

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	300MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8271czqpiea

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 MPC8272/8271 only

This figure shows the block diagram of the SoC.

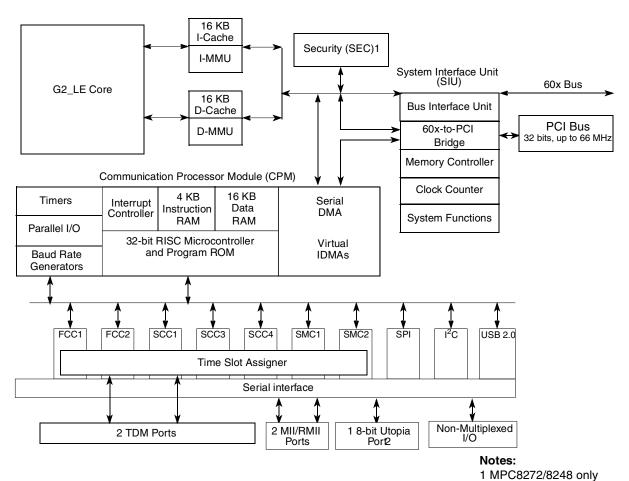


Figure 1. SoC Block Diagram

1.1 Features

The major features of the SoC are as follows:

- Dual-issue integer (G2_LE) core
 - A core version of the MPC603e microprocessor
 - System core microprocessor supporting frequencies of 266–400 MHz
 - Separate 16 KB data and instruction caches:
 - Four-way set associative
 - Physically addressed
 - LRU replacement algorithm
 - Power Architecture®-compliant memory management unit (MMU)
 - Common on-chip processor (COP) test interface
 - Supports bus snooping for cache coherency

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Overview

- Floating-point unit (FPU) supports floating-point arithmetic
- Support for cache locking
- Low-power consumption
- Separate power supply for internal logic (1.5 V) and for I/O (3.3 V)
- Separate PLLs for G2_LE core and for the communications processor module (CPM)
 - G2_LE core and CPM can run at different frequencies for power/performance optimization
 - Internal core/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5:5:1, 6:1, 7:1, 8:1
 - Internal CPM/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1, 8:1 ratios
- 64-bit data and 32-bit address 60x bus
 - Bus supports multiple master designs—up to two external masters
 - Supports single transfers and burst transfers
 - 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
- 60x-to-PCI bridge
 - Programmable host bridge and agent
 - 32-bit data bus, 66 MHz, 3.3 V
 - Synchronous and asynchronous 60x and PCI clock modes
 - All internal address space available to external PCI host
 - DMA for memory block transfers
 - PCI-to-60x address remapping
- System interface unit (SIU)
 - Clock synthesizer
 - Reset controller
 - Real-time clock (RTC) register
 - Periodic interrupt timer
 - Hardware bus monitor and software watchdog timer
 - IEEE 1149.1 JTAG test access port
- Eight bank memory controller
 - Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash, and other user-definable peripherals
 - Byte write enables
 - 32-bit address decodes with programmable bank size
 - Three user-programmable machines, general-purpose chip-select machine, and page mode pipeline SDRAM machine
 - Byte selects for 64-bit bus width (60x)
 - Dedicated interface logic for SDRAM
- Disable CPU mode

Overview

- One of the FCCs supports ATM (MPC8272 and MPC8271 only)—full-duplex SAR at 155 Mbps, 8-bit UTOPIA interface 31 Mphys, AAL5, AAL1, AAL2, AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 64-K external connections
- Three serial communications controllers (SCCs) identical to those on the MPC860 supporting the digital portions of the following protocols:
 - Ethernet/IEEE 802.3 CDMA/CS
 - HDLC/SDLC and HDLC bus
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Binary synchronous (BiSync) communications
 - Transparent
 - QUICC multichannel controller (QMC) up to 64 channels
 - Independent transmit and receive routing, frame synchronization.
 - Serial-multiplexed (full-duplex) input/output 2048, 1544, and 1536 Kbps PCM highways
 - Compatible with T1/DS1 24-channel and CEPT E1 32-channel PCM highway, ISDN basic rate, ISDN primary rate, and user defined.
 - Subchanneling on each time slot.
 - Independent transmit and receive routing, frame synchronization and clocking
 - Concatenation of any not necessarily consecutive time slots to channels independently for receiver/transmitter
 - Supports H1,H11, and H12 channels
 - Allows dynamic allocation of channels
 - SCC3 in NMSI mode is not usable when USB is enabled.
- Two serial management controllers (SMCs), identical to those of the MPC860
 - Provides management for BRI devices as general-circuit interface (GCI) controllers in time-division-multiplexed (TDM) channels
 - Transparent
 - UART (low-speed operation)
- One serial peripheral interface identical to the MPC860 SPI
- One I²C controller (identical to the MPC860 I²C controller)
 - Microwire compatible
 - Multiple-master, single-master, and slave modes
- Up to two TDM interfaces
 - Supports one groups of two TDM channels
 - 1024 bytes of SI RAM
- Eight independent baud rate generators and 14 input clock pins for supplying clocks to FCC, SCC, SMC, and USB serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers

