

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Active
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	Communications; RISC CPM, Security; SEC
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8248vrmiba

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 MPC8272/8271 only

This figure shows the block diagram of the SoC.

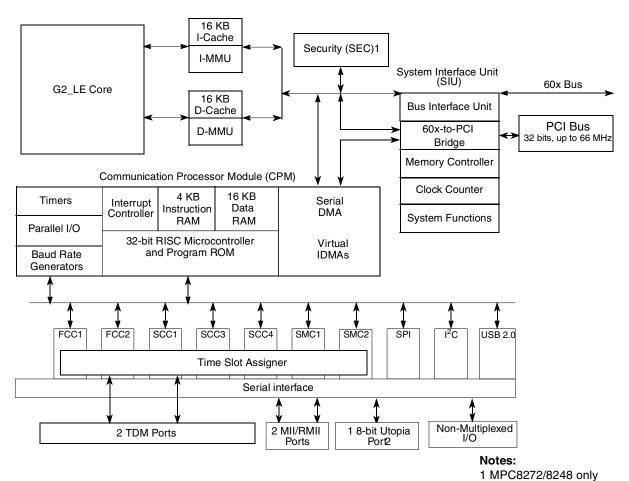


Figure 1. SoC Block Diagram

1.1 Features

The major features of the SoC are as follows:

- Dual-issue integer (G2_LE) core
 - A core version of the MPC603e microprocessor
 - System core microprocessor supporting frequencies of 266–400 MHz
 - Separate 16 KB data and instruction caches:
 - Four-way set associative
 - Physically addressed
 - LRU replacement algorithm
 - Power Architecture®-compliant memory management unit (MMU)
 - Common on-chip processor (COP) test interface
 - Supports bus snooping for cache coherency

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

- PCI bridge
 - PCI Specification revision 2.2-compliant and supports frequencies up to 66 MHz
 - On-chip arbitration
 - Support for PCI to 60x memory and 60x memory to PCI streaming
 - PCI host bridge or peripheral capabilities
 - Includes four DMA channels for the following transfers:
 - PCI-to-60x to 60x-to-PCI
 - 60x-to-PCI to PCI-to-60x
 - PCI-to-60x to PCI-to-60x
 - 60x-to-PCI to 60x-to-PCI
 - Includes the configuration registers required by the PCI standard (which are automatically loaded from the EPROM to configure the MPC8272) and message and doorbell registers
 - Supports the I₂O standard
 - Hot-Swap friendly (supports the Hot Swap Specification as defined by PICMG 2.1 R1.0 August 3, 1998)
 - Support for 66 MHz, 3.3 V specification
 - 60x-PCI bus core logic, which uses a buffer pool to allocate buffers for each port

Operating Conditions 2

This table shows the maximum electrical ratings.

Table 3. Absolute Maximum Ratings¹

Rating	Symbol	Value	Unit
Core supply voltage ²	VDD	-0.3 - 2.25	٧
PLL supply voltage ²	VCCSYN	-0.3 - 2.25	٧
I/O supply voltage ³	VDDH	-0.3 - 4.0	٧
Input voltage ⁴	VIN	GND(-0.3) - 3.6	٧
Junction temperature	Тј	120	°C
Storage temperature range	T _{STG}	(-55) - (+150)	°C

¹ Absolute maximum ratings are stress ratings only; functional operation (see Table 4) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage.

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3 Freescale Semiconductor

² Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V during normal operation. It is recommended that VDD/VCCSYN should be raised before or simultaneous with VDDH during power-on reset. VDD/VCCSYN may exceed VDDH by more than 0.4 V during power-on reset for no more than 100 ms.

³ Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.5 V during normal operation.

⁴ Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset.

Operating Conditions

This table lists recommended operational voltage conditions.

Table 4. Recommended Operating Conditions¹

Rating	Symbol	Value	Unit
Core supply voltage	VDD	1.425 – 575	V
PLL supply voltage	VCCSYN	1.425 – 575	V
I/O supply voltage	VDDH	3.135 – 3.465	V
Input voltage	VIN	GND (-0.3) - 3.465	V
Junction temperature (maximum)	Tj	105 ²	°C
Ambient temperature	T _A	0-70 ²	°C

Caution: These are the recommended and tested operating conditions. Proper operation outside of these conditions is not guaranteed.

