



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

### Details

| Product Status                  | Obsolete                                                              |
|---------------------------------|-----------------------------------------------------------------------|
| Core Processor                  | PowerPC G2_LE                                                         |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                        |
| Speed                           | 300MHz                                                                |
| Co-Processors/DSP               | Communications; RISC CPM                                              |
| RAM Controllers                 | DRAM, SDRAM                                                           |
| Graphics Acceleration           | No                                                                    |
| Display & Interface Controllers | -                                                                     |
| Ethernet                        | 10/100Mbps (2)                                                        |
| SATA                            | -                                                                     |
| USB                             | USB 2.0 (1)                                                           |
| Voltage - I/O                   | 3.3V                                                                  |
| Operating Temperature           | 0°C ~ 105°C (TA)                                                      |
| Security Features               | <u> </u>                                                              |
| Package / Case                  | 516-BBGA                                                              |
| Supplier Device Package         | 516-PBGA (27x27)                                                      |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8247zqpiea |
|                                 |                                                                       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



### **Operating Conditions**

I/O supply voltage

Junction temperature (maximum)

Input voltage

1

This table lists recommended operational voltage conditions.

| •                   | •      |             |
|---------------------|--------|-------------|
| Rating              | Symbol | Value       |
| Core supply voltage | VDD    | 1.425 – 575 |
| PLL supply voltage  | VCCSYN | 1.425 – 575 |
|                     |        |             |

VDDH

VIN

Τi

Table 4. Recommended Operating Conditions<sup>1</sup>

 Ambient temperature
 T<sub>A</sub>
 0-70<sup>2</sup>
 °C

 Caution: These are the recommended and tested operating conditions. Proper operation outside of these conditions is not guaranteed.
 State
 State

<sup>2</sup> Note that for extended temperature parts the range is  $(-40)_{T_A} - 105_{T_i}$ .

This SoC contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or  $V_{CC}$ ).

This figure shows the undershoot and overshoot voltage of the 60x bus memory interface of the SoC. Note that in PCI mode the I/O interface is different.

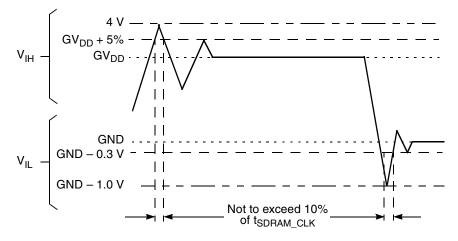



Figure 2. Overshoot/Undershoot Voltage

Unit

V

V

V

V

°C

3.135 - 3.465

GND (-0.3) - 3.465

105<sup>2</sup>



| Characteristic          | Symbol          | Min | Мах | Unit |
|-------------------------|-----------------|-----|-----|------|
| I <sub>OL</sub> = 6.0mA | V <sub>OL</sub> | —   | 0.4 | V    |
| BR                      | _               |     |     |      |
| BG/IRQ6                 |                 |     |     |      |
| ABB/IRQ2                |                 |     |     |      |
| TS                      |                 |     |     |      |
| A[0-31]                 |                 |     |     |      |
| TT[0-4]                 |                 |     |     |      |
| TBST                    |                 |     |     |      |
| TSIZE[0-3]              |                 |     |     |      |
| AACK                    |                 |     |     |      |
| ARTRY                   |                 |     |     |      |
| DBG/IRQ7                |                 |     |     |      |
| DBB/IRQ3                |                 |     |     |      |
|                         |                 |     |     |      |
|                         |                 |     |     |      |
|                         |                 |     |     |      |
| IRQ5/TBEN/EXT_DBG3/CINT |                 |     |     |      |
| PSDVAL<br>TA            |                 |     |     |      |
|                         |                 |     |     |      |
| GBL/IRQ1                |                 |     |     |      |
| CI/BADDR29/IRQ2         |                 |     |     |      |
| WT/BADDR30/IRQ3         |                 |     |     |      |
| BADDR31/IRQ5/CINT       |                 |     |     |      |
| CPU_BR/INT_OUT          |                 |     |     |      |
| IRQ0/NMI_OUT            |                 |     |     |      |
| PORESET/PCI_RST         |                 |     |     |      |
| HRESET                  |                 |     |     |      |
| SRESET                  |                 |     |     |      |
| RSTCONF                 |                 |     |     |      |
|                         |                 |     |     |      |

# Table 5. DC Electrical Characteristics<sup>1</sup> (continued)



| Characteristic                     | Symbol          | Min | Max | Unit |
|------------------------------------|-----------------|-----|-----|------|
| I <sub>OL</sub> = 5.3mA            | V <sub>OL</sub> |     | 0.4 | V    |
| <u>ČŠ</u> [0–5]                    | 01              |     |     |      |
| CS6/BCTL1/SMI                      |                 |     |     |      |
| CS7/TLBSYNC                        |                 |     |     |      |
| BADDR27/ IRQ1                      |                 |     |     |      |
| BADDR28/ IRQ2                      |                 |     |     |      |
| ALE/ IRQ4                          |                 |     |     |      |
| BCTL0                              |                 |     |     |      |
| PWE[0-7]/PSDDQM[0-7]/PBS[0-7]      |                 |     |     |      |
| PSDA10/PGPL0                       |                 |     |     |      |
| PSDWE/PGPL1                        |                 |     |     |      |
| POE/PSDRAS/PGPL2                   |                 |     |     |      |
| PSDCAS/PGPL3                       |                 |     |     |      |
| PGTA/PUPMWAIT/PGPL4                |                 |     |     |      |
| PSDAMUX/PGPL5                      |                 |     |     |      |
| PCI_CFG0 (PCI_HOST_EN)             |                 |     |     |      |
| PCI_CFG1 (PCI_ARB_EN)              |                 |     |     |      |
| PCI_CFG2 (DLL_ENABLE)              |                 |     |     |      |
| MODCK1/RSRV/TC(0)/BNKSEL(0)        |                 |     |     |      |
| MODCK2/CSE0/TC(1)/BNKSEL(1)        |                 |     |     |      |
| MODCK3CSE1/TC(2)/BNKSEL(2)         |                 |     |     |      |
| $I_{OL} = 3.2 \text{mA}$           |                 |     |     |      |
| PCI_PAR                            |                 |     |     |      |
| PCI_FRAME                          |                 |     |     |      |
| PCI_TRDY                           |                 |     |     |      |
| PCI_IRDY                           |                 |     |     |      |
| PCI_STOP                           |                 |     |     |      |
| PCI_DEVSEL                         |                 |     |     |      |
| PCI_IDSEL                          |                 |     |     |      |
| PCI_PERR                           |                 |     |     |      |
| PCI_SERR                           |                 |     |     |      |
| PCI_REQ0                           |                 |     |     |      |
| PCI_REQ1/ CPI_HS_ES                |                 |     |     |      |
| PCI_GNT0                           |                 |     |     |      |
| PCI_GNT1/ CPI_HS_LES               |                 |     |     |      |
| PCI_GNT2/ CPI_HS_ENUM              |                 |     |     |      |
| PCI_RST                            |                 |     |     |      |
| PCI_INTA                           |                 |     |     |      |
| PCI_REQ2                           |                 |     |     |      |
| DLLOUT                             |                 |     |     |      |
| PCI_AD(0-31)                       |                 |     |     |      |
| PCI_AD(0-31)<br>PCI_C(0-3)/BE(0-3) |                 |     |     |      |
| PA[8–31]                           |                 |     |     |      |
| PB[18–31]                          |                 |     |     |      |
| PC[0–1,4–29]                       |                 |     |     |      |
| PD[7–25, 29–31]                    |                 |     |     |      |
| TDO                                |                 |     |     |      |
|                                    |                 |     |     |      |

## Table 5. DC Electrical Characteristics<sup>1</sup> (continued)

The default configuration of the CPM pins (PA[8-31], PB[18-31], PC[0-1,4-29], PD[7-25, 29-31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

 <sup>2</sup> TCK, TRST and PORESET have min VIH = 2.5V.
 <sup>3</sup> V<sub>IL</sub> for IIC interface does not match IIC standard, but does meet IIC standard for V<sub>OL</sub> and should not cause any compatibility issue.

<sup>4</sup> The leakage current is measured for nominal VDDH,VCCSYN, and VDD.



<sup>5</sup> MPC8272 and MPC8271 only.