4.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta IC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

4.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly dependent on the board temperature.

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 T_B = board temperature (°C)

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground plane.

Thermal Characteristics

4.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application, or a more accurate and complex model of the package can be used in the thermal simulation.

4.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{IT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the case to avoid measurement errors caused by cooling effects of the thermocouple wire.

4.6 Layout Practices

Each VDD and VDDH pin should be provided with a low-impedance path to the board's power supplies. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VDD and VDDH power supplies should be bypassed to ground using bypass capacitors located as close as possible to the four sides of the package. For filtering high frequency noise, a capacitor of 0.1uF on each VDD and VDDH pin is recommended. Further, for medium frequency noise, a total of 2 capacitors of 47uF for VDD and 2 capacitors of 47uF for VDDH are also recommended. The capacitor leads and associated printed circuit traces connecting to chip VDD, VDDH and ground should be kept to less than half an inch per capacitor lead. Boards should employ separate inner layers for power and GND planes.

All output pins on the SoC have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

AC Electrical Characteristics

This figure shows the FCC external clock.

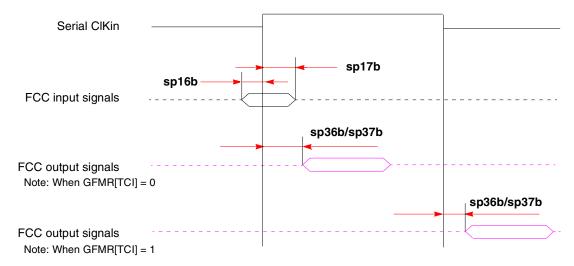
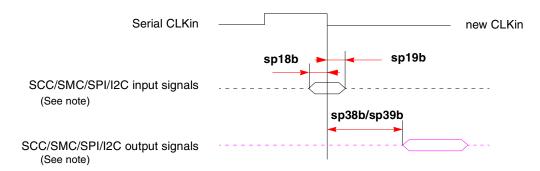
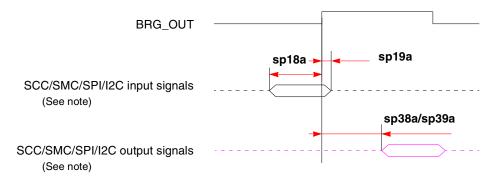



Figure 4. FCC External Clock Diagram

This figure shows the SCC/SMC/SPI/I²C external clock.

Note: There are four possible timing conditions for SPI:

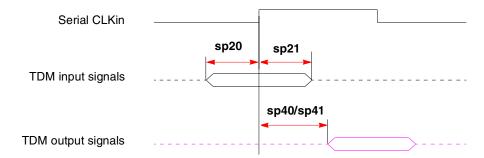
- 1. Input sampled on the rising edge and output driven on the rising edge.
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge (shown).
- 4. Input sampled on the falling edge and output driven on the rising edge.


Note: There are two possible timing conditions for SCC/SMC/I²C:

- 1. Input sampled on the falling edge and output driven on the falling edge (shown).
- 2. Input sampled on the falling edge and output driven on the rising edge.

Figure 5. SCC/SMC/SPI/I²C External Clock Diagram

This figure shows the SCC/SMC/SPI/I²C internal clock.



Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I²C Internal Clock Diagram

This figure shows TDM input and output signals.

Note: There are four possible TDM timing conditions:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 7. TDM Signal Diagram

AC Electrical Characteristics

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.

