

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8247vrtmfa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

1 Overview

This table shows the functionality supported by each SoC in the MPC8272 family.

			SoCs		
Functionality		MPC8272	MPC8248	MPC8271	MPC8247
	Package ¹		516 F	PBGA	
Serial communications controllers (SC	Cs)	3	3	3	3
QUICC multi-channel controller (QMC)		Yes	Yes	Yes	Yes
Fast communication controllers (FCCs))	2	2	2	2
I-Cache (Kbyte)		16	16	16	16
D-Cache (Kbyte)		16	16	16	16
Ethernet (10/100)		2	2	2	2
UTOPIA II Ports		1	0	1	0
Multi-channel controllers (MCCs)		0	0	0	0
PCI bridge		Yes	Yes	Yes	Yes
Transmission convergence (TC) layer		_	—	_	—
Inverse multiplexing for ATM (IMA)		_	_		—
Universal serial bus (USB) 2.0 full/low	1	1	1	1	
Security engine (SEC)		Yes	Yes	—	—

Table 1. MPC8272 PowerQUICC II Family Functionality

¹ See Table 2.

Devices in the MPC8272 family are available in two packages—the VR or ZQ package—as shown in . For package ordering information, see Section 10, "Ordering Information."

Code (Package)	VR (516 PBGA—Lead free)	ZQ (516 PBGA—Lead spheres)
	MPC8272VR	MPC8272ZQ
Device	MPC8248VR	MPC8248ZQ
Device	MPC8271VR	MPC8271ZQ
	MPC8247VR	MPC8247ZQ

Table 2. MPC8272 PowerQUICC II Device Packages

- Integrated security engine (SEC) (MPC8272 and MPC8248 only)
 - Supports DES, 3DES, MD-5, SHA-1, AES, PKEU, RNG and RC-4 encryption algorithms in hardware
- Communications processor module (CPM)
 - Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support for communications peripherals
 - Interfaces to G2_LE core through on-chip dual-port RAM and DMA controller. (Dual-port RAM size is 16 KB plus 4 KB dedicated instruction RAM.)
 - Microcode tracing capabilities
 - Eight CPM trap registers
- Universal serial bus (USB) controller
 - Supports USB 2.0 full/low rate compatible
 - USB host mode
 - Supports control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - NRZI encoding/decoding with bit stuffing
 - Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and data rate configuration). Note that low-speed operation requires an external hub.
 - Flexible data buffers with multiple buffers per frame
 - Supports local loopback mode for diagnostics (12 Mbps only)
 - Supports USB slave mode
 - Four independent endpoints support control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - CRC5 checking
 - NRZI encoding/decoding with bit stuffing
 - 12- or 1.5-Mbps data rate
 - Flexible data buffers with multiple buffers per frame
 - Automatic retransmission upon transmit error
 - Serial DMA channels for receive and transmit on all serial channels
 - Parallel I/O registers with open-drain and interrupt capability
 - Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers
 - Two fast communication controllers (FCCs) supporting the following protocols:
 - 10-/100-Mbit Ethernet/IEEE 802.3 CDMA/CS interface through media independent interface (MII)
 - Transparent
 - HDLC—up to T3 rates (clear channel)

3 DC Electrical Characteristics

This table shows DC electrical characteristics.

Table 5. DC Electrical Characteristics¹

Characteristic	Symbol	Min	Max	Unit
Input high voltage—all inputs except TCK, TRST and PORESET ²	V _{IH}	2.0	3.465	V
Input low voltage ³	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ⁴	I _{IN}	—	10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	I _{OZ}		10	μA
Signal low input current, V _{IL} = 0.8 V	١L	—	1	μA
Signal high input current, V _{IH} = 2.0 V	I _H	—	1	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$ except UTOPIA mode, and open drain pins In UTOPIA mode ⁵ (UTOPIA pins only): $I_{OH} = -8.0\text{mA}$ PA[8-31] PB[18-31] PC[0-1,4-29] PD[7-25, 29-31]	V _{OH}	2.4	_	V
In UTOPIA mode ⁵ (UTOPIA pins only): I _{OL} = 8.0mA PA[8–31] PB[18–31] PC[0–1,4–29] PD[7–25, 29–31]	V _{OL}	_	0.5	V

Thermal Characteristics

4.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

4.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly dependent on the board temperature.

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W) T_B = board temperature (°C) P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground plane.