Table 6.

| Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Symbol           | Min | Мах   | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|-------|------|
| Input high voltage—all inputs except TCK, TRST and PORESET <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>IH</sub>  | 2.0 | 3.465 | V    |
| Input low voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>IL</sub>  | GND | 0.8   | V    |
| CLKIN input high voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>IHC</sub> | 2.4 | 3.465 | V    |
| CLKIN input low voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>ILC</sub> | GND | 0.4   | V    |
| Input leakage current, V <sub>IN</sub> = VDDH <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I <sub>IN</sub>  |     | 10    | μA   |
| Hi-Z (off state) leakage current, V <sub>IN</sub> = VDDH <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I <sub>OZ</sub>  |     | 10    | μA   |
| Signal low input current, $V_{IL} = 0.8 V^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ١L               | _   | 1     | μA   |
| Signal high input current, V <sub>IH</sub> = 2.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I <sub>H</sub>   | _   | 1     | μA   |
| Output high voltage, $I_{OH} = -2 \text{ mA}$<br>except UTOPIA mode, and open drain pins<br>In UTOPIA mode <sup>4</sup> (UTOPIA pins only): $I_{OH} = -8.0 \text{mA}$                                                                                                                                                                                                                                                                                                                                                      | V <sub>OH</sub>  | 2.4 | _     | V    |
| In UTOPIA mode <sup>4</sup> (UTOPIA pins only): I <sub>OL</sub> = 8.0mA                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>OL</sub>  | _   | 0.5   | V    |
| IoL = 6.0mA         BR         BG         ABB/IRQ2         TS         A[0-31]         TTI[0-4]         TBST         TSIZE[0-3]         AACK         ARTRY         DBG         DBB/IRQ3         D[0-63]         //EXT_BR3         //EXT_BR3         //EXT_BG3         /TEN/EXT_DBG3/CINT         PSDVAL         TA         TEA         GBL/IRQ1         CI/BADDR29/IRQ2         WT/BADDR30/IRQ3         BADDR31/IRQ5/CINT         CPU_BR         IRQ0/NMI_OUT         /PCL_RST         HRESET         SRESET         REQONF | V <sub>OL</sub>  |     | 0.4   | V    |



| Та | h | P  | 6  |  |
|----|---|----|----|--|
| ıa | N | e. | υ. |  |

| Characteristic                                | Symbol          | Min | Max | Unit |
|-----------------------------------------------|-----------------|-----|-----|------|
| I <sub>OL</sub> = 5.3mA                       | V <sub>OL</sub> |     | 0.4 | V    |
| CS[0-9]                                       | VOL             |     | 0.4 | v    |
| CS(10)/BCTL1                                  |                 |     |     |      |
| <u>CS(11)/AP(0)</u>                           |                 |     |     |      |
| BADDR[27–28]                                  |                 |     |     |      |
| ALE                                           |                 |     |     |      |
| BCTLO                                         |                 |     |     |      |
| PWE[0-7]/PSDDQM[0-7]/PBS[0-7]                 |                 |     |     |      |
| PSDA10/PGPL0                                  |                 |     |     |      |
| PSDWE/PGPL1                                   |                 |     |     |      |
| POE/PSDRAS/PGPL2                              |                 |     |     |      |
| PSDCAS/PGPL3                                  |                 |     |     |      |
| PGTA/PUPMWAIT/PGPL4/PPBS                      |                 |     |     |      |
| PSDAMUX/PGPL5                                 |                 |     |     |      |
| LWE[0-3]LSDDQM[0-3]/LBS[0-3]/PCI_CFG[0-3]     |                 |     |     |      |
| LSDA10/LGPL0/PCI_MODCKH0                      |                 |     |     |      |
| LSDWE/LGPL1/PCI_MODCKH1                       |                 |     |     |      |
| LOE/LSDRAS/LGPL2/PCI_MODCKH2                  |                 |     |     |      |
| LSDCAS/LGPL3/PCI_MODCKH3                      |                 |     |     |      |
| LGTA/LUPMWAIT/LGPL4/LPBS                      |                 |     |     |      |
| LSDAMUX/LGPL5/PCI_MODCK                       |                 |     |     |      |
| LWR                                           |                 |     |     |      |
| MODCK[1-3]/AP[1-3]/TC[0-2]/BNKSEL[0-2]        |                 |     |     |      |
| I <sub>OL</sub> = 3.2mA                       |                 |     |     |      |
| L_A14/PAR                                     |                 |     |     |      |
| L_A15/FRAME/SMI                               |                 |     |     |      |
| L_A16/TRDY                                    |                 |     |     |      |
| L_A17/IRDY/CKSTP_OUT                          |                 |     |     |      |
| L_A18/STOP                                    |                 |     |     |      |
| L_A19/DEVSEL                                  |                 |     |     |      |
| L_A20/IDSEL                                   |                 |     |     |      |
| L_A21/PERR                                    |                 |     |     |      |
| L_A22/SERR                                    |                 |     |     |      |
| L_A23/ <u>REQ0</u>                            |                 |     |     |      |
| L_A24/REQ1/HSEJSW                             |                 |     |     |      |
| L_A25/GNT0                                    |                 |     |     |      |
| L_A26/GNT1/HSLED                              |                 |     |     |      |
| L_A27/GNT2/HSENUM                             |                 |     |     |      |
|                                               |                 |     |     |      |
| L_A29/INTAL_A30/REQ2                          |                 |     |     |      |
|                                               |                 |     |     |      |
| LCL_D[0-31)]/AD[0-31]<br>LCL_DP[03]/C/BE[0-3] |                 |     |     |      |
| PA[0-31]                                      |                 |     |     |      |
| PB[4–31]                                      |                 |     |     |      |
| PC[0-31]                                      |                 |     |     |      |
| PD[4–31]                                      |                 |     |     |      |
| TDO                                           |                 |     |     |      |
| QREQ                                          |                 |     |     |      |
|                                               |                 |     |     |      |

TCK,  $\overline{\text{TRST}}$  and  $\overline{\text{PORESET}}$  have min VIH = 2.5V. 1

<sup>2</sup> The leakage current is measured for nominal VDDH,VCCSYN, and VDD.
 <sup>3</sup> V<sub>IL</sub> for IIC interface does not match IIC standard, but does meet IIC standard for V<sub>OL</sub> and should not cause any compatibility issue.



Thermal Characteristics

<sup>4</sup> MPC8280, MPC8275VR, MPC8275ZQ only.

# 4 Thermal Characteristics

This table describes thermal characteristics. See Table 2 for information on a given SoC's package. Discussions of each characteristic are provided in Section 4.1, "Estimation with Junction-to-Ambient Thermal Resistance," through Section 4.7, "References." For the these discussions,  $P_D = (V_{DD} \times I_{DD}) + PI/O$ , where PI/O is the power dissipation of the I/O drivers.

| Characteristic                       | Symbol                | Value     | Unit | Air Flow           |
|--------------------------------------|-----------------------|-----------|------|--------------------|
| Junction-to-ambient—                 |                       | 27        | 0000 | Natural convection |
| single-layer board <sup>1</sup>      | $R_{	heta JA}$        | 21        | °C/W | 1 m/s              |
| Junction-to-ambient-                 | 5                     | 19        |      | Natural convection |
| four-layer board                     | $R_{	hetaJA}$         | ۹ 16 °C/V |      | 1 m/s              |
| Junction-to-board <sup>2</sup>       | R <sub>θJB</sub>      | 11        | °C/W | —                  |
| Junction-to-case <sup>3</sup>        | $R_{	extsf{	heta}JC}$ | 8         | °C/W | —                  |
| Junction-to-package top <sup>4</sup> | $R_{	extsf{	heta}JT}$ | 2         | °C/W | _                  |

**Table 7. Thermal Characteristics** 

<sup>1</sup> Assumes no thermal vias

<sup>2</sup> Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

<sup>3</sup> Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

<sup>4</sup> Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

# 4.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T<sub>J</sub>, in C can be obtained from the following equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 $T_A$  = ambient temperature (°C)

 $R_{\theta JA}$  = package junction-to-ambient thermal resistance (°C/W)

 $P_D$  = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity  $T_I - T_A$ ) are possible.



Thermal Characteristics

# 4.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application, or a more accurate and complex model of the package can be used in the thermal simulation.

## 4.5 **Experimental Determination**

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter ( $\Psi_{JT}$ ) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 $\Psi_{JT}$  = thermal characterization parameter

 $T_T$  = thermocouple temperature on top of package

 $P_D$  = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the case to avoid measurement errors caused by cooling effects of the thermocouple wire.

## 4.6 Layout Practices

Each VDD and VDDH pin should be provided with a low-impedance path to the board's power supplies. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VDD and VDDH power supplies should be bypassed to ground using bypass capacitors located as close as possible to the four sides of the package. For filtering high frequency noise, a capacitor of 0.1uF on each VDD and VDDH pin is recommended. Further, for medium frequency noise, a total of 2 capacitors of 47uF for VDD and 2 capacitors of 47uF for VDDH are also recommended. The capacitor leads and associated printed circuit traces connecting to chip VDD, VDDH and ground should be kept to less than half an inch per capacitor lead. Boards should employ separate inner layers for power and GND planes.

All output pins on the SoC have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.