This figure shows the interaction of several bus signals.

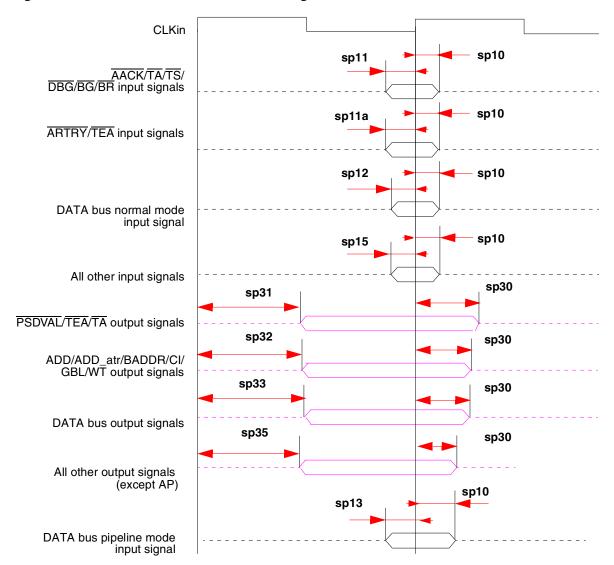


Figure 9. Bus Signals

Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
0100_001	50.0	66.7	6	300.0	400.0	6	300.0	400.0	6	50.0	66.7
0100_010	50.0	66.7	6	300.0	400.0	7	350.0	466.6	6	50.0	66.7
0100_011	50.0	66.7	6	300.0	400.0	8	400.0	533.3	6	50.0	66.7
0101_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0101_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0101_010	50.0	66.7	2	100.0	133.3	3.5	175.0	233.3	2	50.0	66.7
0101_011	50.0	66.7	2	100.0	133.3	4	200.0	266.6	2	50.0	66.7
0101_100	50.0	66.7	2	100.0	133.3	4.5	225.0	300.0	2	50.0	66.7
		•	1	l.	l.	1	•	l .		l.	
0101_101	83.3	111.1	3	250.0	333.3	3.5	291.7	388.9	5	50.0	66.7
0101_110	83.3	111.1	3	250.0	333.3	4	333.3	444.4	5	50.0	66.7
0101_111	83.3	111.1	3	250.0	333.3	4.5	375.0	500.0	5	50.0	66.7
		•	1	l.	l.	1		l.		l.	•
0110_000	60.0	80.0	2.5	150.0	200.0	2.5	150.0	200.0	3	50.0	66.7
0110_001	60.0	80.0	2.5	150.0	200.0	3	180.0	240.0	3	50.0	66.7
0110_010	60.0	80.0	2.5	150.0	200.0	3.5	210.0	280.0	3	50.0	66.7
0110_011	60.0	80.0	2.5	150.0	200.0	4	240.0	320.0	3	50.0	66.7
0110_100	60.0	80.0	2.5	150.0	200.0	4.5	270.0	360.0	3	50.0	66.7
0110_101	60.0	80.0	2.5	150.0	200.0	5	300.0	400.0	3	50.0	66.7
0110_110	60.0	80.0	2.5	150.0	200.0	6	360.0	480.0	3	50.0	66.7
0111_000						Reserved					
0111_001	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0111_010	50.0	66.7	3	150.0	200.0	3.5	175.0	233.3	3	50.0	66.7
0111_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0111_100	50.0	66.7	3	150.0	200.0	4.5	225.0	300.0	3	50.0	66.7
	1							1			
1000_000		Reserved									
1000_001	66.7	88.9	3	200.0	266.6	3	200.0	266.6	4	50.0	66.7