This table lists CPM input characteristics.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

Spec N	lumber		Value (ns)								
Setup Hold	Characteristic		Set	tup		Hold					
	Hold		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz	
sp16a	sp17a	FCC inputs—internal clock (NMSI)	6	6	6	6	0	0	0	0	
sp16b	sp17b	FCC inputs—external clock (NMSI)	2.5	2.5	2.5	2.5	2	2	2	2	
sp18a	sp19a	SCC/SMC/SPI/I2C inputs—internal clock (NMSI)	6	6	6	6	0	0	0	0	
sp18b	sp19b	SCC/SMC/SPI/I2C inputs—external clock (NMSI)	4	4	4	4	2	2	2	2	
sp20	sp21	TDM inputs/SI	3	3	3	3	2.5	2.5	2.5	2.5	
sp22	sp23	PIO/TIMER/IDMA inputs	8	8	8	8	0.5	0.5	0.5	0.5	

Table 11. AC Characteristics for CPM Inputs¹

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

NOTE

Although the specifications generally reference the rising edge of the clock, the following AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the FCC internal clock.

Figure 3. FCC Internal Clock Diagram

AC Electrical Characteristics

This figure shows the FCC external clock.

Figure 4. FCC External Clock Diagram

This figure shows the SCC/SMC/SPI/I²C external clock.

Note: There are four possible timing conditions for SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge.
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge (shown).
- 4. Input sampled on the falling edge and output driven on the rising edge.

Note: There are two possible timing conditions for SCC/SMC/I²C:

- 1. Input sampled on the falling edge and output driven on the falling edge (shown).
- 2. Input sampled on the falling edge and output driven on the rising edge.

Figure 5. SCC/SMC/SPI/I²C External Clock Diagram

AC Electrical Characteristics

This figure shows PIO and timer signals.

Note: TGATE is asserted on the rising edge of the clock; it is deasserted on the falling edge.

Figure 8. PIO and Timer Signal Diagram

6.2 SIU AC Characteristics

This table lists SIU input characteristics.

NOTE: CLKIN Jitter and Duty Cycle

The CLKIN input to the SoC should not exceed +/- 150 psec of jitter (peak-to-peak). This represents total input jitter—the combination of short term (peak-to-peak) and long term (cumulative). The duty cycle of CLKIN should not exceed the ratio of 40:60.

NOTE: Spread Spectrum Clocking

Spread spectrum clocking is allowed with 1% input frequency down-spread at maximum 60 KHz modulation rate regardless of input frequency.

NOTE: PCI AC Timing

The SoC meets the timing requirements of *PCI Specification Revision 2.2.* See Section 7, "Clock Configuration Modes," and "Note: Tval (Output Hold)" to determine if a specific clock configuration is compliant.

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.

This figure shows the interaction of several bus signals.

Figure 9. Bus Signals

AC Electrical Characteristics

This figure shows signal behavior in MEMC mode.

Figure 10. MEMC Mode Diagram

NOTE

Generally, all SoC bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 14.

Table 14.	Tick Spacing for Memory Controller Signals	
-----------	--	--

PLL Clock Patio	Tick Spacing (T1 Occurs at the Rising Edge of CLKin)						
	Т2	Т3	T4				
1:2, 1:3, 1:4, 1:5, 1:6	1/4 CLKin	1/2 CLKin	3/4 CLKin				
1:2.5	3/10 CLKin	1/2 CLKin	8/10 CLKin				
1:3.5	4/14 CLKin	1/2 CLKin	11/14 CLKin				

This table is a representation of the information in Table 14.

Figure 11. Internal Tick Spacing for Memory Controller Signals

Mode ³	Bus ((MI	Clock Hz)	CPM Multiplication	CPM Clock (MHz)		CPM Clock (MHz)		PM Clock (MHz) CPU Multiplication		CPU Clock CPU (MHz) I fultiplication Div		PCI Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High		
1011_100	80.0	106.7	2.5	200.0	266.6	4	320.0	426.6	4	50.0	66.7		
1011_101	80.0	106.7	2.5	200.0	266.6	4.5	360.0	480.0	4	50.0	66.7		
1101_000	100.0	133.3	2.5	250.0	333.3	3	300.0	400.0	5	50.0	66.7		
1101_001	100.0	133.3	2.5	250.0	333.3	3.5	350.0	466.6	5	50.0	66.7		
1101_010	100.0	133.3	2.5	250.0	333.3	4	400.0	533.3	5	50.0	66.7		
1101_011	100.0	133.3	2.5	250.0	333.3	4.5	450.0	599.9	5	50.0	66.7		
1101_100	100.0	133.3	2.5	250.0	333.3	5	500.0	666.6	5	50.0	66.7		
1101_101	125.0	166.7	2	250.0	333.3	3	375.0	500.0	5	50.0	66.7		
1101_110	125.0	166.7	2	250.0	333.3	4	500.0	666.6	5	50.0	66.7		
1110_000	100.0	133.3	3	300.0	400.0	3.5	350.0	466.6	6	50.0	66.7		
1110_001	100.0	133.3	3	300.0	400.0	4	400.0	533.3	6	50.0	66.7		
1110_010	100.0	133.3	3	300.0	400.0	4.5	450.0	599.9	6	50.0	66.7		
1110_011	100.0	133.3	3	300.0	400.0	5	500.0	666.6	6	50.0	66.7		
1110_100	100.0	133.3	3	300.0	400.0	5.5	550.0	733.3	6	50.0	66.7		
1100_000						Reserved							
1100_001						Reserved							
1100_010						Reserved							