## 4.7 References

Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd. Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) Specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

# 5 **Power Dissipation**

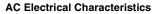
This table provides preliminary, estimated power dissipation for various configurations. Note that suitable thermal management is required to ensure the junction temperature does not exceed the maximum specified value. Also note that the I/O power should be included when determining whether to use a heat sink. For a complete list of possible clock configurations, see Section 7, "Clock Configuration Modes."

|              | СРМ                      |              | CPU                      |              | P <sub>INT</sub> ( | W) <sup>2,3</sup> |
|--------------|--------------------------|--------------|--------------------------|--------------|--------------------|-------------------|
| Bus<br>(MHz) | Multiplication<br>Factor | CPM<br>(MHz) | Multiplication<br>Factor | CPU<br>(MHz) | Vddi 1             | .5 Volts          |
|              | Factor                   |              | Factor                   |              | Nominal            | Maximum           |
| 66.67        | 3                        | 200          | 4                        | 266          | 1                  | 1.2               |
| 100          | 2                        | 200          | 3                        | 300          | 1.1                | 1.3               |
| 100          | 2                        | 200          | 4                        | 400          | 1.3                | 1.5               |
| 133          | 2                        | 267          | 3                        | 400          | 1.5                | 1.8               |

Table 8. Estimated Power Dissipation for Various Configurations<sup>1</sup>

<sup>1</sup> Test temperature =  $105^{\circ}$  C

<sup>2</sup>  $P_{INT} = I_{DD} \times V_{DD}$  Watts


<sup>3</sup> Values do not include I/O. Add the following estimates for active I/O based on the following bus speeds:

66.7 MHz = 0.35 W (nominal), 0.4 W (maximum)

83.3 MHz = 0.4 W (nominal), 0.5 W (maximum)

100 MHz = 0.5 W (nominal), 0.6 W (maximum)

133 MHz = 0.7 W (nominal), 0.8 W (maximum)





This table lists CPM input characteristics.

### NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

| Spec N | lumber         |                                              | Value (ns) |           |            |            |           |           |            |            |  |  |
|--------|----------------|----------------------------------------------|------------|-----------|------------|------------|-----------|-----------|------------|------------|--|--|
|        | Characteristic |                                              | Se         | tup       |            | Hold       |           |           |            |            |  |  |
| Setup  | Setup Hold     |                                              | 66<br>MHz  | 83<br>MHz | 100<br>MHz | 133<br>MHz | 66<br>MHz | 83<br>MHz | 100<br>MHz | 133<br>MHz |  |  |
| sp16a  | sp17a          | FCC inputs—internal clock (NMSI)             | 6          | 6         | 6          | 6          | 0         | 0         | 0          | 0          |  |  |
| sp16b  | sp17b          | FCC inputs—external clock (NMSI)             | 2.5        | 2.5       | 2.5        | 2.5        | 2         | 2         | 2          | 2          |  |  |
| sp18a  | sp19a          | SCC/SMC/SPI/I2C inputs—internal clock (NMSI) | 6          | 6         | 6          | 6          | 0         | 0         | 0          | 0          |  |  |
| sp18b  | sp19b          | SCC/SMC/SPI/I2C inputs—external clock (NMSI) | 4          | 4         | 4          | 4          | 2         | 2         | 2          | 2          |  |  |
| sp20   | sp21           | TDM inputs/SI                                | 3          | 3         | 3          | 3          | 2.5       | 2.5       | 2.5        | 2.5        |  |  |
| sp22   | sp23           | PIO/TIMER/IDMA inputs                        | 8          | 8         | 8          | 8          | 0.5       | 0.5       | 0.5        | 0.5        |  |  |

## Table 11. AC Characteristics for CPM Inputs<sup>1</sup>

<sup>1</sup> Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

## NOTE

Although the specifications generally reference the rising edge of the clock, the following AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the FCC internal clock.

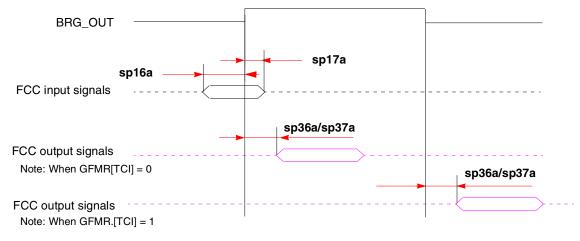
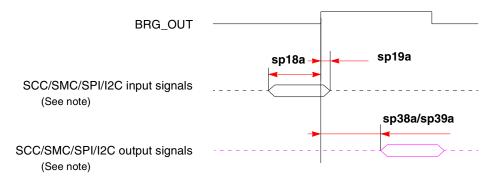
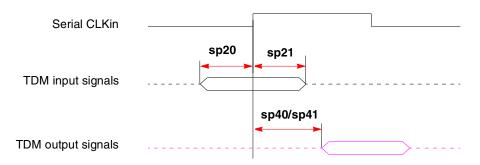




Figure 3. FCC Internal Clock Diagram



This figure shows the SCC/SMC/SPI/I<sup>2</sup>C internal clock.




Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I<sup>2</sup>C Internal Clock Diagram

This figure shows TDM input and output signals.



Note: There are four possible TDM timing conditions:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 7. TDM Signal Diagram