This SoC contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or V_{CC}).

This figure shows the undershoot and overshoot voltage of the 60x bus memory interface of the SoC. Note that in PCI mode the I/O interface is different.

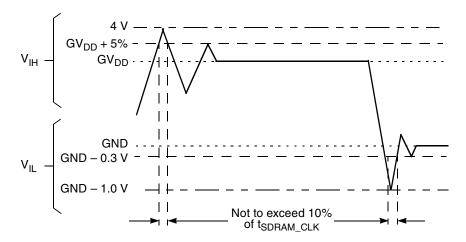


Figure 2. Overshoot/Undershoot Voltage

² Note that for extended temperature parts the range is $(-40)_{T_A}$ – 105_{T_j} .

4.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta IC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

4.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly dependent on the board temperature.

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 T_B = board temperature (°C)

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground plane.

Thermal Characteristics

4.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application, or a more accurate and complex model of the package can be used in the thermal simulation.

4.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{IT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the case to avoid measurement errors caused by cooling effects of the thermocouple wire.

4.6 Layout Practices

Each VDD and VDDH pin should be provided with a low-impedance path to the board's power supplies. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VDD and VDDH power supplies should be bypassed to ground using bypass capacitors located as close as possible to the four sides of the package. For filtering high frequency noise, a capacitor of 0.1uF on each VDD and VDDH pin is recommended. Further, for medium frequency noise, a total of 2 capacitors of 47uF for VDD and 2 capacitors of 47uF for VDDH are also recommended. The capacitor leads and associated printed circuit traces connecting to chip VDD, VDDH and ground should be kept to less than half an inch per capacitor lead. Boards should employ separate inner layers for power and GND planes.

All output pins on the SoC have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

NOTE: Conditions

The following conditions must be met in order to operate the MPC8272 family devices with 133 MHz bus: single PowerQUICC II Bus mode must be used (no external master, BCR[EBM] = 0); data bus must be in Pipeline mode (BRx[DR] = 1); internal arbiter and memory controller must be used. For expected load of above 40 pF, it is recommended that data and address buses be configured to low (25 Ω) impedance (SIUMCR[HLBE0] = 1, SIUMCR[HLBE1] = 1).

Table 12. AC Characteristics for SIU Inputs¹

Spec N	umber		Value (ns)									
		Characteristic		Se	tup		Hold					
Setup	Hold		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp11	sp10	AACK/TA/TS/DBG/BG/BR/ARTRY/TEA	6	5	3.5	N/A	0.5	0.5	0.5	N/A		
sp12	sp10	Data bus in normal mode	5	4	3.5	N/A	0.5	0.5	0.5	N/A		
sp13	sp10	Data bus in pipeline mode (without ECC and PARITY)	N/A	4	2.5	1.5	N/A	0.5	0.5	0.5		
sp15	sp10	All other pins	5	4	3.5	N/A	0.5	0.5	0.5	N/A		

Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

This table lists SIU output characteristics.

Table 13. AC Characteristics for SIU Outputs¹

Spec N	Number		Value (ns)									
		Characteristic	ı	Maximu	m Delay	/	Minimum Delay					
Max	Min		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp31	sp30	PSDVAL/TEA/TA	7	6	5.5	N/A	1	1	1	N/A		
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	6.5	5.5	4.5 ²	1	1	1	1 ²		
sp33	sp30	Data bus ³	6.5	6.5	5.5	4.5	0.8	0.8	0.8	1		
sp34	sp30	Memory controller signals/ALE	6	5.5	5.5	4.5	1	1	1	1		
sp35	sp30	All other signals	6	5.5	5.5	N/A	1	1	1	N/A		

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

² Value is for ADD only; other sp32/sp30 signals are not applicable.

³ To achieve 1 ns of hold time at 66.67/83.33/100 MHZ, a minimum loading of 20 pF is required.