Clock Configuration Modes

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1) 1,2

Mode ³		Clock Hz)	CPM		Clock Hz)	CPU		Clock Hz)	PCI		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Multiplication Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Division Factor ⁶	Low	High
			Defa	ult Mod	es (MO	DCK_H=0000)					
0000_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0000_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0
0000_010	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0000_011	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0000_100	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0000_101	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0000_110	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
0000_111	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
	<u>l</u>	<u>l</u>	F	ull Cor	nfigurati	on Modes				<u> </u>	ļ
0001_000	50.0	100.0	3	150.0	300.0	5	250.0	500.0	6	25.0	50.0
0001_001	50.0	100.0	3	150.0	300.0	6	300.0	600.0	6	25.0	50.0
0001_010	50.0	100.0	3	150.0	300.0	7	350.0	700.0	6	25.0	50.0
0001_011	50.0	100.0	3	150.0	300.0	8	400.0	800.0	6	25.0	50.0
0010_000	50.0	100.0	4	200.0	400.0	5	250.0	500.0	8	25.0	50.0
0010_001	50.0	100.0	4	200.0	400.0	6	300.0	600.0	8	25.0	50.0
0010_010	50.0	100.0	4	200.0	400.0	7	350.0	700.0	8	25.0	50.0
0010_011	50.0	100.0	4	200.0	400.0	8	400.0	800.0	8	25.0	50.0
	1	1		Т	Т		Т	Π		Т	Г
0010_100	37.5	75.0	4		300.0	5		375.0	6	25.0	50.0
0010_101	37.5	75.0	4	150.0	300.0	5.5	206.3	412.5	6	25.0	50.0
0010_110	37.5	75.0	4	150.0	300.0	6	225.0	450.0	6	25.0	50.0
0011_000	30.0	50.0	5	150.0	250.0	5	150.0	250.0	5	30.0	50.0
0011_001	25.0	50.0	5	125.0	250.0	6		300.0	5	25.0	50.0
0011_010	25.0	50.0	5		250.0	7		350.0	5	25.0	50.0
0011_011	25.0	50.0	5		250.0	8		400.0		25.0	50.0
	1	ı		ı	ı		ı	ı		ı	
0100_000						Reserved					

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³	Bus (Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
0100_001	25.0	50.0	6	150.0	300.0	6	150.0	300.0	6	25.0	50.0
0100_010	25.0	50.0	6	150.0	300.0	7	175.0	350.0	6	25.0	50.0
0100_011	25.0	50.0	6	150.0	300.0	8	200.0	400.0	6	25.0	50.0
0101_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0101_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0
0101_010	50.0	100.0	2	100.0	200.0	3.5	175.0	350.0	4	25.0	50.0
0101_011	50.0	100.0	2	100.0	200.0	4	200.0	400.0	4	25.0	50.0
0101_100	50.0	100.0	2	100.0	200.0	4.5	225.0	450.0	4	25.0	50.0
	·	·		l.		1	·				·
0101_101	42.9	83.3	3	128.6	250.0	3.5	150.0	291.7	5	25.7	50.0
0101_110	41.7	83.3	3	125.0	250.0	4	166.7	333.3	5	25.0	50.0
0101_111	41.7	83.3	3	125.0	250.0	4.5	187.5	375.0	5	25.0	50.0
					•			•			
0110_000	60.0	120.0	2.5	150.0	300.0	2.5	150.0	300.0	6	25.0	50.0
0110_001	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0110_010	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0110_011	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0110_100	60.0	120.0	2.5	150.0	300.0	4.5	270.0	540.0	6	25.0	50.0
0110_101	60.0	120.0	2.5	150.0	300.0	5	300.0	600.0	6	25.0	50.0
0110_110	60.0	120.0	2.5	150.0	300.0	6	360.0	720.0	6	25.0	50.0
	·	·		l.		1	·				·
0111_000						Reserved					
0111_001	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0111_010	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
0111_011	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
0111_100	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0
								1			
1000_000			Reserved								
1000_001	66.7	133.3	3	200.0	400.0	3	200.0	400.0	8	25.0	50.0