| MODCK,H-<br>MODCK[1-3]LowHighFactor <sup>4</sup> LowHighFactor <sup>5</sup> LowHighFactor <sup>5</sup> Low0000_00060.060.72120.0133.32.5150.0160.7260.0000_00150.066.72100.0133.32.5150.0200.0250.0000_01060.080.02.5.5150.0200.03.5.5210.0280.0350.0000_10060.080.02.5.5150.0200.03.5.5210.020.03.5.03.3.0350.0000_10150.066.73.5.1150.020.03.5.5150.020.03.5.020.03.5.03.3.33.5.050.00000_11050.066.73.5.1150.020.03.5.5150.03.5.33.33.5.050.00001_10150.066.73.5.1150.020.03.5.5150.03.5.33.3.33.5.050.00001_00150.066.73.5.1150.020.03.5.5250.033.33.5.050.00001_01050.066.73.5.1150.020.07.7350.0466.63.0.050.00001_01050.066.74.420.0266.66.63.0.03.3.34.450.00010_00050.066.74.420.0266.66.63.0.03.3.34.450.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Clock<br>/IHz) |      | PCI<br>Division | Clock<br>Hz) |       | CPU<br>Multiplication | Clock<br>Hz) | CPM<br>(M | CPM<br>Multiplication | Clock<br>Hz) | Bus (<br>(MI | Mode <sup>3</sup> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-----------------|--------------|-------|-----------------------|--------------|-----------|-----------------------|--------------|--------------|-------------------|
| 0000_000         60.0         66.7         2         120.0         133.3         2.5         150.0         166.7         2         60.0           0000_001         50.0         66.7         2         100.0         133.3         3         150.0         200.0         2         50.0           0000_010         60.0         80.0         2.5         150.0         200.0         3         180.0         240.0         3         50.0           0000_011         60.0         80.0         2.5         150.0         200.0         3.5         210.0         280.0         3         50.0           0000_100         60.0         80.0         2.5         150.0         200.0         4         240.0         320.0         3         50.0           0000_110         50.0         66.7         3         150.0         200.0         3         150.0         200.0         3         50.0           0000_110         50.0         66.7         3         150.0         200.0         5         250.0         33.3         3         50.0           0001_000         50.0         66.7         3         150.0         200.0         7         350.0         466.6                                                                                                                                                                                                                                                                                                                                                                                                                     | High           | Low  |                 | High         | Low   |                       | High         | Low       |                       | High         | Low          |                   |
| 0000_001         50.0         66.7         2         100.0         133.3         3         150.0         200.0         2         50.0           0000_010         60.0         80.0         2.5         150.0         200.0         3         180.0         240.0         3         50.0           0000_011         60.0         80.0         2.5         150.0         200.0         3.5         210.0         280.0         3         50.0           0000_100         60.0         80.0         2.5         150.0         200.0         4         240.0         320.0         3         50.0           0000_101         50.0         66.7         3         150.0         200.0         3         150.0         200.0         3         50.0           0000_110         50.0         66.7         3         150.0         200.0         3         150.0         200.0         3         50.0           0001_001         50.0         66.7         3         150.0         200.0         5         250.0         33.3         3         50.0           0001_001         50.0         66.7         3         150.0         200.0         7         350.0         466.6                                                                                                                                                                                                                                                                                                                                                                                                                       |                |      |                 |              |       | DCK_H=0000)           | es (MO       | It Mod    | Defau                 |              |              |                   |
| 0000_010         60.0         80.0         2.5         150.0         200.0         3         180.0         240.0         3         50.0           0000_011         60.0         80.0         2.5         150.0         200.0         3.5         210.0         280.0         3         50.0           0000_100         60.0         80.0         2.5         150.0         200.0         4         240.0         320.0         3         50.0           0000_101         50.0         66.7         3         150.0         200.0         3         150.0         200.0         3         50.0           0000_110         50.0         66.7         3.5         150.0         200.0         3.5         175.0         233.3         3         50.0           0000_111         50.0         66.7         3         150.0         200.0         4         200.0         266.6         3         50.0           0001_001         50.0         66.7         3         150.0         200.0         7         350.0         466.6         3         50.0           0001_010         50.0         66.7         4         200.0         266.6         5         250.0         33.3                                                                                                                                                                                                                                                                                                                                                                                                                   | 66.7           | 60.0 | 2               | 166.7        | 150.0 | 2.5                   | 133.3        | 120.0     | 2                     | 66.7         | 60.0         | 0000_000          |
| 0000_011         60.0         80.0         2.5         150.0         200.0         3.5         210.0         280.0         3         50.0           0000_100         60.0         80.0         2.5         150.0         200.0         4         240.0         320.0         3         50.0           0000_101         50.0         66.7         3         150.0         200.0         3         150.0         200.0         3         50.0           0000_110         50.0         66.7         3.5         150.0         200.0         3.5         175.0         23.3         3         50.0           0000_110         50.0         66.7         3         150.0         200.0         4         200.0         266.6         3         50.0           0001_000         50.0         66.7         3         150.0         200.0         5         250.0         33.3         3         50.0           0001_001         50.0         66.7         3         150.0         200.0         7         350.0         466.6         3         50.0           0010_010         50.0         66.7         4         200.0         266.6         5         250.0         33.3                                                                                                                                                                                                                                                                                                                                                                                                                       | 66.7           | 50.0 | 2               | 200.0        | 150.0 | 3                     | 133.3        | 100.0     | 2                     | 66.7         | 50.0         | 0000_001          |
| 0000_100         60.0         80.0         2.5         150.0         200.0         4         240.0         320.0         3         50.0           0000_101         50.0         66.7         3         150.0         200.0         3         150.0         200.0         3         50.0           0000_110         50.0         66.7         3.5         150.0         200.0         3.5         175.0         23.3         3         50.0           0000_111         50.0         66.7         3         150.0         200.0         4         200.0         266.6         3         50.0           0001_000         50.0         66.7         3         150.0         200.0         5         250.0         33.3         3         50.0           0001_001         50.0         66.7         3         150.0         200.0         6         300.0         400.0         33         50.0           0001_010         50.0         66.7         3         150.0         200.0         7         350.0         466.6         3         50.0           0010_000         50.0         66.7         4         200.0         266.6         5         250.0         33.3 <td< td=""><td>66.7</td><td>50.0</td><td>3</td><td>240.0</td><td>180.0</td><td>3</td><td>200.0</td><td>150.0</td><td>2.5</td><td>80.0</td><td>60.0</td><td>0000_010</td></td<>                                                                                                                                                                                                                                           | 66.7           | 50.0 | 3               | 240.0        | 180.0 | 3                     | 200.0        | 150.0     | 2.5                   | 80.0         | 60.0         | 0000_010          |
| 0000_101         50.0         66.7         3         150.0         200.0         3         150.0         200.0         3         50.0           0000_110         50.0         66.7         3.5         150.0         200.0         3.5         175.0         233.3         3         50.0           0000_110         50.0         66.7         3         150.0         200.0         4         200.0         266.6         3         50.0           0001_000         50.0         66.7         3         150.0         200.0         5         250.0         33.3         3         50.0           0001_001         50.0         66.7         3         150.0         200.0         6         300.0         400.0         3         50.0           0001_001         50.0         66.7         3         150.0         200.0         7         350.0         466.6         3         50.0           0001_010         50.0         66.7         4         200.0         266.6         5         250.0         33.3         4         50.0           0010_001         50.0         66.7         4         200.0         266.6         7         350.0         466.6         4                                                                                                                                                                                                                                                                                                                                                                                                                  | 66.7           | 50.0 | 3               | 280.0        | 210.0 | 3.5                   | 200.0        | 150.0     | 2.5                   | 80.0         | 60.0         | 0000_011          |
| 0000_110         50.0         66.7         3.5         150.0         200.0         3.5         175.0         233.3         3         50.0           0000_111         50.0         66.7         3         150.0         200.0         4         200.0         266.6         3         50.0           Full Configuration Modes           0001_000         50.0         66.7         3         150.0         200.0         5         250.0         333.3         3         50.0           0001_001         50.0         66.7         3         150.0         200.0         6         300.0         400.0         3         50.0           0001_010         50.0         66.7         3         150.0         200.0         7         350.0         466.6         3         50.0           0001_010         50.0         66.7         3         150.0         200.0         8         400.0         533.3         3         50.0           0010_000         50.0         66.7         4         200.0         266.6         6         300.0         400.0         4         50.0           0010_010         50.0         66.7         4         200.0         266.6                                                                                                                                                                                                                                                                                                                                                                                                                             | 66.7           | 50.0 | 3               | 320.0        | 240.0 | 4                     | 200.0        | 150.0     | 2.5                   | 80.0         | 60.0         | 0000_100          |
| 0000_111         50.0         66.7         3         150.0         200.0         4         200.0         266.6         3         50.           Full Configuration Modes           0001_000         50.0         66.7         3         150.0         200.0         5         250.0         333.3         3         50.           0001_001         50.0         66.7         3         150.0         200.0         6         300.0         400.0         3         50.           0001_010         50.0         66.7         3         150.0         200.0         7         350.0         466.6         3         50.           0001_011         50.0         66.7         3         150.0         200.0         7         350.0         466.6         3         50.           0010_010         50.0         66.7         4         200.0         266.6         5         250.0         33.3         4         50.           0010_001         50.0         66.7         4         200.0         266.6         7         350.0         466.6         4         50.           0010_011         50.0         66.7         4         200.0         266.6         8 </td <td>66.7</td> <td>50.0</td> <td>3</td> <td>200.0</td> <td>150.0</td> <td>3</td> <td>200.0</td> <td>150.0</td> <td>3</td> <td>66.7</td> <td>50.0</td> <td>0000_101</td>                                                                                                                                                                                                                                                   | 66.7           | 50.0 | 3               | 200.0        | 150.0 | 3                     | 200.0        | 150.0     | 3                     | 66.7         | 50.0         | 0000_101          |
| Number of the state         Number of the state | 66.7           | 50.0 | 3               | 233.3        | 175.0 | 3.5                   | 200.0        | 150.0     | 3.5                   | 66.7         | 50.0         | 0000_110          |
| 0001_000         50.0         66.7         3         150.0         200.0         5         250.0         333.3         3         50.0           0001_001         50.0         66.7         3         150.0         200.0         6         300.0         400.0         3         50.0           0001_010         50.0         66.7         3         150.0         200.0         7         350.0         466.6         3         50.0           0001_011         50.0         66.7         3         150.0         200.0         7         350.0         466.6         3         50.0           0010_011         50.0         66.7         4         200.0         266.6         5         250.0         333.3         4         50.0           0010_001         50.0         66.7         4         200.0         266.6         6         300.0         400.0         4         50.0           0010_010         50.0         66.7         4         200.0         266.6         7         350.0         466.6         4         50.0           0010_011         50.0         66.7         4         200.0         266.6         8         400.0         533.3         4 </td <td>66.7</td> <td>50.0</td> <td>3</td> <td>266.6</td> <td>200.0</td> <td>4</td> <td>200.0</td> <td>150.0</td> <td>3</td> <td>66.7</td> <td>50.0</td> <td>0000_111</td>                                                                                                                                                                                                                                        | 66.7           | 50.0 | 3               | 266.6        | 200.0 | 4                     | 200.0        | 150.0     | 3                     | 66.7         | 50.0         | 0000_111          |
