AD22	AD17	
PCI	AD23	AF19	
PCI	AD24	AB17	
PCI	AD25	AF20	
PCI	AD26	AE19	
PCI	AD27	AC18	
PCI_AD28		AB18	
PCI	PCI_AD29		
PCI	AD30	AD21	
PCI_AD31		AC20	
PCI_C	0/BE0	AE12	
PCI_C	PCI_C1/BE1		
PCI_C	PCI_C2/BE2		
PCI_C3/BE3		AE18	
ĪRQ0/NI	ĪRQ0/NMI_OUT		
TRST ²		E21	
тск		B22	
TMS		C23	
TDI		B24	
TDO		A22	
TF	TRIS		
PORESET ² /PCI_RST		C24	
HRE	D22		
SRE	F22		
RSTCONF		A24	

Table 21. Pinout (continued)

Pin Name			
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball	
PA31/FCC1_MII_COL	FCC1_UT_TXENB	G22 ³	
PB18/FCC2_M	II_HDLC_RXD3	T25 ³	
PB19/FCC2_M	II_HDLC_RXD2	P22 ³	
PB20/FCC2_MII_HDLC_RMII_RXD1		L25 ³	
PB21/FCC2_MII_HDLC_RMII_RXD0/FCC2_TRAN_RXD		J26 ³	
PB22/FCC2_MII_HDLC_TXD0/FCC2_TRAN_TXD/ FCC2_RMII_TXD0		U23 ³	
PB23/FCC2_MII_HDLC_	TXD1/FCC2_RMII_TXD1	U26 ³	
PB24/FCC2_MII_HDLC_TXD2/L1RSYNCB2		M24 ³	
PB25/FCC2_MII_HDLC_TXD3/L1TSYNCB2		M23 ³	
PB26/FCC2_MII	_CRS/L1RXDB2	H24 ³	
PB27/FCC2_MII_COL/L1TXDB2		E25 ³	
PB28/FCC2_MII_RMII_RX_ER/ FCC2_RTS /TXD1		D26 ³	
PB29/FCC2_MII_RMII_TX_EN		K21 ³	
PB30/FCC2_MII_RX_DV/FCC2_RMII_CRS_DV		D24 ³	
PB31/FCC2_MII_TX_ER		E23 ³	
PC0/DREQ3/BRGO7/SMSYN1/L1CLKOA2		AF23 ³	
PC1/BRGO6/L1RQA2		AD23 ³	
PC4/SMRXD1/SI2_L1ST4/FCC2_CD		AB22 ³	
PC5/SMTXD1/SI2_L1ST3/FCC2_CTS		AE24 ³	
PC6/FCC1_CD/SI2_L1ST2	FCC1_UT_RXADDR2	AF24 ³	
PC7/FCC1_CTS	FCC1_UT_TXADDR2	AE26 ³	
PC8/CD4/RTS1/SI2_L1ST2/CTS3		AC24 ³	
PC9/CTS4/L1TSYNCA2		AA23 ³	
PC10/CD3/USB_RN		AB25 ³	
PC11/CTS3/USB_RP/L1TXD3A2		V22 ³	
PC12	FCC1_UT_RXADDR1	AA26 ³	
PC13/BRGO5	FCC1_UT_TXADDR1	V23 ³	
PC14/CD1	FCC1_UT_RXADDR0	W24 ³	
PC15/CTS1	FCC1_UT_TXADDR0	U24 ³	
PC16/	CLK16	T23 ³	

Table 21. Pinout (continued)