This figure shows signal behavior in MEMC mode.

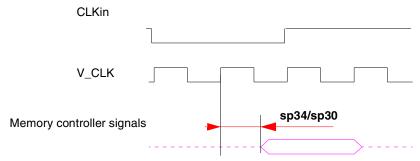


Figure 10. MEMC Mode Diagram

NOTE

Generally, all SoC bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 14.

Table 14. Tick Spacing for Memory Controller Signals

PLL Clock Ratio	Tick Spacing (T1 Occurs at the Rising Edge of CLKin)								
PLE CIOCK NATIO	T2	Т3	Т4						
1:2, 1:3, 1:4, 1:5, 1:6	1/4 CLKin	1/2 CLKin	3/4 CLKin						
1:2.5	3/10 CLKin	1/2 CLKin	8/10 CLKin						
1:3.5	4/14 CLKin	1/2 CLKin	11/14 CLKin						

This table is a representation of the information in Table 14.

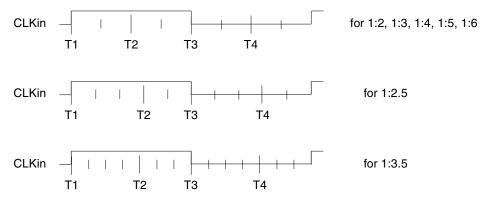


Figure 11. Internal Tick Spacing for Memory Controller Signals

Freescale Semiconductor 25

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
0100_001	50.0	66.7	6	300.0	400.0	6	300.0	400.0	6	50.0	66.7
0100_010	50.0	66.7	6	300.0	400.0	7	350.0	466.6	6	50.0	66.7
0100_011	50.0	66.7	6	300.0	400.0	8	400.0	533.3	6	50.0	66.7
0101_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0101_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0101_010	50.0	66.7	2	100.0	133.3	3.5	175.0	233.3	2	50.0	66.7
0101_011	50.0	66.7	2	100.0	133.3	4	200.0	266.6	2	50.0	66.7
0101_100	50.0	66.7	2	100.0	133.3	4.5	225.0	300.0	2	50.0	66.7
		•	1	l.	l.	1	•	l .		l.	
0101_101	83.3	111.1	3	250.0	333.3	3.5	291.7	388.9	5	50.0	66.7
0101_110	83.3	111.1	3	250.0	333.3	4	333.3	444.4	5	50.0	66.7
0101_111	83.3	111.1	3	250.0	333.3	4.5	375.0	500.0	5	50.0	66.7
		•	1	l.	l.	1		l.		l.	•
0110_000	60.0	80.0	2.5	150.0	200.0	2.5	150.0	200.0	3	50.0	66.7
0110_001	60.0	80.0	2.5	150.0	200.0	3	180.0	240.0	3	50.0	66.7
0110_010	60.0	80.0	2.5	150.0	200.0	3.5	210.0	280.0	3	50.0	66.7
0110_011	60.0	80.0	2.5	150.0	200.0	4	240.0	320.0	3	50.0	66.7
0110_100	60.0	80.0	2.5	150.0	200.0	4.5	270.0	360.0	3	50.0	66.7
0110_101	60.0	80.0	2.5	150.0	200.0	5	300.0	400.0	3	50.0	66.7
0110_110	60.0	80.0	2.5	150.0	200.0	6	360.0	480.0	3	50.0	66.7
0111_000						Reserved					
0111_001	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0111_010	50.0	66.7	3	150.0	200.0	3.5	175.0	233.3	3	50.0	66.7
0111_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0111_100	50.0	66.7	3	150.0	200.0	4.5	225.0	300.0	3	50.0	66.7
	1	1	<u>I</u>	ı	ı	<u> </u>	1	ı		ı	1
1000_000						Reserved					
1000_001	66.7	88.9	3	200.0	266.6	3	200.0	266.6	4	50.0	66.7