| OO01_001         50.0         66.7         3         150.0         200.0         6         300.0         400.0         3         50.0           0001_010         50.0         66.7         3         150.0         200.0         7         350.0         466.6         3         50.0           0001_011         50.0         66.7         3         150.0         200.0         7         350.0         466.6         3         50.0           0001_011         50.0         66.7         3         150.0         200.0         8         400.0         533.3         3         50.0           0010_000         50.0         66.7         4         200.0         266.6         6         300.0         400.0         4         50.0           0010_010         50.0         66.7         4         200.0         266.6         7         350.0         466.6         4         50.0           0010_011         50.0         66.7         4         200.0         266.6         8         400.0         533.3         4         50.0           0010_011         50.0         66.7         4         200.0         266.6         8         400.0         53.3         4 <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td>on Modes</td> <td>ifigurati</td> <td>ull Cor</td> <td>F</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                  |                | 1    |                 |              | 1     | on Modes              | ifigurati    | ull Cor   | F                     |              |              |                   |
| 0001_010         50.0         66.7         3         150.0         200.0         7         350.0         466.6         3         50.0           0001_011         50.0         66.7         3         150.0         200.0         8         400.0         533.3         3         50.0           0010_000         50.0         66.7         4         200.0         266.6         5         250.0         333.3         4         50.0           0010_001         50.0         66.7         4         200.0         266.6         6         300.0         400.0         4         50.0           0010_010         50.0         66.7         4         200.0         266.6         7         350.0         466.6         4         50.0           0010_010         50.0         66.7         4         200.0         266.6         7         350.0         466.6         4         50.0           0010_011         50.0         66.7         4         200.0         266.6         8         400.0         533.3         4         50.0           0010_101         75.0         100.0         4         300.0         400.0         5.5         412.5         549.9                                                                                                                                                                                                                                                                                                                                                                                                                           | 66.7           | 50.0 | 3               | 333.3        | 250.0 | 5                     | 200.0        | 150.0     | 3                     | 66.7         | 50.0         | 0001_000          |
| 0001_011         50.0         66.7         3         150.0         200.0         8         400.0         533.3         3         50.0           0010_000         50.0         66.7         4         200.0         266.6         5         250.0         333.3         4         50.0           0010_001         50.0         66.7         4         200.0         266.6         6         300.0         400.0         4         50.0           0010_001         50.0         66.7         4         200.0         266.6         6         300.0         400.0         4         50.0           0010_010         50.0         66.7         4         200.0         266.6         7         350.0         466.6         4         50.0           0010_011         50.0         66.7         4         200.0         266.6         8         400.0         533.3         4         50.0           0010_101         75.0         100.0         4         300.0         400.0         5.5         412.5         549.9         6         50.0           0010_110         75.0         100.0         4         300.0         400.0         6         450.0         599.9 <td< td=""><td>66.7</td><td>50.0</td><td>3</td><td>400.0</td><td>300.0</td><td>6</td><td>200.0</td><td>150.0</td><td>3</td><td>66.7</td><td>50.0</td><td>0001_001</td></td<>                                                                                                                                                                                                                                             | 66.7           | 50.0 | 3               | 400.0        | 300.0 | 6                     | 200.0        | 150.0     | 3                     | 66.7         | 50.0         | 0001_001          |
| 0010_000         50.0         66.7         4         200.0         266.6         5         250.0         333.3         4         50.0           0010_001         50.0         66.7         4         200.0         266.6         6         300.0         400.0         4         50.0           0010_010         50.0         66.7         4         200.0         266.6         6         300.0         400.0         4         50.0           0010_010         50.0         66.7         4         200.0         266.6         7         350.0         466.6         4         50.0           0010_011         50.0         66.7         4         200.0         266.6         8         400.0         533.3         4         50.0           0010_011         50.0         66.7         4         200.0         266.6         8         400.0         533.3         4         50.0           0010_100         75.0         100.0         4         300.0         400.0         5.5         375.0         500.0         6         50.0           0010_110         75.0         100.0         4         300.0         400.0         6         450.0         599.9 <td< td=""><td>66.7</td><td>50.0</td><td>3</td><td>466.6</td><td>350.0</td><td>7</td><td>200.0</td><td>150.0</td><td>3</td><td>66.7</td><td>50.0</td><td>0001_010</td></td<>                                                                                                                                                                                                                                             | 66.7           | 50.0 | 3               | 466.6        | 350.0 | 7                     | 200.0        | 150.0     | 3                     | 66.7         | 50.0         | 0001_010          |
| 0010_001         50.0         66.7         4         200.0         266.6         6         300.0         400.0         4         50.0           0010_010         50.0         66.7         4         200.0         266.6         7         350.0         466.6         4         50.0           0010_011         50.0         66.7         4         200.0         266.6         7         350.0         466.6         4         50.0           0010_011         50.0         66.7         4         200.0         266.6         8         400.0         533.3         4         50.0           0010_010         75.0         100.0         4         300.0         400.0         5         375.0         500.0         6         50.0           0010_101         75.0         100.0         4         300.0         400.0         5.5         412.5         549.9         6         50.0           0010_110         75.0         100.0         4         300.0         400.0         6         450.0         599.9         6         50.0           0011_000         50.0         66.7         5         250.0         333.3         5         50.0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66.7           | 50.0 | 3               | 533.3        | 400.0 | 8                     | 200.0        | 150.0     | 3                     | 66.7         | 50.0         | 0001_011          |
| 0010_001         50.0         66.7         4         200.0         266.6         6         300.0         400.0         4         50.0           0010_010         50.0         66.7         4         200.0         266.6         7         350.0         466.6         4         50.0           0010_011         50.0         66.7         4         200.0         266.6         7         350.0         466.6         4         50.0           0010_011         50.0         66.7         4         200.0         266.6         8         400.0         533.3         4         50.0           0010_010         75.0         100.0         4         300.0         400.0         5         375.0         500.0         6         50.0           0010_101         75.0         100.0         4         300.0         400.0         5.5         412.5         549.9         6         50.0           0010_110         75.0         100.0         4         300.0         400.0         6         450.0         599.9         6         50.0           0011_000         50.0         66.7         5         250.0         333.3         5         50.0                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |      |                 |              |       |                       |              |           |                       |              |              |                   |
| 0010_010       50.0       66.7       4       200.0       266.6       7       350.0       466.6       4       50.0         0010_011       50.0       66.7       4       200.0       266.6       8       400.0       533.3       4       50.0         0010_011       50.0       66.7       4       200.0       266.6       8       400.0       533.3       4       50.0         0010_100       75.0       100.0       4       300.0       400.0       5       375.0       500.0       6       50.0         0010_101       75.0       100.0       4       300.0       400.0       5.5       412.5       549.9       6       50.0         0010_110       75.0       100.0       4       300.0       400.0       6       450.0       599.9       6       50.0         0011_000       50.0       66.7       5       250.0       333.3       5       50.0       50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66.7           | 50.0 | 4               | 333.3        | 250.0 | 5                     | 266.6        | 200.0     | 4                     | 66.7         | 50.0         | 0010_000          |
| 0010_011         50.0         66.7         4         200.0         266.6         8         400.0         533.3         4         50.0           0010_100         75.0         100.0         4         300.0         400.0         5         375.0         500.0         6         50.0           0010_101         75.0         100.0         4         300.0         400.0         5.5         412.5         549.9         6         50.0           0010_110         75.0         100.0         4         300.0         400.0         6         450.0         599.9         6         50.0           0010_110         75.0         100.0         4         300.0         400.0         6         450.0         599.9         6         50.0           0011_000         50.0         66.7         5         250.0         333.3         5         250.0         333.3         5         50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66.7           | 50.0 | 4               | 400.0        | 300.0 | 6                     | 266.6        | 200.0     | 4                     | 66.7         | 50.0         | 0010_001          |
| 0010_100         75.0         100.0         4         300.0         400.0         5         375.0         500.0         6         50.0           0010_101         75.0         100.0         4         300.0         400.0         5.5         412.5         549.9         6         50.0           0010_110         75.0         100.0         4         300.0         400.0         6         450.0         599.9         6         50.0           0011_000         50.0         66.7         5         250.0         333.3         5         250.0         333.3         5         50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66.7           | 50.0 | 4               | 466.6        | 350.0 | 7                     | 266.6        | 200.0     | 4                     | 66.7         | 50.0         | 0010_010          |
| 0010_101         75.0         100.0         4         300.0         400.0         5.5         412.5         549.9         6         50.0           0010_110         75.0         100.0         4         300.0         400.0         6         450.0         599.9         6         50.0           0011_000         50.0         66.7         5         250.0         333.3         5         250.0         333.3         5         50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 66.7           | 50.0 | 4               | 533.3        | 400.0 | 8                     | 266.6        | 200.0     | 4                     | 66.7         | 50.0         | 0010_011          |
| 0010_101         75.0         100.0         4         300.0         400.0         5.5         412.5         549.9         6         50.0           0010_110         75.0         100.0         4         300.0         400.0         6         450.0         599.9         6         50.0           0011_000         50.0         66.7         5         250.0         333.3         5         250.0         333.3         5         50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |      |                 |              |       |                       |              |           |                       |              |              |                   |
| 0010_110 75.0 100.0 4 300.0 400.0 6 450.0 599.9 6 50.<br>0011_000 50.0 66.7 5 250.0 333.3 5 250.0 333.3 5 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66.7           | 50.0 | 6               | 500.0        | 375.0 | 5                     | 400.0        | 300.0     | 4                     | 100.0        | 75.0         | 0010_100          |
| 0011_000 50.0 66.7 5 250.0 333.3 5 250.0 333.3 5 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66.7           | 50.0 | 6               | 549.9        | 412.5 | 5.5                   | 400.0        | 300.0     | 4                     | 100.0        | 75.0         | 0010_101          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66.7           | 50.0 | 6               | 599.9        | 450.0 | 6                     | 400.0        | 300.0     | 4                     | 100.0        | 75.0         | 0010_110          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |      |                 |              |       |                       |              |           |                       |              |              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66.7           | 50.0 | 5               | 333.3        | 250.0 | 5                     | 333.3        | 250.0     | 5                     | 66.7         | 50.0         | 0011_000          |
| 0011_001 50.0 66.7 5 250.0 333.3 6 300.0 400.0 5 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66.7           | 50.0 | 5               | 400.0        | 300.0 | 6                     | 333.3        | 250.0     | 5                     | 66.7         | 50.0         | 0011_001          |
| 0011_010 50.0 66.7 5 250.0 333.3 7 350.0 466.6 5 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66.7           | 50.0 | 5               | 466.6        | 350.0 | 7                     | 333.3        | 250.0     | 5                     | 66.7         | 50.0         | 0011_010          |
| 0011_011 50.0 66.7 5 250.0 333.3 8 400.0 533.3 5 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66.7           | 50.0 | 5               | 533.3        | 400.0 | 8                     | 333.3        | 250.0     | 5                     | 66.7         | 50.0         | 0011_011          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |      |                 |              |       |                       |              |           |                       |              |              |                   |
| 0100_000 Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |      |                 |              |       | Reserved              |              |           |                       |              |              | 0100_000          |