Pin Name				
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball		
PC17/CLK15/BR	GO8/DONE2	T26 ³		
PC18/CLK14	/TGATE2	R26 ³		
PC19/CLK13/BRGO7/TGATE1		P24 ³		
PC20/CLK12/ USBOE		L26 ³		
PC21/CLK11/BRGO6/CP_INT		L24 ³		
PC22/CLK10/DONE3	FCC1_UT_TXPRTY	L23 ³		
PC23/CLK9/BRGO5/ DACK3/CD1		K24 ³		
PC24/CLK8/TIN3/TOU	T4/DREQ2/BRGO1	K23 ³		
PC25/CLK7/BRGO4	/DACK2/SPISEL	F26 ³		
PC26/CLK6/TOI	JT3/TMCLK	H23 ³		
PC27/CLK5/BRGO3/TOUT1	FCC1_UT_RXPRTY	K22 ³		
PC28/CLK4/TIN1/TOUT2/SPICLK		D25 ³		
PC29/CLK3/TIN2/BRGO2/CTS1		F24 ³		
PD7/SMSYN2	FCC1_UT_TXADDR3	AB21 ³		
PD14/I20	CSCL	AC26 ³		
PD15/I20	CSDA	Y23 ³		
PD16/SPIMISO	FCC1_UT_TXPRTY	AA25 ³		
PD17/BRGO2/SPIMOSI	FCC1_UT_RXPRTY	Y26 ³		
PD18/SPICLK	FCC1_UT_RXADDR4	W25 ³		
PD19/SPISEL/BRGO1	FCC1_UT_TXADDR4	V25 ³		
PD20/RTS4/L1RSYNCA2		R24 ³		
PD21/TXD4/L1RXD0A2		P23 ³		
PD22/RXD4/L1TXD0A2		N25 ³		
PD23/RTS3/	USB_TP	K26 ³		
PD24/TXD3/USB_TN		K25 ³		
PD25/RXD3/USB_RXD		J25 ³		
PD29/RTS1	FCC1_UT_RXADDR3	C26 ³		
PD30/TXD1		E24 ³		
PD31/RXD1		B25 ³		
VCCSYN		C18		
VCCSYN1		K6		

Table 23. Document Revision History (continued)

Revision	Date	Substantive Changes	
1.2	09/2005	 Added 133-MHz to the list of frequencies in the opening sentence of Section 6, "AC Electrical Characteristics". Added 133 MHz columns to Table 9, Table 11, Table 12, and Table 13. Added footnote 2 to Table 13. Added the conditions note directly above Table 12. 	
1.1	01/2005	Modification for correct display of assertion level ("overbar") for some signals	
1.0	12/2004	 Section 1.1: Added 8:1 ratio to Internal CPM/bus clock multiplier values Section 2: removed voltage tracking note Table 3: Note 2 updated regarding VDD/VCCSYN relationship to VDDH during power-on reset Table 4: Updated VDD and VCCSYN to 1.425 V - 1.575 V Table 8: Note 2 updated to reflect VIH=2.5 for TCK, TRST, PORESET; request for external pull-up removed. Section 4.6: Updated description of layout practices Table 8: Note 3 added regarding IIC compatibility Table 8: Updated nominal and maximum power dissipation values Table 9: updated PCI impedance to 27Ω, updated 60x and MEMC values and added note to reflect configurable impedance Section 6: Added sentence providing derating factor Section 6.1: added Note: Rise/Fall Time on CPM Input Pins Table 9: updated values for following specs: sp36b, sp37a, sp38a, sp39a, sp38b, sp40, sp41, sp42, sp43, sp42a Table 11: updated values for following specs: sp16a, sp16b, sp18a, sp18b, sp20, sp21, sp22 Section 6.2: added spread spectrum clocking note Section 6.2: added CLKIN jitter note Table 12: combined specs sp11 and sp11a Table 13: sp30 Data Bus minimum delay values changed to 0.8 Section 7: unit of ns added to Tval notes Section 7: Updated all notes to reflect updated CPU Fmin of 150 MHz commercial temp devices, 175 MHz extended temp; CPM Fmin of 120 MHz. Section 7, "Clock Configuration Modes": Updated all table footnotes reflect updated CPU Fmin of 150 MHz commercial temp devices, 175 MHz extended temp; CPM Fmin of 120 MHz. Table 21: remove DONE3 from PC12 Table 21: signals referring to TDMs C2 and D2 removed 	