Table 17. Clock Configurations	for PCI Host Mode (PCI	_MODCK=0) ^{1,2} (continued)
--------------------------------	------------------------	--------------------------------------

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

² PCI_MODCK determines the PCI clock frequency range. SeeTable 18 for lower range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

⁶ CPM_CLK/PCI_CLK ratio. When PCI_MODCK = 0, the ratio of CPM_CLK/PCI_CLK should be calculated from SCCR[PCIDF] as follows:

 $CPM_CLK/PCI_CLK = (PCIDF + 1) / 2.$

Mode ³	Bus ((M	Clock Hz)	CPM Multiplication	CPM (M	Clock Hz)	CPU Multiplication		Clock Hz)	ck PCI Division		PCI Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High	
			Defau	ult Mode	es (MO	DCK_H=0000)						
0000_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0	
0000_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0	
0000_010	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0	
0000_011	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0	
0000_100	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0	
0000_101	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0	
0000_110	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0	
0000_111	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0	
			F	ull Cor	nfigurati	on Modes						
0001_000	50.0	100.0	3	150.0	300.0	5	250.0	500.0	6	25.0	50.0	
0001_001	50.0	100.0	3	150.0	300.0	6	300.0	600.0	6	25.0	50.0	
0001_010	50.0	100.0	3	150.0	300.0	7	350.0	700.0	6	25.0	50.0	
0001_011	50.0	100.0	3	150.0	300.0	8	400.0	800.0	6	25.0	50.0	
0010_000	50.0	100.0	4	200.0	400.0	5	250.0	500.0	8	25.0	50.0	
0010_001	50.0	100.0	4	200.0	400.0	6	300.0	600.0	8	25.0	50.0	
0010_010	50.0	100.0	4	200.0	400.0	7	350.0	700.0	8	25.0	50.0	
0010_011	50.0	100.0	4	200.0	400.0	8	400.0	800.0	8	25.0	50.0	
0010_100	37.5	75.0	4	150.0	300.0	5	187.5	375.0	6	25.0	50.0	
0010_101	37.5	75.0	4	150.0	300.0	5.5	206.3	412.5	6	25.0	50.0	
0010_110	37.5	75.0	4	150.0	300.0	6	225.0	450.0	6	25.0	50.0	
0011_000	30.0	50.0	5	150.0	250.0	5	150.0	250.0	5	30.0	50.0	
0011_001	25.0	50.0	5	125.0	250.0	6	150.0	300.0	5	25.0	50.0	
0011_010	25.0	50.0	5	125.0	250.0	7	175.0	350.0	5	25.0	50.0	
0011_011	25.0	50.0	5	125.0	250.0	8	200.0	400.0	5	25.0	50.0	
0100_000						Reserved						

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2}

Table 18. Clock Configurations for PCI Host Mode	(PCI_MODCK=1) ^{1,2} (continued)
--	--