Clock Configuration Modes

Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	Bus (Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
1000_010	66.7	88.9	3	200.0	266.6	3.5	233.3	311.1	4	50.0	66.7
1000_011	66.7	88.9	3	200.0	266.6	4	266.7	355.5	4	50.0	66.7
1000_100	66.7	88.9	3	200.0	266.6	4.5	300.0	400.0	4	50.0	66.7
1000_101	66.7	88.9	3	200.0	266.6	6	400.0	533.3	4	50.0	66.7
1000_110	66.7	88.9	3	200.0	266.6	6.5	433.3	577.7	4	50.0	66.7
1001_000						Reserved					
1001_001		Reserved									
1001_010	57.1	76.2	3.5	200.0	266.6	3.5	200.0	266.6	4	50.0	66.7
1001_011	57.1	76.2	3.5	200.0	266.6	4	228.6	304.7	4	50.0	66.7
1001_100	57.1	76.2	3.5	200.0	266.6	4.5	257.1	342.8	4	50.0	66.7
	1			I	I		I	ı			
1001_101	85.7	114.3	3.5		400.0	5		571.4	6	50.0	66.7
1001_110	85.7	114.3	3.5	300.0	400.0	5.5		628.5	6	50.0	66.7
1001_111	85.7	114.3	3.5	300.0	400.0	6	514.3	685.6	6	50.0	66.7
1010_000	75.0	100.0	2	150.0	200.0	2	150.0	200.0	3	50.0	66.7
1010_001	75.0	100.0	2	150.0	200.0	2.5	187.5	250.0	3	50.0	66.7
1010_010	75.0	100.0	2	150.0	200.0	3	225.0	300.0	3	50.0	66.7
1010_011	75.0	100.0	2	150.0	200.0	3.5	262.5	350.0	3	50.0	66.7
1010_100	75.0	100.0	2	150.0	200.0	4	300.0	400.0	3	50.0	66.7
1010 101	100.0	133.3		000.0	000.0	0.5	050.0	000.0	4	50.0	66.7
1010_101			2		266.6	2.5		333.3 400.0	4	50.0	66.7
1010_110	100.0		2	200.0	266.6 266.6	3.5		466.6	4	50.0	66.7 66.7
1010_111	100.0	100.0		200.0	200.0	J.Ü	330.0	+00.0	+	50.0	00.7
1011_000						Reserved					
1011_001	80.0	106.7	2.5	200.0	266.6	2.5	200.0	266.6	4	50.0	66.7
1011_010	80.0	106.7	2.5	200.0	266.6	3	240.0	320.0	4	50.0	66.7
1011_011	80.0	106.7	2.5	200.0	266.6	3.5	280.0	373.3	4	50.0	66.7

Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	Bus (CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
1011_100	80.0	106.7	2.5	200.0	266.6	4	320.0	426.6	4	50.0	66.7
1011_101	80.0	106.7	2.5	200.0	266.6	4.5	360.0	480.0	4	50.0	66.7
1101_000	100.0	133.3	2.5	250.0	333.3	3	300.0	400.0	5	50.0	66.7
1101_001	100.0	133.3	2.5	250.0	333.3	3.5	350.0	466.6	5	50.0	66.7
1101_010	100.0	133.3	2.5	250.0	333.3	4	400.0	533.3	5	50.0	66.7
1101_011	100.0	133.3	2.5	250.0	333.3	4.5	450.0	599.9	5	50.0	66.7
1101_100	100.0	133.3	2.5	250.0	333.3	5	500.0	666.6	5	50.0	66.7
1101_101	125.0	166.7	2	250.0	333.3	3	375.0	500.0	5	50.0	66.7
1101_110	125.0	166.7	2	250.0	333.3	4	500.0	666.6	5	50.0	66.7
1110_000	100.0	133.3	3	300.0	400.0	3.5	350.0	466.6	6	50.0	66.7
1110_001	100.0	133.3	3	300.0	400.0	4	400.0	533.3	6	50.0	66.7
1110_010	100.0	133.3	3	300.0	400.0	4.5	450.0	599.9	6	50.0	66.7
1110_011	100.0	133.3	3	300.0	400.0	5	500.0	666.6	6	50.0	66.7
1110_100	100.0	133.3	3	300.0	400.0	5.5	550.0	733.3	6	50.0	66.7
1100_000						Reserved					
1100_001						Reserved					
1100_010	Reserved										