Clock Configuration Modes

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
1000_010	66.7	133.3	3	200.0	400.0	3.5	233.3	466.7	8	25.0	50.0
1000_011	66.7	133.3	3	200.0	400.0	4	266.7	533.3	8	25.0	50.0
1000_100	66.7	133.3	3	200.0	400.0	4.5	300.0	600.0	8	25.0	50.0
1000_101	66.7	133.3	3	200.0	400.0	6	400.0	800.0	8	25.0	50.0
1000_110	66.7	133.3	3	200.0	400.0	6.5	433.3	866.7	8	25.0	50.0
1001_000						Reserved					
1001_001						Reserved					
1001_010	57.1	114.3	3.5	200.0	400.0	3.5	200.0	400.0	8	25.0	50.0
1001_011	57.1	114.3	3.5	200.0	400.0	4	228.6	457.1	8	25.0	50.0
1001_100	57.1	114.3	3.5	200.0	400.0	4.5	257.1	514.3	8	25.0	50.0
1001_101	42.9	85.7	3.5	150.0	300.0	5	214.3	428.6	6	25.0	50.0
1001_110	42.9	85.7	3.5	150.0	300.0	5.5	235.7	471.4	6	25.0	50.0
1001_111	42.9	85.7	3.5	150.0	300.0	6	257.1	514.3	6	25.0	50.0
	1	ı	Г	ı	ı	Г	T .	ı	<u> </u>		ı
1010_000	75.0	150.0	2	150.0	300.0	2		300.0	6	25.0	50.0
1010_001	75.0	150.0	2	150.0	300.0	2.5		375.0	6	25.0	50.0
1010_010	75.0	150.0	2	150.0	300.0	3	225.0	450.0	6	25.0	50.0
1010_011	75.0	150.0	2	150.0	300.0	3.5	262.5	525.0	6	25.0	50.0
1010_100	75.0	150.0	2	150.0	300.0	4	300.0	600.0	6	25.0	50.0
1010_101	100.0	200.0	2	200.0	400.0	2.5	250.0	500.0	8	25.0	50.0
1010_110	100.0		2	200.0	400.0	3		600.0	8	25.0	50.0
1010_111		200.0	2	200.0	400.0	3.5		700.0		25.0	50.0
							•				
1011_000						Reserved					
1011_001	80.0	160.0	2.5	200.0	400.0	2.5	200.0	400.0	8	25.0	50.0
1011_010	80.0	160.0	2.5	200.0	400.0	3	240.0	480.0	8	25.0	50.0
1011_011	80.0	160.0	2.5	200.0	400.0	3.5	280.0	560.0	8	25.0	50.0
1011_100	80.0	160.0	2.5	200.0	400.0	4	320.0	640.0	8	25.0	50.0

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³	PCI (Clock Hz)	CPM Multiplication	_	Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
0100_100	25.0	50.0	6	150.0	300.0	4.5	225.0	450.0	3	50.0	100.0
0101_000	30.0	50.0	5	150.0	250.0	2.5	150.0	250.0	2.5	60.0	100.0
0101_001	25.0	50.0	5	125.0	250.0	3	150.0	300.0	2.5	50.0	100.0
0101_010	25.0	50.0	5	125.0	250.0	3.5	175.0	350.0	2.5	50.0	100.0
0101_011	25.0	50.0	5	125.0	250.0	4	200.0	400.0	2.5	50.0	100.0
0101_100	25.0	50.0	5	125.0	250.0	4.5	225.0	450.0	2.5	50.0	100.0
0101_101	25.0	50.0	5	125.0	250.0	5	250.0	500.0	2.5	50.0	100.0
0101_110	25.0	50.0	5	125.0	250.0	5.5	275.0	550.0	2.5	50.0	100.0
				•	•						•
0110_000						Reserved					
0110_001	25.0	50.0	8	200.0	400.0	3	200.0	400.0	3	66.7	133.3
0110_010	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3
0110_011	25.0	50.0	8	200.0	400.0	4	266.7	533.3	3	66.7	133.3
0110_100	25.0	50.0	8	200.0	400.0	4.5	300.0	600.0	3	66.7	133.3
	I						I	I			
0111_000	25.0	50.0	6	150.0	300.0	2	150.0	300.0	2	75.0	150.0
0111_001	25.0	50.0	6	150.0	300.0	2.5	187.5	375.0	2	75.0	150.0
0111_010	25.0	50.0	6	150.0	300.0	3	225.0	450.0	2	75.0	150.0
0111_011	25.0	50.0	6	150.0	300.0	3.5	262.5	525.0	2	75.0	150.0
	I						I	I			
1000_000						Reserved					
1000_001	25.0	50.0	6	150.0	300.0	2.5	150.0	300.0	2.5	60.0	120.0
1000_010	25.0	50.0	6	150.0	300.0	3	180.0	360.0	2.5	60.0	120.0
1000_011	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
1000_100	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0
1000_101	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0
1001_000		Reserved									
1001_001						Reserved					