 Table 17. Clock Configurations for PCI Host Mode (PCI\_MODCK=0)<sup>1,2</sup>



| Mode <sup>3</sup>      |      | Clock<br>Hz) | CPM<br>Multiplication | •     |       | CPU<br>– Multiplication - |       | Clock<br>Hz) | PCI<br>Division     |      | Clock<br>Hz) |
|------------------------|------|--------------|-----------------------|-------|-------|---------------------------|-------|--------------|---------------------|------|--------------|
| MODCK_H-<br>MODCK[1-3] | Low  | High         | Factor <sup>4</sup>   | Low   | High  | Factor <sup>5</sup>       | Low   | High         | Factor <sup>6</sup> | Low  | High         |
| 0100_001               | 25.0 | 50.0         | 6                     | 150.0 | 300.0 | 6                         | 150.0 | 300.0        | 6                   | 25.0 | 50.0         |
| 0100_010               | 25.0 | 50.0         | 6                     | 150.0 | 300.0 | 7                         | 175.0 | 350.0        | 6                   | 25.0 | 50.0         |
| 0100_011               | 25.0 | 50.0         | 6                     | 150.0 | 300.0 | 8                         | 200.0 | 400.0        | 6                   | 25.0 | 50.0         |
| 0101_000               | 60.0 | 100.0        | 2                     | 120.0 | 200.0 | 2.5                       | 150.0 | 250.0        | 4                   | 30.0 | 50.0         |
| 0101_001               | 50.0 | 100.0        | 2                     | 100.0 | 200.0 | 3                         | 150.0 | 300.0        | 4                   | 25.0 | 50.0         |
| 0101_010               | 50.0 | 100.0        | 2                     | 100.0 | 200.0 | 3.5                       | 175.0 | 350.0        | 4                   | 25.0 | 50.0         |
| 0101_011               | 50.0 | 100.0        | 2                     | 100.0 | 200.0 | 4                         | 200.0 | 400.0        | 4                   | 25.0 | 50.0         |
| 0101_100               | 50.0 | 100.0        | 2                     | 100.0 | 200.0 | 4.5                       | 225.0 | 450.0        | 4                   | 25.0 | 50.0         |
|                        |      |              |                       |       |       |                           |       |              |                     |      |              |
| 0101_101               | 42.9 | 83.3         | 3                     | 128.6 | 250.0 | 3.5                       | 150.0 | 291.7        | 5                   | 25.7 | 50.0         |
| 0101_110               | 41.7 | 83.3         | 3                     | 125.0 | 250.0 | 4                         | 166.7 | 333.3        | 5                   | 25.0 | 50.0         |
| 0101_111               | 41.7 | 83.3         | 3                     | 125.0 | 250.0 | 4.5                       | 187.5 | 375.0        | 5                   | 25.0 | 50.0         |
|                        | 1    | 1            | Γ                     | 1     | 1     | Γ                         | 1     | 1            |                     | 1    |              |
| 0110_000               | 60.0 | 120.0        | 2.5                   | 150.0 | 300.0 | 2.5                       | 150.0 | 300.0        | 6                   | 25.0 | 50.0         |
| 0110_001               | 60.0 | 120.0        | 2.5                   | 150.0 | 300.0 | 3                         | 180.0 | 360.0        | 6                   | 25.0 | 50.0         |
| 0110_010               | 60.0 | 120.0        | 2.5                   | 150.0 | 300.0 | 3.5                       | 210.0 | 420.0        | 6                   | 25.0 | 50.0         |
| 0110_011               | 60.0 | 120.0        | 2.5                   | 150.0 | 300.0 | 4                         | 240.0 | 480.0        | 6                   | 25.0 | 50.0         |
| 0110_100               | 60.0 | 120.0        | 2.5                   | 150.0 | 300.0 | 4.5                       | 270.0 | 540.0        | 6                   | 25.0 | 50.0         |
| 0110_101               | 60.0 | 120.0        | 2.5                   | 150.0 | 300.0 | 5                         | 300.0 | 600.0        | 6                   | 25.0 | 50.0         |
| 0110_110               | 60.0 | 120.0        | 2.5                   | 150.0 | 300.0 | 6                         | 360.0 | 720.0        | 6                   | 25.0 | 50.0         |
| 0111_000               |      |              |                       |       |       | Reserved                  |       |              |                     |      |              |
| 0111_001               | 50.0 | 100.0        | 3                     | 150.0 | 300.0 | 3                         | 150.0 | 300.0        | 6                   | 25.0 | 50.0         |
| 0111_010               | 50.0 | 100.0        | 3                     | 150.0 | 300.0 | 3.5                       | 175.0 | 350.0        | 6                   | 25.0 | 50.0         |
| 0111_011               | 50.0 | 100.0        | 3                     | 150.0 | 300.0 | 4                         | 200.0 | 400.0        | 6                   | 25.0 | 50.0         |
| 0111_100               | 50.0 | 100.0        | 3                     | 150.0 | 300.0 | 4.5                       | 225.0 | 450.0        | 6                   | 25.0 | 50.0         |
|                        | I    |              |                       |       |       |                           |       |              |                     |      |              |
| 1000_000               |      |              | ſ                     |       |       | Reserved                  |       | I            |                     |      |              |
| 1000_001               | 66.7 | 133.3        | 3                     | 200.0 | 400.0 | 3                         | 200.0 | 400.0        | 8                   | 25.0 | 50.0         |



### **Clock Configuration Modes**

- <sup>6</sup> CPM\_CLK/PCI\_CLK ratio. When PCI\_MODCK = 1, the ratio of CPM\_CLK/PCI\_CLK should be calculated from PCIDF as follows: PCIDF = 3 > CPM\_CLK/PCI\_CLK = 4 PCIDF = 5 > CPM\_CLK/PCI\_CLK = 6 PCIDF = 7 > CPM\_CLK/PCI\_CLK = 8
  - PCIDF = 9 > CPM\_CLK/PCI\_CLK = 5
  - PCIDF = B > CPM\_CLK/PCI\_CLK = 6

## 7.2 PCI Agent Mode

These tables show configurations for PCI agent mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI agent mode the input clock is PCI clock.

| Mode <sup>3</sup>      |      | Clock<br>Hz) | CPM<br>Multiplication                 | CPM Clock<br>(MHz) |         | CPU                                   | CPU Clock<br>(MHz) |       | Bus                | Bus Clock<br>(MHz) |       |
|------------------------|------|--------------|---------------------------------------|--------------------|---------|---------------------------------------|--------------------|-------|--------------------|--------------------|-------|
| MODCK_H-<br>MODCK[1-3] | Low  | High         | Multiplication<br>Factor <sup>4</sup> | Low                | High    | Multiplication<br>Factor <sup>5</sup> | Low                | High  | Division<br>Factor | Low                | High  |
|                        |      |              | Defau                                 | ilt Mod            | es (MO  | DCK_H=0000)                           |                    |       |                    |                    |       |
| 0000_000               | 60.0 | 66.7         | 2                                     | 120.0              | 133.3   | 2.5                                   | 150.0              | 166.7 | 2                  | 60.0               | 66.7  |
| 0000_001               | 50.0 | 66.7         | 2                                     | 100.0              | 133.3   | 3                                     | 150.0              | 200.0 | 2                  | 50.0               | 66.7  |
| 0000_010               | 50.0 | 66.7         | 3                                     | 150.0              | 200.0   | 3                                     | 150.0              | 200.0 | 3                  | 50.0               | 66.7  |
| 0000_011               | 50.0 | 66.7         | 3                                     | 150.0              | 200.0   | 4                                     | 200.0              | 266.6 | 3                  | 50.0               | 66.7  |
| 0000_100               | 50.0 | 66.7         | 3                                     | 150.0              | 200.0   | 3                                     | 180.0              | 240.0 | 2.5                | 60.0               | 80.0  |
| 0000_101               | 50.0 | 66.7         | 3                                     | 150.0              | 200.0   | 3.5                                   | 210.0              | 280.0 | 2.5                | 60.0               | 80.0  |
| 0000_110               | 50.0 | 66.7         | 4                                     | 200.0              | 266.6   | 3.5                                   | 233.3              | 311.1 | 3                  | 66.7               | 88.9  |
| 0000_111               | 50.0 | 66.7         | 4                                     | 200.0              | 266.6   | 3                                     | 240.0              | 320.0 | 2.5                | 80.0               | 106.7 |
|                        |      |              | F                                     | ull Con            | figurat | ion Modes                             |                    |       |                    |                    |       |
| 0001_001               | 60.0 | 66.7         | 2                                     | 120.0              | 133.3   | 5                                     | 150.0              | 166.7 | 4                  | 30.0               | 33.3  |
| 0001_010               | 50.0 | 66.7         | 2                                     | 100.0              | 133.3   | 6                                     | 150.0              | 200.0 | 4                  | 25.0               | 33.3  |
| 0001_011               | 50.0 | 66.7         | 2                                     | 100.0              | 133.3   | 7                                     | 175.0              | 233.3 | 4                  | 25.0               | 33.3  |
| 0001_100               | 50.0 | 66.7         | 2                                     | 100.0              | 133.3   | 8                                     | 200.0              | 266.6 | 4                  | 25.0               | 33.3  |
|                        |      |              |                                       |                    |         |                                       |                    |       |                    |                    |       |
| 0010_001               | 50.0 | 66.7         | 3                                     | 150.0              | 200.0   | 3                                     | 180.0              | 240.0 | 2.5                | 60.0               | 80.0  |
| 0010_010               | 50.0 | 66.7         | 3                                     | 150.0              | 200.0   | 3.5                                   | 210.0              | 280.0 | 2.5                | 60.0               | 80.0  |
| 0010_011               | 50.0 | 66.7         | 3                                     | 150.0              | 200.0   | 4                                     | 240.0              | 320.0 | 2.5                | 60.0               | 80.0  |
| 0010_100               | 50.0 | 66.7         | 3                                     | 150.0              | 200.0   | 4.5                                   | 270.0              | 360.0 | 2.5                | 60.0               | 80.0  |
|                        |      |              |                                       |                    |         |                                       |                    |       |                    |                    |       |