The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

 $CPM_CLK/PCI_CLK = (PCIDF + 1) / 2.$

² PCI_MODCK determines the PCI clock frequency range. SeeTable 18 for lower range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

⁶ CPM_CLK/PCI_CLK ratio. When PCI_MODCK = 0, the ratio of CPM_CLK/PCI_CLK should be calculated from SCCR[PCIDF] as follows:

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³	Bus (Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
0100_001	25.0	50.0	6	150.0	300.0	6	150.0	300.0	6	25.0	50.0
0100_010	25.0	50.0	6	150.0	300.0	7	175.0	350.0	6	25.0	50.0
0100_011	25.0	50.0	6	150.0	300.0	8	200.0	400.0	6	25.0	50.0
0101_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0101_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0
0101_010	50.0	100.0	2	100.0	200.0	3.5	175.0	350.0	4	25.0	50.0
0101_011	50.0	100.0	2	100.0	200.0	4	200.0	400.0	4	25.0	50.0
0101_100	50.0	100.0	2	100.0	200.0	4.5	225.0	450.0	4	25.0	50.0
	·	·		l.		1	·				·
0101_101	42.9	83.3	3	128.6	250.0	3.5	150.0	291.7	5	25.7	50.0
0101_110	41.7	83.3	3	125.0	250.0	4	166.7	333.3	5	25.0	50.0
0101_111	41.7	83.3	3	125.0	250.0	4.5	187.5	375.0	5	25.0	50.0
					•			•			
0110_000	60.0	120.0	2.5	150.0	300.0	2.5	150.0	300.0	6	25.0	50.0
0110_001	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0110_010	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0110_011	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0110_100	60.0	120.0	2.5	150.0	300.0	4.5	270.0	540.0	6	25.0	50.0
0110_101	60.0	120.0	2.5	150.0	300.0	5	300.0	600.0	6	25.0	50.0
0110_110	60.0	120.0	2.5	150.0	300.0	6	360.0	720.0	6	25.0	50.0
	·	·		l.		1	·				·
0111_000						Reserved					
0111_001	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0111_010	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
0111_011	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
0111_100	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0
					1	1		1		1	
1000_000						Reserved					
1000_001	66.7	133.3	3	200.0	400.0	3	200.0	400.0	8	25.0	50.0

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
1011_101	80.0	160.0	2.5	200.0	400.0	4.5	360.0	720.0	8	25.0	50.0
1101_000	50.0	100.0	2.5	125.0	250.0	3	150.0	300.0	5	25.0	50.0
1101_001	50.0	100.0	2.5	125.0	250.0	3.5	175.0	350.0	5	25.0	50.0
1101_010	50.0	100.0	2.5	125.0	250.0	4	200.0	400.0	5	25.0	50.0
1101_011	50.0	100.0	2.5	125.0	250.0	4.5	225.0	450.0	5	25.0	50.0
1101_100	50.0	100.0	2.5	125.0	250.0	5	250.0	500.0	5	25.0	50.0
1101_101	62.5	125.0	2	125.0	250.0	3	187.5	375.0	5	25.0	50.0
1101_110	62.5	125.0	2	125.0	250.0	4	250.0	500.0	5	25.0	50.0
1110_000	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
1110_001	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
1110_010	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0
1110_011	50.0	100.0	3	150.0	300.0	5	250.0	500.0	6	25.0	50.0
1110_100	50.0	100.0	3	150.0	300.0	5.5	275.0	550.0	6	25.0	50.0
1100_000						Reserved					
1100_001						Reserved					
1100_010	Reserved										