Clock Configuration Modes

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³		Clock Hz)	CPM		Clock Hz)	CPU		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Multiplication Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Factor	Low	High
1001_010				•	•	Reserved	•				
1001_011	25.0	50.0	8	200.0	400.0	4	200.0	400.0	4	50.0	100.0
1001_100	25.0	50.0	8	200.0	400.0	4.5	225.0	450.0	4	50.0	100.0
1010_000						Reserved					
1010_001	25.0	50.0	8	200.0	400.0	3	200.0	400.0	3	66.7	133.3
1010_010	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3
1010_011	25.0	50.0	8	200.0	400.0	4	266.7	533.3	3	66.7	133.3
1010_100	25.0	50.0	8	200.0	400.0	4.5	300.0	600.0	3	66.7	133.3
1011_000						Reserved					
1011_001	25.0	50.0	8	200.0	400.0	2.5	200.0	400.0	2.5	80.0	160.0
1011_010	25.0	50.0	8	200.0	400.0	3		480.0	2.5	80.0	160.0
1011_011	25.0	50.0	8	200.0	400.0	3.5		560.0	2.5	80.0	160.0
1011_100	25.0	50.0	8	200.0	400.0	4		640.0	2.5	80.0	160.0
		l.	1		•	1	•			l.	
1011_101	25.0	50.0	8	200.0	400.0	2.5	250.0	500.0	2	100.0	200.0
1011_110	25.0	50.0	8	200.0	400.0	3	300.0	600.0	2	100.0	200.0
1011_111	25.0	50.0	8	200.0	400.0	3.5	350.0	700.0	2	100.0	200.0
	T	ı		1	1		1	1		ı	T
1100_101	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0
1100_110	25.0	50.0	6	150.0	300.0	4.5	225.0	450.0	3	50.0	100.0
1100_111	25.0	50.0	6	150.0	300.0	5	250.0	500.0	3	50.0	100.0
1101_000	25.0	50.0	6	150.0	300.0	5.5	275.0	550.0	3	50.0	100.0
1101_001	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
1101_010	25.0	50.0	6	150.0	300.0	4		480.0	2.5	60.0	120.0
1101_011	25.0	50.0	6	150.0	300.0	4.5		540.0	2.5	60.0	120.0
1101_100	25.0	50.0	6	150.0	300.0	5	300.0	600.0	2.5	60.0	120.0

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	K CPU Multiplication	CPU Clock (MHz)		Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
1110_000	25.0	50.0	5	125.0	250.0	2.5	156.3	312.5	2	62.5	125.0
1110_001	25.0	50.0	5	125.0	250.0	3	187.5	375.0	2	62.5	125.0
1110_010	28.6	50.0	5	142.9	250.0	3.5	250.0	437.5	2	71.4	125.0
1110_011	25.0	50.0	5	125.0	250.0	4	250.0	500.0	2	62.5	125.0
1110_100	25.0	50.0	5	125.0	250.0	4	166.7	333.3	3	41.7	83.3
1110_101	25.0	50.0	5	125.0	250.0	4.5	187.5	375.0	3	41.7	83.3
1110_110	25.0	50.0	5	125.0	250.0	5	208.3	416.7	3	41.7	83.3
1110_111	25.0	50.0	5	125.0	250.0	5.5	229.2	458.3	3	41.7	83.3
1100_000	Reserved										
1100_001	Reserved										
1100_010			_			Reserved			•	•	_

The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

8 Pinout

This figure and table show the pin assignments and pinout for the 516 PBGA package.

² PCI_MODCK determines the PCI clock frequency range. See Table 19 for higher range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

Pinout

Table 21. Pinout (continued)

Pin N				
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball		
AS	30	B15		
A3	A31			
ТТ	-0	В3		
ТТ	1	E8		
ТТ		D7		
ТТ	-3	C4		
TT	-4	E7		
TB:	ST	E3		
TSI	ZO	E4		
TSI	Z1	E5		
TSI	Z2	C3		
TSI	Z3	D5		
AA	CK	D3		
ĀRT	RY	C2		
DBG/	IRQ7	F16		
DBB/	IRQ3	D18		
D	0	AC1		
D	1	AA1		
D	2	V3		
D	3	R5		
D	4	P4		
D	5	M4		
D	6	J4		
D	7	G1		
D	8	W6		
D	9	Y3		
D1	D10			
	D11			
D1		N6 P3		
D1		M2		
D1		J5		