Mode ³	Bus ((MI	Clock Hz)	CPM Multiplication	CPM (M	Clock Hz)	CPU Multiplication	CPU (M	Clock Hz)	PCI	PCI ((M	Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
1000_010	66.7	133.3	3	200.0	400.0	3.5	233.3	466.7	8	25.0	50.0
1000_011	66.7	133.3	3	200.0	400.0	4	266.7	533.3	8	25.0	50.0
1000_100	66.7	133.3	3	200.0	400.0	4.5	300.0	600.0	8	25.0	50.0
1000_101	66.7	133.3	3	200.0	400.0	6	400.0	800.0	8	25.0	50.0
1000_110	66.7	133.3	3	200.0	400.0	6.5	433.3	866.7	8	25.0	50.0
1001_000						Reserved					
1001_001						Reserved					
1001_010	57.1	114.3	3.5	200.0	400.0	3.5	200.0	400.0	8	25.0	50.0
1001_011	57.1	114.3	3.5	200.0	400.0	4	228.6	457.1	8	25.0	50.0
1001_100	57.1	114.3	3.5	200.0	400.0	4.5	257.1	514.3	8	25.0	50.0
1001_101	42.9	85.7	3.5	150.0	300.0	5	214.3	428.6	6	25.0	50.0
1001_110	42.9	85.7	3.5	150.0	300.0	5.5	235.7	471.4	6	25.0	50.0
1001_111	42.9	85.7	3.5	150.0	300.0	6	257.1	514.3	6	25.0	50.0
1010_000	75.0	150.0	2	150.0	300.0	2	150.0	300.0	6	25.0	50.0
1010_001	75.0	150.0	2	150.0	300.0	2.5	187.5	375.0	6	25.0	50.0
1010_010	75.0	150.0	2	150.0	300.0	3	225.0	450.0	6	25.0	50.0
1010_011	75.0	150.0	2	150.0	300.0	3.5	262.5	525.0	6	25.0	50.0
1010_100	75.0	150.0	2	150.0	300.0	4	300.0	600.0	6	25.0	50.0
1010_101	100.0	200.0	2	200.0	400.0	2.5	250.0	500.0	8	25.0	50.0
1010_110	100.0	200.0	2	200.0	400.0	3	300.0	600.0	8	25.0	50.0
1010_111	100.0	200.0	2	200.0	400.0	3.5	350.0	700.0	8	25.0	50.0
1011_000						Reserved					
1011_001	80.0	160.0	2.5	200.0	400.0	2.5	200.0	400.0	8	25.0	50.0
1011_010	80.0	160.0	2.5	200.0	400.0	3	240.0	480.0	8	25.0	50.0
1011_011	80.0	160.0	2.5	200.0	400.0	3.5	280.0	560.0	8	25.0	50.0
1011_100	80.0	160.0	2.5	200.0	400.0	4	320.0	640.0	8	25.0	50.0

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³	PCI ((MI	Clock Hz)	CPM Multiplication	CPM (M	Clock Hz)	CPU Multiplication	CPU (M	Clock Hz)	Bus	Bus ((M	Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
1001_010						Reserved					
1001_011	25.0	50.0	8	200.0	400.0	4	200.0	400.0	4	50.0	100.0
1001_100	25.0	50.0	8	200.0	400.0	4.5	225.0	450.0	4	50.0	100.0
1010_000						Reserved					
1010_001	25.0	50.0	8	200.0	400.0	3	200.0	400.0	3	66.7	133.3
1010_010	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3
1010_011	25.0	50.0	8	200.0	400.0	4	266.7	533.3	3	66.7	133.3
1010_100	25.0	50.0	8	200.0	400.0	4.5	300.0	600.0	3	66.7	133.3
1011_000						Reserved					
1011_001	25.0	50.0	8	200.0	400.0	2.5	200.0	400.0	2.5	80.0	160.0
1011_010	25.0	50.0	8	200.0	400.0	3	240.0	480.0	2.5	80.0	160.0
1011_011	25.0	50.0	8	200.0	400.0	3.5	280.0	560.0	2.5	80.0	160.0
1011_100	25.0	50.0	8	200.0	400.0	4	320.0	640.0	2.5	80.0	160.0
1011_101	25.0	50.0	8	200.0	400.0	2.5	250.0	500.0	2	100.0	200.0
1011_110	25.0	50.0	8	200.0	400.0	3	300.0	600.0	2	100.0	200.0
1011_111	25.0	50.0	8	200.0	400.0	3.5	350.0	700.0	2	100.0	200.0
1100_101	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0
1100_110	25.0	50.0	6	150.0	300.0	4.5	225.0	450.0	3	50.0	100.0
1100_111	25.0	50.0	6	150.0	300.0	5	250.0	500.0	3	50.0	100.0
1101_000	25.0	50.0	6	150.0	300.0	5.5	275.0	550.0	3	50.0	100.0
							-				-
1101_001	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
1101_010	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0
1101_011	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0
1101_100	25.0	50.0	6	150.0	300.0	5	300.0	600.0	2.5	60.0	120.0