The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

² PCI_MODCK determines the PCI clock frequency range. See Table 17 for higher range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	PCI (Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
0011_000		•				Reserved	•				
0011_001						Reserved					
0011_010						Reserved					
0011_011						Reserved					
0011_100						Reserved					
0100_000						Reserved					
0100_001	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0100_010	50.0	66.7	3	150.0	200.0	3.5	175.0	200.0	3	50.0	66.7
0100_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0100_100	50.0	66.7	3	150.0	200.0	4.5	225.0	300.0	3	50.0	66.7
0101_000	50.0	66.7	5	250.0	333.3	2.5	250.0	333.3	2.5	100.0	133.3
0101_001	50.0	66.7	5	250.0	333.3	3	300.0	400.0	2.5	100.0	133.3
0101_010	50.0	66.7	5	250.0	333.3	3.5	350.0	466.6	2.5	100.0	133.3
0101_011	50.0	66.7	5	250.0	333.3	4	400.0	533.3	2.5	100.0	133.3
0101_100	50.0	66.7	5	250.0	333.3	4.5	450.0	599.9	2.5	100.0	133.3
0101_101	50.0	66.7	5	250.0	333.3	5	500.0	666.6	2.5	100.0	133.3
0101_110	50.0	66.7	5	250.0	333.3	5.5	550.0	733.3	2.5	100.0	133.3
		•					•				
0110_000						Reserved					
0110_001	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
0110_010	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0110_011	50.0	66.7	4	200.0	266.6	4	266.7	355.5	3	66.7	88.9
0110_100	50.0	66.7	4	200.0	266.6	4.5	300.0	400.0	3	66.7	88.9
		•					•				
0111_000	50.0	66.7	3	150.0	200.0	2	150.0	200.0	2	75.0	100.0
0111_001	50.0	66.7	3	150.0	200.0	2.5	187.5	250.0	2	75.0	100.0
0111_010	50.0	66.7	3	150.0	200.0	3	225.0	300.0	2	75.0	100.0
0111_011	50.0	66.7	3	150.0	200.0	3.5	262.5	350.0	2	75.0	100.0

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	PCI (Clock Hz)	CPM Multiplication	_	Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
1100_101	50.0	66.7	6	300.0	400.0	4	400.0	533.3	3	100.0	133.3
1100_110	50.0	66.7	6	300.0	400.0	4.5	450.0	599.9	3	100.0	133.3
1100_111	50.0	66.7	6	300.0	400.0	5	500.0	666.6	3	100.0	133.3
1101_000	50.0	66.7	6	300.0	400.0	5.5	550.0	733.3	3	100.0	133.3
1101_001	50.0	66.7	6	300.0	400.0	3.5	420.0	559.9	2.5	120.0	160.0
1101_010	50.0	66.7	6	300.0	400.0	4	480.0	639.9	2.5	120.0	160.0
1101_011	50.0	66.7	6	300.0	400.0	4.5	540.0	719.9	2.5	120.0	160.0
1101_100	50.0	66.7	6	300.0	400.0	5	600.0	799.9	2.5	120.0	160.0
1110_000	50.0	66.7	5	250.0	333.3	2.5	312.5	416.6	2	125.0	166.7
1110_001	50.0	66.7	5	250.0	333.3	3	375.0	500.0	2	125.0	166.7
1110_010	50.0	66.7	5	250.0	333.3	3.5	437.5	583.3	2	125.0	166.7
1110_011	50.0	66.7	5	250.0	333.3	4	500.0	666.6	2	125.0	166.7
1110_100	50.0	66.7	5	250.0	333.3	4	333.3	444.4	3	83.3	111.1
1110_101	50.0	66.7	5	250.0	333.3	4.5	375.0	500.0	3	83.3	111.1
1110_110	50.0	66.7	5	250.0	333.3	5	416.7	555.5	3	83.3	111.1
1110_111	50.0	66.7	5	250.0	333.3	5.5	458.3	611.1	3	83.3	111.1
1100_000						Reserved					
1100_001						Reserved					
1100_010						Reserved					

The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

² PCI_MODCK determines the PCI clock frequency range. See Table 20 for lower range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

Table 21. Pinout (continued)