Table 19. Clock Configurations for PCI Agent Mode (PCI\_MODCK=0)<sup>1,2</sup>



| Mode <sup>3</sup>      |      | Clock<br>Hz) | CPM<br>Multiplication | CPM Clock<br>(MHz) |       | CPU<br>Multiplication | CPU Clock<br>(MHz) |       | Bus<br>Division | Bus Clock<br>(MHz) |       |
|------------------------|------|--------------|-----------------------|--------------------|-------|-----------------------|--------------------|-------|-----------------|--------------------|-------|
| MODCK_H-<br>MODCK[1-3] | Low  | High         | Factor <sup>4</sup>   | Low                | High  | Factor <sup>5</sup>   | Low                | High  | Factor          | Low                | High  |
| 1110_000               | 25.0 | 50.0         | 5                     | 125.0              | 250.0 | 2.5                   | 156.3              | 312.5 | 2               | 62.5               | 125.0 |
| 1110_001               | 25.0 | 50.0         | 5                     | 125.0              | 250.0 | 3                     | 187.5              | 375.0 | 2               | 62.5               | 125.0 |
| 1110_010               | 28.6 | 50.0         | 5                     | 142.9              | 250.0 | 3.5                   | 250.0              | 437.5 | 2               | 71.4               | 125.0 |
| 1110_011               | 25.0 | 50.0         | 5                     | 125.0              | 250.0 | 4                     | 250.0              | 500.0 | 2               | 62.5               | 125.0 |
|                        | •    |              |                       | •                  |       |                       | •                  |       |                 |                    |       |
| 1110_100               | 25.0 | 50.0         | 5                     | 125.0              | 250.0 | 4                     | 166.7              | 333.3 | 3               | 41.7               | 83.3  |
| 1110_101               | 25.0 | 50.0         | 5                     | 125.0              | 250.0 | 4.5                   | 187.5              | 375.0 | 3               | 41.7               | 83.3  |
| 1110_110               | 25.0 | 50.0         | 5                     | 125.0              | 250.0 | 5                     | 208.3              | 416.7 | 3               | 41.7               | 83.3  |
| 1110_111               | 25.0 | 50.0         | 5                     | 125.0              | 250.0 | 5.5                   | 229.2              | 458.3 | 3               | 41.7               | 83.3  |
|                        |      |              |                       |                    |       |                       |                    |       |                 |                    |       |
| 1100_000               |      | Reserved     |                       |                    |       |                       |                    |       |                 |                    |       |
| 1100_001               |      | Reserved     |                       |                    |       |                       |                    |       |                 |                    |       |
| 1100_010               |      | Reserved     |                       |                    |       |                       |                    |       |                 |                    |       |

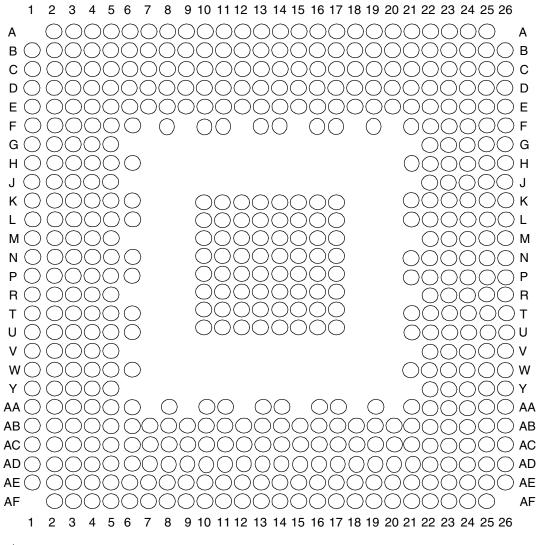
## Table 20. Clock Configurations for PCI Agent Mode (PCI\_MODCK=1)<sup>1,2</sup> (continued)

<sup>1</sup> The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

<sup>2</sup> PCI\_MODCK determines the PCI clock frequency range. See Table 19 for higher range configurations.

<sup>3</sup> MODCK\_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

<sup>4</sup> CPM multiplication factor = CPM clock/bus clock


<sup>5</sup> CPU multiplication factor = Core PLL multiplication factor

# 8 Pinout

This figure and table show the pin assignments and pinout for the 516 PBGA package.



This figure shows the pinout of the 516 PBGA package as viewed from the top surface.



Not to Scale

Figure 12. Pinout of the 516 PBGA Package (View from Top)

This table lists the pins of the MPC8272. Note that the pins in the "MPC8272/8271 Only" column relate to Utopia functionality.

| Table 2 | 21. P | inout |
|---------|-------|-------|
|---------|-------|-------|

| Pin I                                  |                      |      |  |
|----------------------------------------|----------------------|------|--|
| MPC8272/MPC8248 and<br>MPC8271/MPC8247 | MPC8272/MPC8271 Only | Ball |  |
| Ē                                      | BR                   |      |  |
| BG/                                    | D2                   |      |  |
| ABB                                    | C1                   |      |  |



| Table  | 21. | Pinout | (continued) |  |
|--------|-----|--------|-------------|--|
| 10.010 |     |        | (           |  |

| Pin N                                  | Pin Name             |      |  |  |  |
|----------------------------------------|----------------------|------|--|--|--|
| MPC8272/MPC8248 and<br>MPC8271/MPC8247 | MPC8272/MPC8271 Only | Ball |  |  |  |
| Ŧ                                      | 5                    | D1   |  |  |  |
| A                                      | 0                    | A3   |  |  |  |
| A                                      | 1                    | B5   |  |  |  |
| A                                      | D8                   |      |  |  |  |
| A                                      | 3                    | C6   |  |  |  |
| A                                      | 4                    | A4   |  |  |  |
| A                                      | 5                    | A6   |  |  |  |
| A                                      | 6                    | B6   |  |  |  |
| A                                      | 7                    | C7   |  |  |  |
| A                                      | 8                    | B7   |  |  |  |
| A                                      | 9                    | A7   |  |  |  |
| A                                      | 10                   | D9   |  |  |  |
| A                                      | 11                   | E11  |  |  |  |
| A                                      | 12                   | C9   |  |  |  |
| A                                      | 13                   | В9   |  |  |  |
| A                                      | 14                   | D11  |  |  |  |
| A                                      | 15                   | A9   |  |  |  |
| A                                      | 16                   | B10  |  |  |  |
| A                                      | 17                   | A10  |  |  |  |
| A                                      | 18                   | B11  |  |  |  |
| A                                      | 19                   | A11  |  |  |  |
| A2                                     | 20                   | D12  |  |  |  |
| A2                                     | 21                   | A12  |  |  |  |
| A2                                     | 22                   | D13  |  |  |  |
| Aź                                     | 23                   | B13  |  |  |  |
| Aź                                     | 24                   | C13  |  |  |  |
| A2                                     | A25                  |      |  |  |  |
| A2                                     | A26                  |      |  |  |  |
| A2                                     | A27                  |      |  |  |  |
| A2                                     | A28                  |      |  |  |  |
| A2                                     | 29                   | A14  |  |  |  |