Mode ³	PCI ((MI	Clock Hz)	CPM Multiplication Factor ⁴	CPM (M	Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High		Low	High	Factor ⁵	Low	High	Factor	Low	High
1110_000	25.0	50.0	5	125.0	250.0	2.5	156.3	312.5	2	62.5	125.0
1110_001	25.0	50.0	5	125.0	250.0	3	187.5	375.0	2	62.5	125.0
1110_010	28.6	50.0	5	142.9	250.0	3.5	250.0	437.5	2	71.4	125.0
1110_011	25.0	50.0	5	125.0	250.0	4	250.0	500.0	2	62.5	125.0
1110_100	25.0	50.0	5	125.0	250.0	4	166.7	333.3	3	41.7	83.3
1110_101	25.0	50.0	5	125.0	250.0	4.5	187.5	375.0	3	41.7	83.3
1110_110	25.0	50.0	5	125.0	250.0	5	208.3	416.7	3	41.7	83.3
1110_111	25.0	50.0	5	125.0	250.0	5.5	229.2	458.3	3	41.7	83.3
1100_000	Reserved										
1100_001	Reserved										
1100_010	Reserved										

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

² PCI_MODCK determines the PCI clock frequency range. See Table 19 for higher range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

8 Pinout

This figure and table show the pin assignments and pinout for the 516 PBGA package.

Table 21	Pinout	(continued)
	. Fillout	(continueu)

Pin N			
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball	
	D1		
A	0	A3	
A	1	B5	
A	2	D8	
A	3	C6	
А	4	A4	
А	5	A6	
A	6	B6	
A	7	C7	
А	8	B7	
А	9	Α7	
A1	0	D9	
A1	1	E11	
A1	2	C9	
A1	3	B9	
A1	4	D11	
A1	5	A9	
A1	6	B10	
A1	7	A10	
A1	8	B11	
A1	9	A11	
A2	20	D12	
A2	21	A12	
A2	22	D13	
A2	B13		
A2	C13		
A2	C14		
A2	A26		
A2	27	D14	
A2	28	E14	
A2	A14		

Pinout

Pin N	ame			
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball		
D4	H4			
D4	7	F2		
D4	.8	AB1		
D4	9	U4		
D5	50	U1		
D5	1	R3		
D5	2	N3		
D5	3	К2		
D5	54	H5		
D5	5	F4		
D5	6	AA3		
D5	7	U5		
D5	8	U2		
D5	P5			
De	М3			
De	К4			
De	2	H3		
De	3	E1		
IRQ3/CKSTP_0	DUT/EXT_BR3	B16		
IRQ4/CORE_SRI	ESET/EXT_BG3	C15		
IRQ5/TBEN/EX	T_DBG3/CINT	Y4		
PSD	VAL	C19		
T	Ā	AA4		
TE	AB6			
GBL/I	D15			
	D16			
WT/BADD	C16			
BADDR31/Ī	RQ5/CINT	E17		
	CPU_BR/INT_OUT			
<u>CS</u>	AE6			

Table 21. Pinout (continued)

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

CS1

AD7

Table 21. Pinout (continued)
--------------------	------------

Pin M			
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball	
C	AF5		
	53	AC8	
	54	AF6	
	55	AD8	
CS6/BC	TL1/SMI	AC9	
CS7/TL	BISYNC	AB9	
BADDR	27/IRQ1	AB8	
BADDR	28/IRQ2	AC7	
ALE/	IRQ4	AF4	
BC	TLO	AF3	
PWE0/PSDI	DQM0/PBS0	AD6	
PWE1/PSDI	DQM1/PBS1	AE5	
PWE2/PSDI	DQM2/PBS2	AE3	
PWE3/PSDI	DQM3/PBS3	AF2	
PWE4/PSDI	DQM4/PBS4	AC6	
PWE5/PSDI	DQM5/PBS5	AC5	
PWE6/PSDI	DQM6/PBS6	AD4	
PWE7/PSDI	DQM7/PBS7	AB5	
PSDA10)/PGPL0	AE2	
PSDWE	/PGPL1	AD3	
POE/PSDF	AS/PGPL2	AB4	
PSDCAS	5/PGPL3	AC3	
PGTA/PUPM	WAIT/PGPL4	AD2	
PSDAMU	X/PGPL5	AC2	
PCI_M	AD22		
PCI_CFG0 (P	AC21		
PCI_CFG1 (F	AE22		
PCI_CFG2 (D	AE23		
PCI_	PAR	AF12	
PCI_F	PCI_FRAME		
PCI_	AF16		

Pinout

Table 21. Pinout (continued)