Pin N	lame	
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
T:	S	D1
A	0	A3
A	1	B5
A	2	D8
A	3	C6
A	4	A4
A	5	A6
A	6	В6
A	7	C7
A	8	B7
A	9	A7
A1	0	D9
A1	1	E11
A1	2	C9
A1	3	B9
A1	4	D11
A1	5	A9
A1	6	B10
A1	7	A10
A1	8	B11
A1	9	A11
A2	20	D12
A2	21	A12
A2	22	D13
A2	23	B13
A2	24	C13
A2	25	C14
A2	26	B14
A2	27	D14
A2		E14
A2		A14

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Pinout

Table 21. Pinout (continued)

Pin N	Pin Name			
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball		
A3	30	B15		
A3	31	A15		
ТТ	¯0	B3		
ТТ	1	E8		
тт	-2	D7		
тт	-3	C4		
тт	-4	E7		
TB:	ST	E3		
TSI	Z0	E4		
TSI	Z1	E5		
TSI	Z2	C3		
TSI	Z3	D5		
AAG	CK	D3		
ĀRT	RY	C2		
DBG/	IRQ7	F16		
DBB/I	IRQ3	D18		
D	0	AC1		
D	1	AA1		
D	2	V3		
D	3	R5		
D	4	P4		
D	5	M4		
D	6	J4		
D	7	G1		
D	8	W6		
D	9	Y3		
D1	10	V1		
D1	11	N6		
D1	12	P3		
D1	13	M2		
	14	J5		

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Pinout

Table 21. Pinout (continued)

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247 MPC8271 Only	Ball	
D46	H4	
D47	F2	
D48	AB1	
D49	U4	
D50	U1	
D51	R3	
D52	N3	
D53	K2	
D54	H5	
D55	F4	
D56	AA3	
D57	U5	
D58	U2	
D59	P5	
D60	МЗ	
D61	K4	
D62	НЗ	
D63	E1	
IRQ3/CKSTP_OUT/EXT_BR3	B16	
IRQ4/CORE_SRESET/EXT_BG3	C15	
IRQ5/TBEN/EXT_DBG3/CINT	Y4	
PSDVAL	C19	
TA	AA4	
TEA	AB6	
GBL/IRQ1	D15	
CI/BADDR29/IRQ2	D16	
WT/BADDR30/IRQ3	C16	
BADDR31/ IRQ5/CINT	E17	
CPU_BR/INT_OUT	B20	
CS0	AE6	
CS1	AD7	

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 21. Pinout (continued)

Pin 1	Name	
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
C	52	AF5
C	53	AC8
C	\$4	AF6
C	\$ 55	AD8
CS6/BC	TL1/SMI	AC9
CS7/TL	BISYNC	AB9
BADDR	27/ IRQ1	AB8
BADDR	28/IRQ2	AC7
ALE/	ĪRQ4	AF4
BC	TLO	AF3
PWE0/PSDI	DQM0/PBS0	AD6
PWE1/PSDI	DQM1/PBS1	AE5
PWE2/PSDI	DQM2/PBS2	AE3
PWE3/PSDI	DQM3/PBS3	AF2
PWE4/PSDI	DQM4/PBS4	AC6
PWE5/PSDI	DQM5/PBS5	AC5
PWE6/PSDI	DQM6/PBS6	AD4
PWE7/PSDI	DQM7/PBS7	AB5
PSDA10)/PGPL0	AE2
PSDWE	PGPL1	AD3
POE/PSDF	RAS/PGPL2	AB4
PSDCAS	5/PGPL3	AC3
PGTA/PUPM	WAIT/PGPL4	AD2
PSDAMU	IX/PGPL5	AC2
PCI_N	MODE ¹	AD22
PCI_CFG0 (Pi	CI_HOST_EN)	AC21
PCI_CFG1 (F	PCI_ARB_EN)	AE22
PCI_CFG2 (E	DLL_ENABLE)	AE23
PCI_	PAR	AF12
PCI_F	RAME	AD15
PCI_	TRDY	AF16

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 21. Pinout (continued)