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 21. Pinout (continued)

Pin N	Pin Name					
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball				
PCI_	AD16	AE16				
PCI_	AD17	AF17				
PCI	AD18	AD16				
PCI	AD19	AC16				
PCI	AD20	AF18				
PCI	AD21	AB16				
PCI	AD22	AD17				
PCI	AD23	AF19				
PCI	AD24	AB17				
PCI	AD25	AF20				
PCI	AD26	AE19				
PCI	AD27	AC18				
PCI	AD28	AB18				
PCI	AD29	AD19				
PCI	AD30	AD21				
PCI	AD31	AC20				
PCI_C	0/BE0	AE12				
PCI_C	1/BE1	AF13				
PCI_C	2/BE2	AC15				
PCI_C	3/BE3	AE18				
ĪRQ0/NI	MI_OUT	A17				
TR	ST ²	E21				
TC	CK	B22				
TN	AS .	C23				
ТІ	Ol	B24				
ТС	00	A22				
TF	TRIS					
PORESET	PORESET ² /PCI_RST					
HRE	SET	D22				
SRE	SET	F22				
RSTO	CONF	A24				

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Pinout

Table 21. Pinout (continued)

Pin N		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
MODCK1/RSRV	//TC0/BNKSEL0	A20
MODCK2/CSE0	/TC1/BNKSEL1	C20
MODCK3/CSE1	/TC2/BNKSEL2	A21
CLk	(IN1	D21
PA8/SM	MRXD2	AF25 ³
PA9/SN	MTXD2	AA22 ³
PA10/MSNUM5	FCC1_UT_RXD0	AB23 ³
PA11/MSNUM4	FCC1_UT_RXD1	AD26 ³
PA12/MSNUM3	FCC1_UT_RXD2	AD25 ³
PA13/MSNUM2	FCC1_UT_RXD3	AA24 ³
PA14/FCC1_MII_HDLC_RXD3	FCC1_UT_RXD4	W22 ³
PA15/FCC1_MII_HDLC_RXD2	FCC1_UT_RXD5	Y24 ³
PA16/FCC1_MII_HDLC_RXD1	FCC1_UT_RXD6	T22 ³
PA17/FCC1_MII_HDLC_RXD0/ FCC1_MII_TRAN_RXD/FCC1_RMII_RX D0	FCC1_UT_RXD7	W26 ³
PA18/FCC1_MII_HDLC_TXD0/FCC1_MII _TRAN_TXD/ FCC1_RMII_TXD0	FCC1_UT_TXD7	V26 ³
PA19/FCC1_MII_HDLC_TXD1/FCC1_RM II_TXD1	FCC1_UT_TXD6	R23 ³
PA20/FCC1_MII_HDLC_TXD2	FCC1_UT_TXD5	P25 ³
PA21/FCC1_MII_HDLC_TXD3	FCC1_UT_TXD4	N22 ³
PA22	FCC1_UT_TXD3	N26 ³
PA23	FCC1_UT_TXD2	N23 ³
PA24/MSNUM1	FCC1_UT_TXD1	H26 ³
PA25/MSNUM0	FCC1_UT_TXD0	G25 ³
PA26/FCC1_MII_RMIIRX_ER	FCC1_UT_RXCLAV	L22 ³
PA27/FCC1_MII_RX_DV/FCC1_RMII_CR S_DV	FCC1_UT_RXSOC	G24 ³
PA28/FCC1_MII_RMII_TX_EN	FCC1_UT_RXENB	G23 ³
PA29/FCC1_MII_TX_ER	FCC1_UT_TXSOC	B26 ³
PA30/FCC1_MII_CRS/FCC1_RTS	FCC1_UT_TXCLAV	A25 ³

Table 21. Pinout (continued)