| Pin Na                                 |                      |                   |  |
|----------------------------------------|----------------------|-------------------|--|
| MPC8272/MPC8248 and<br>MPC8271/MPC8247 | MPC8272/MPC8271 Only | Ball              |  |
| PA31/FCC1_MII_COL                      | FCC1_UT_TXENB        | G22 <sup>3</sup>  |  |
| PB18/FCC2_MII_                         | HDLC_RXD3            | T25 <sup>3</sup>  |  |
| PB19/FCC2_MII_                         | HDLC_RXD2            | P22 <sup>3</sup>  |  |
| PB20/FCC2_MII_HE                       | DLC_RMII_RXD1        | L25 <sup>3</sup>  |  |
| PB21/FCC2_MII_HDLC_RMII                | _RXD0/FCC2_TRAN_RXD  | J26 <sup>3</sup>  |  |
| PB22/FCC2_MII_HDLC_T><br>FCC2_RMI      |                      | U23 <sup>3</sup>  |  |
| PB23/FCC2_MII_HDLC_T                   | XD1/FCC2_RMII_TXD1   | U26 <sup>3</sup>  |  |
| PB24/FCC2_MII_HDLC                     | _TXD2/L1RSYNCB2      | M24 <sup>3</sup>  |  |
| PB25/FCC2_MII_HDLC                     | _TXD3/L1TSYNCB2      | M23 <sup>3</sup>  |  |
| PB26/FCC2_MII_(                        | CRS/L1RXDB2          | H24 <sup>3</sup>  |  |
| PB27/FCC2_MII_0                        | COL/L1TXDB2          | E25 <sup>3</sup>  |  |
| PB28/FCC2_MII_RMII_RX                  | _ER/FCC2_RTS/TXD1    | D26 <sup>3</sup>  |  |
| PB29/FCC2_MII_                         | _RMII_TX_EN          | K21 <sup>3</sup>  |  |
| PB30/FCC2_MII_RX_DV/                   | FCC2_RMII_CRS_DV     | D24 <sup>3</sup>  |  |
| PB31/FCC2_N                            | E23 <sup>3</sup>     |                   |  |
| PC0/DREQ3/BRGO7/S                      | MSYN1/L1CLKOA2       | AF23 <sup>3</sup> |  |
| PC1/BRGO6                              | /L1RQA2              | AD23 <sup>3</sup> |  |
| PC4/SMRXD1/SI2_L                       | _1ST4/FCC2_CD        | AB22 <sup>3</sup> |  |
| PC5/SMTXD1/SI2_L                       | 1ST3/FCC2_CTS        | AE24 <sup>3</sup> |  |
| PC6/FCC1_CD/SI2_L1ST2                  | FCC1_UT_RXADDR2      | AF24 <sup>3</sup> |  |
| PC7/FCC1_CTS                           | FCC1_UT_TXADDR2      | AE26 <sup>3</sup> |  |
| PC8/CD4/RTS1/SI                        | 2_L1ST2/CTS3         | AC24 <sup>3</sup> |  |
| PC9/CTS4/L1                            | TSYNCA2              | AA23 <sup>3</sup> |  |
| PC10/CD3/U                             | JSB_RN               | AB25 <sup>3</sup> |  |
| PC11/CTS3/USB_                         | RP/L1TXD3A2          | V22 <sup>3</sup>  |  |
| PC12                                   | FCC1_UT_RXADDR1      | AA26 <sup>3</sup> |  |
| PC13/BRGO5                             | FCC1_UT_TXADDR1      | V23 <sup>3</sup>  |  |
| PC14/CD1                               | FCC1_UT_RXADDR0      | W24 <sup>3</sup>  |  |
| PC15/CTS1                              | FCC1_UT_TXADDR0      | U24 <sup>3</sup>  |  |
| PC16/CI                                | LK16                 | T23 <sup>3</sup>  |  |



Ordering Information

# **10 Ordering Information**

This figure provides an example of the Freescale part numbering nomenclature for the SoC. In addition to the processor frequency, the part numbering scheme also consists of a part modifier that indicates any enhancement(s) in the part from the original production design. Each part number also contains a revision code that refers to the die mask revision number and is specified in the part numbering scheme for identification purposes only. For more information, contact your local Freescale sales office.

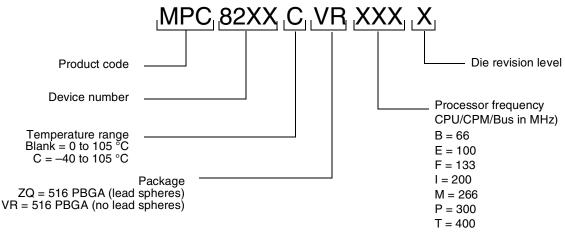



Figure 15. Freescale Part Number Key

# **11 Document Revision History**

This table summarizes changes to this document.

| Table 23. Document Revision History |
|-------------------------------------|
|-------------------------------------|

| Revision | Date    | Substantive Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | 09/2011 | In Figure 15, "Freescale Part Number Key," added speed decoding information below processor frequency information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2        | 12/2008 | <ul> <li>Modified Figure 5, "SCC/SMC/SPI/I2C External Clock Diagram," and added second section of figure notes.</li> <li>In Table 12, modified "Data bus in pipeline mode" row and showed 66 MHz as "N/A."</li> <li>In Section 10, "Ordering Information," added "F = 133" to CPU/CPM/Bus Frequency.</li> <li>Added footnote concerning CPM_CLK/PCI_CLK ratio to column "PCI Division Factor" in Table 17, "Clock Configurations for PCI Host Mode (PCI_MODCK=0)," and Table 18, "Clock Configurations for PCI Host Mode (PCI_MODCK=1),."</li> <li>Removed overbar from DLL_ENABLE in Table 21, "Pinout."</li> </ul> |
| 1.5      | 12/2006 | Section 6, "AC Electrical Characteristics," removed deratings statement and clarified AC timing descriptions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.4      | 05/2006 | Added row for 133 MHz configurations to Table 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.3      | 02/2006 | Inserted Section 6.3, "JTAG Timings."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| Revision | Date    | Substantive Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.2      | 09/2005 | <ul> <li>Added 133-MHz to the list of frequencies in the opening sentence of Section 6, "AC Electrical Characteristics".</li> <li>Added 133 MHz columns to Table 9, Table 11, Table 12, and Table 13.</li> <li>Added footnote 2 to Table 13.</li> <li>Added the conditions note directly above Table 12.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.1      | 01/2005 | Modification for correct display of assertion level ("overbar") for some signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.0      | 12/2004 | <ul> <li>Section 1.1: Added 8:1 ratio to Internal CPM/bus clock multiplier values</li> <li>Section 2: removed voltage tracking note</li> <li>Table 3: Note 2 updated regarding VDD/VCCSYN relationship to VDDH during power-on reset</li> <li>Table 4: Updated VDD and VCCSYN to 1.425 V - 1.575 V</li> <li>Table 8: Note 2 updated to reflect VIH=2.5 for TCK, TRST, PORESET; request for external pull-up removed.</li> <li>Section 4.6: Updated description of layout practices</li> <li>Table 8: Note 3 added regarding IIC compatibility</li> <li>Table 8: Note 3 added regarding IIC compatibility</li> <li>Table 8: Note 3 added regarding IIC compatibility</li> <li>Table 9: updated PCI impedance to 27Ω, updated 60x and MEMC values and added note to reflect configurable impedance</li> <li>Section 6: Added sentence providing derating factor</li> <li>Section 6.1: added Note: Rise/Fall Time on CPM Input Pins</li> <li>Table 9: updated values for following specs: sp36b, sp37a, sp38a, sp39a, sp38b, sp40, sp41, sp42, sp43, sp42a</li> <li>Table 11: updated values for following specs: sp16a, sp16b, sp18a, sp18b, sp20, sp21, sp22</li> <li>Section 6.2: added Spread spectrum clocking note</li> <li>Section 7: unit of ns added to Tval notes</li> <li>Section 7: unit of ns added to Tval notes</li> <li>Section 7: Updated all notes to reflect updated CPU Fmin of 150 MHz commercial temp devices, 175 MHz extended temp; CPM Fmin of 120 MHz.</li> <li>Section 7: "Clock Configuration Modes": Updated all table footnotes reflect updated CPU Fmin of 150 MHz commercial temp devices, 175 MHz extended temp; CPM Fmin of 120 MHz.</li> <li>Section 7: Table 21: cornect superscript of footnote number after pin AD22</li> <li>Table 21: remove DONE3 from PC12</li> <li>Table 21: signals referring to TDMs C2 and D2 removed</li> </ul> |

#### How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

#### **USA/Europe or Locations Not Listed:**

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

#### For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, QorlQ, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ Qonverge, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2002–2011 Freescale Semiconductor, Inc.

Document Number: MPC8272EC Rev. 3 09/2011