Pin N		
MPC8272/MPC8248 and MPC8271/MPC8247	Ball	
PA31/FCC1_MII_COL	FCC1_UT_TXENB	G22 ³
PB18/FCC2_M	II_HDLC_RXD3	T25 ³
PB19/FCC2_M	II_HDLC_RXD2	P22 ³
PB20/FCC2_MII_H	HDLC_RMII_RXD1	L25 ³
PB21/FCC2_MII_HDLC_RM	II_RXD0/FCC2_TRAN_RXD	J26 ³
	TXD0/FCC2_TRAN_TXD/ MII_TXD0	U23 ³
PB23/FCC2_MII_HDLC_	TXD1/FCC2_RMII_TXD1	U26 ³
PB24/FCC2_MII_HDL	C_TXD2/L1RSYNCB2	M24 ³
PB25/FCC2_MII_HDL	C_TXD3/L1TSYNCB2	M23 ³
PB26/FCC2_MII	_CRS/L1RXDB2	H24 ³
PB27/FCC2_MII	_COL/L1TXDB2	E25 ³
PB28/FCC2_MII_RMII_F	RX_ER/ FCC2_RTS /TXD1	D26 ³
PB29/FCC2_M	II_RMII_TX_EN	K21 ³
PB30/FCC2_MII_RX_D	V/FCC2_RMII_CRS_DV	D24 ³
PB31/FCC2	_MII_TX_ER	E23 ³
PC0/DREQ3/BRGO7	/SMSYN1/L1CLKOA2	AF23 ³
PC1/BRGC	06/L1RQA2	AD23 ³
PC4/SMRXD1/SI2	_L1ST4/FCC2_CD	AB22 ³
PC5/SMTXD1/SI2_	L1ST3/FCC2_CTS	AE24 ³
PC6/FCC1_CD/SI2_L1ST2	FCC1_UT_RXADDR2	AF24 ³
PC7/FCC1_CTS	FCC1_UT_TXADDR2	AE26 ³
PC8/CD4/RTS1/S	AC24 ³	
PC9/CTS4/L	AA23 ³	
PC10/CD3	AB25 ³	
PC11/CTS3/USE	V22 ³	
PC12	FCC1_UT_RXADDR1	AA26 ³
PC13/BRGO5 FCC1_UT_TXADDR1		V23 ³
PC14/CD1 FCC1_UT_RXADDR0		W24 ³
PC15/CTS1 FCC1_UT_TXADDR0		U24 ³
PC16/	T23 ³	

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

9.2 Mechanical Dimensions

This figure provides the mechanical dimensions and bottom surface nomenclature of the 516 PBGA package.

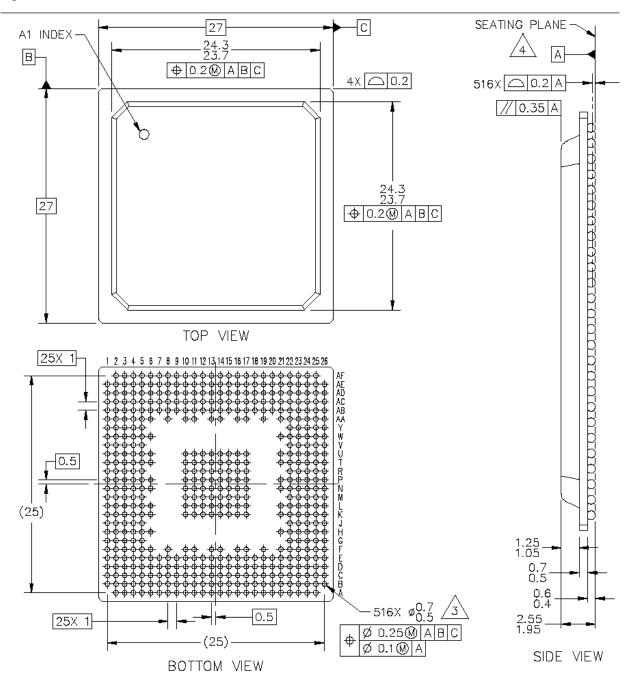


Figure 14. Mechanical Dimensions and Bottom Surface Nomenclature—516 PBGA