Pin N	ame	
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
CLK	IN2	C21
No cor	nect ⁴	D19 ⁴ , J3 ⁴ , AD24 ⁵
I/O po	ower	B4, F3, J2, N4, AD1, AD5, AE8, AC13, AD18, AB24, AB26, W23, R25, M25, F25, C25, C22, B17, B12, B8, E6, F6, H6, L5, L6, P6, T6, U6, V5, Y5, AA6, AA8, AA10, AA11, AA14, AA16, AA17, AB19, AB20, W21, U21, T21, P21, N21, M22, J22, H21, F21, F19, F17, E16, F14, E13, E12, F10, E10, E9
Core F	Power	F5, K5, M5, AA5, AB7, AA13, AA19, AA21, Y22, AC25, U22, R22, L21, H22, E22, E20, E15, F13, F11, F8, L3, V4, W3, AC11, AD11, AB15, U25, T24, J24, H25, F23, B19, D17, C17, D10, C10
Grou	und	E19, E2, K1, Y2, AE1, AE4, AD9, AC14, AE17, AC19, AE25, V24, P26, M26, G26, E26, B21, C12, C11, C8, A8, B18, A18, A2, B1, B2, A5, C5, D4, D6, G2, L4, P1, R1, R4, AC4, AE7, AC23, Y25, N24, J23, A23, D23, D20, E18, A13, A16, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, R10, R11,R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17

¹ Must be tied to ground.

² Should be tied to VDDH via a 2K Ω external pull-up resistor.

The default configuration of the CPM pins (PA[8–31], PB[18–31], PC[0–1,4–29], PD[7–25, 29–31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

⁴ This pin is not connected. It should be left floating.

⁵ Must be pulled down or left floating

Document Revision History

Table 23. Document Revision History (continued)

Revision	Date	Substantive Changes
0.2	12/2003	 Table 1: New Table 2: New Table 3: Modification of VDD and VCCSYN to 1.45–1.60 V Table 8: Addition of note 2 regarding TRST and PORESET (see V_{IH} row of Table 8) Table 8 and Table 21: Addition of muxed signals CPCI_HS_EST (D_RED1 (AF14) CPCI_HS_EST to PCI_RED1 (AF14) CPCI_HS_ENDW to PCI_GNT2 (AF21) Table 8 and Table 21: Modification of PCI signal names for consistency with PCI signal names on other PowerQUICC II devices: PCI_CFG0 (PCI_ARB_EN) (AE21) PCI_CFG1 (PCI_ARB_EN) (AE22) PCI_CFG2 (DLI_ENABLE) (AE23) PCI_PAR (AF12) PCI_FRAME (AD15) PCI_TRDY (AF16) PCI_IRDY (AF15) PCI_STOP (AE15) DEVSEL (AE14) PCI_IDSEL (AC17) PCI_PERR (AD13) PCI_REQ0-2 (AAE20, AF14, AB14) PCI_SERR (AD13) PCI_REQ0-2 (AAE20, AE13, AF21) PCI_REG0-2 (AD20, AE13, AF21) PCI_REG0-3 (AE12, AF13, AC15, AE18) PCI_AD0-31 Table 8 and Table 21: Corrected assertion level (added "") PCI_HOST_EN (AC21) and PCI_ARB_EN (AE22) PCI_ARB_EN (AE22) Table 7: Addition of R_{BJT} and note 4 Sections 4.1-4.5 and 4.7 on thermal characteristics: New Section 7, "Clock Configuration Modes": Modification to first paragraph. Note that PCI_MODCK is a bit in the Hard Reset Configuration word. It is not an input signal as it is in the MPC8280 Family and MPC8280 Family and MPC8280 Family. Addition of "Note: Temperature Reflow for the VR Package" on page 56 Table 21: Addition of note 2 to TRST (E21) and PORESET (C24) Table 21: Removal of Spare0 (AD24). This pin is now a "No connect." Note 5 unchanged. Table 21: Addition of PCI_MODE (AD22). This pin was previously listed as "Ground." Addition of note 1.
0.1	9/2003	 Addition of the MPC8271 and the MPC8247 (these devices do not have a security engine) Table 8: Addition of note 2 to V_{IH} Table 8: Changed I_{OL} for 60x signals to 6.0 mA Modification of note 1 for Table 17, Table 18, Table 19, and Table 20 Table 21: Addition of ball AD9 to GND. In rev 0 of this document, AD8 was listed as assigned to both CS5 and GND. AD8 is only assigned to CS5. Table 21: Addition of note 4 to Thermal0 (D19) and Thermal1(J3) Addition of ZQ package code to Figure 15
0	5/2003	NDA release

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3