Pin N		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
PCI_	IRDY	AF15
PCI_S	STOP	AE15
PCI_D	EVSEL	AE14
PCI_I	DSEL	AC17
PCI_I	PERR	AD14
PCI_S	SERR	AD13
PCI_I	REQ0	AE20
PCI_REQ1/C	PCI_HS_ES	AF14
PCI_0	GNTO	AD20
PCI_GNT1/C	PCI_HS_LED	AE13
PCI_GNT2/CP	CI_HS_ENUM	AF21
PCI_	RST	AF22
PCI_	INTA	AE21
PCI_I	REQ2	AB14
DLL	OUT	AC22
PCI_	ADO	AF7
PCI_	_AD1	AE10
PCI_	_AD2	AB10
PCI_	_AD3	AD10
PCI_	_AD4	AE9
PCI_	_AD5	AF8
PCI_	_AD6	AC10
PCI_	AD7	AE11
PCI_	AD8	AB11
PCI_	AF10	
PCI_/	AF9	
PCI_/	AB12	
PCI_/	AC12	
PCI_/	AD13	AD12
PCI	AD14	AF11
PCI_	AB13	

Pin N		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
CLK	IN2	C21
No cor	nnect ⁴	D19 ⁴ , J3 ⁴ , AD24 ⁵
I/O po	ower	B4, F3, J2, N4, AD1, AD5, AE8, AC13, AD18, AB24, AB26, W23, R25, M25, F25, C25, C22, B17, B12, B8, E6, F6, H6, L5, L6, P6, T6, U6, V5, Y5, AA6, AA8, AA10, AA11, AA14, AA16, AA17, AB19, AB20, W21, U21, T21, P21, N21, M22, J22, H21, F21, F19, F17, E16, F14, E13, E12, F10, E10, E9
Core F	Power	F5, K5, M5, AA5, AB7, AA13, AA19, AA21, Y22, AC25, U22, R22, L21, H22, E22, E20, E15, F13, F11, F8, L3, V4, W3, AC11, AD11, AB15, U25, T24, J24, H25, F23, B19, D17, C17, D10, C10
Gro	und	E19, E2, K1, Y2, AE1, AE4, AD9, AC14, AE17, AC19, AE25, V24, P26, M26, G26, E26, B21, C12, C11, C8, A8, B18, A18, A2, B1, B2, A5, C5, D4, D6, G2, L4, P1, R1, R4, AC4, AE7, AC23, Y25, N24, J23, A23, D23, D20, E18, A13, A16, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, R10, R11, R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17

Table 21. Pinout (continued)

¹ Must be tied to ground.

 2 Should be tied to VDDH via a 2K Ω external pull-up resistor.

³ The default configuration of the CPM pins (PA[8–31], PB[18–31], PC[0–1,4–29], PD[7–25, 29–31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

⁴ This pin is not connected. It should be left floating.

⁵ Must be pulled down or left floating

Ordering Information

10 Ordering Information

This figure provides an example of the Freescale part numbering nomenclature for the SoC. In addition to the processor frequency, the part numbering scheme also consists of a part modifier that indicates any enhancement(s) in the part from the original production design. Each part number also contains a revision code that refers to the die mask revision number and is specified in the part numbering scheme for identification purposes only. For more information, contact your local Freescale sales office.

Figure 15. Freescale Part Number Key

11 Document Revision History

This table summarizes changes to this document.

Table 23.	Document	Revision	History
-----------	----------	----------	---------

Revision	Date	Substantive Changes
3	09/2011	In Figure 15, "Freescale Part Number Key," added speed decoding information below processor frequency information.
2	12/2008	 Modified Figure 5, "SCC/SMC/SPI/I2C External Clock Diagram," and added second section of figure notes. In Table 12, modified "Data bus in pipeline mode" row and showed 66 MHz as "N/A." In Section 10, "Ordering Information," added "F = 133" to CPU/CPM/Bus Frequency. Added footnote concerning CPM_CLK/PCI_CLK ratio to column "PCI Division Factor" in Table 17, "Clock Configurations for PCI Host Mode (PCI_MODCK=0)," and Table 18, "Clock Configurations for PCI Host Mode (PCI_MODCK=1),." Removed overbar from DLL_ENABLE in Table 21, "Pinout."
1.5	12/2006	• Section 6, "AC Electrical Characteristics," removed deratings statement and clarified AC timing descriptions.
1.4	05/2006	Added row for 133 MHz configurations to Table 8.
1.3	02/2006	Inserted Section 6.3, "JTAG Timings."