

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8271zqtmfa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 MPC8272/8271 only

This figure shows the block diagram of the SoC.

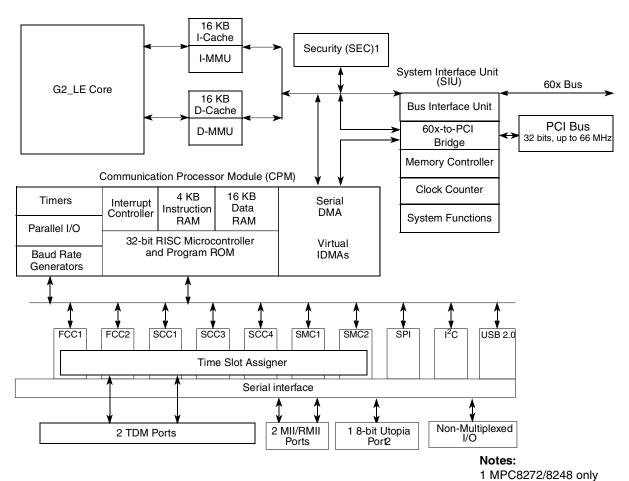


Figure 1. SoC Block Diagram

1.1 Features

The major features of the SoC are as follows:

- Dual-issue integer (G2_LE) core
 - A core version of the MPC603e microprocessor
 - System core microprocessor supporting frequencies of 266–400 MHz
 - Separate 16 KB data and instruction caches:
 - Four-way set associative
 - Physically addressed
 - LRU replacement algorithm
 - Power Architecture®-compliant memory management unit (MMU)
 - Common on-chip processor (COP) test interface
 - Supports bus snooping for cache coherency

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Overview

- Floating-point unit (FPU) supports floating-point arithmetic
- Support for cache locking
- Low-power consumption
- Separate power supply for internal logic (1.5 V) and for I/O (3.3 V)
- Separate PLLs for G2_LE core and for the communications processor module (CPM)
 - G2_LE core and CPM can run at different frequencies for power/performance optimization
 - Internal core/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5:5:1, 6:1, 7:1, 8:1
 - Internal CPM/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1, 8:1 ratios
- 64-bit data and 32-bit address 60x bus
 - Bus supports multiple master designs—up to two external masters
 - Supports single transfers and burst transfers
 - 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
- 60x-to-PCI bridge
 - Programmable host bridge and agent
 - 32-bit data bus, 66 MHz, 3.3 V
 - Synchronous and asynchronous 60x and PCI clock modes
 - All internal address space available to external PCI host
 - DMA for memory block transfers
 - PCI-to-60x address remapping
- System interface unit (SIU)
 - Clock synthesizer
 - Reset controller
 - Real-time clock (RTC) register
 - Periodic interrupt timer
 - Hardware bus monitor and software watchdog timer
 - IEEE 1149.1 JTAG test access port
- Eight bank memory controller
 - Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash, and other user-definable peripherals
 - Byte write enables
 - 32-bit address decodes with programmable bank size
 - Three user-programmable machines, general-purpose chip-select machine, and page mode pipeline SDRAM machine
 - Byte selects for 64-bit bus width (60x)
 - Dedicated interface logic for SDRAM
- Disable CPU mode

Operating Conditions

This table lists recommended operational voltage conditions.

Table 4. Recommended Operating Conditions¹

Rating	Symbol	Value	Unit
Core supply voltage	VDD	1.425 – 575	V
PLL supply voltage	VCCSYN	1.425 – 575	V
I/O supply voltage	VDDH	3.135 – 3.465	V
Input voltage	VIN	GND (-0.3) - 3.465	V
Junction temperature (maximum)	Tj	105 ²	°C
Ambient temperature	T _A	0-70 ²	°C

Caution: These are the recommended and tested operating conditions. Proper operation outside of these conditions is not guaranteed.

This SoC contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or V_{CC}).

This figure shows the undershoot and overshoot voltage of the 60x bus memory interface of the SoC. Note that in PCI mode the I/O interface is different.

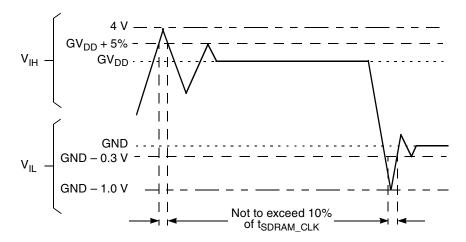


Figure 2. Overshoot/Undershoot Voltage

² Note that for extended temperature parts the range is $(-40)_{T_A}$ – 105_{T_j} .

DC Electrical Characteristics

Table 5. DC Electrical Characteristics¹ (continued)

Characteristic	Symbol	Min	Max	Unit
I _{OL} = 6.0mA	V _{OL}	_	0.4	V
BR				
BG/IRQ6				
ABB/IRQ2				
TS				
A[0-31]				
TT[0-4]				
TBST				
TSIZE[0-3]				
AACK				
ARTRY DBG/IRQ7				
DBB/IRQ7				
D[0-63]				
IRQ3/CKSTP_OUT/EXT_BR3				
IRQ4/CORE_SRESET/EXT_BG3				
IRQ5/TBEN/EXT_DBG3/CINT				
PSDVAL				
TA				
TEA				
GBL/IRQ1				
CI/BADDR29/IRQ2				
WT/BADDR30/IRQ3				
BADDR31/IRQ5/CINT				
CPU_BR/INT_OUT				
IRQ0/NMI_OUT				
PORESET/PCI_RST				
HRESET				
SRESET				
RSTCONF				

Table 6.

Table 0.				
Characteristic	Symbol	Min	Max	Unit
I _{OL} = 5.3mA	V _{OL}	_	0.4	V
<u>CS</u> [0-9]				
CS(10)/BCTL1				
CS (11)/AP(0)				
BADDR[27–28]				
ALE				
BCTLO				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4/PPBS				
PSDAMUX/PGPL5				
LWE[0-3]LSDDQM[0-3]/LBS[0-3]/PCI_CFG[0-3]				
LSDA10/LGPL0/PCI_MODCKH0				
LSDWE/LGPL1/PCI_MODCKH1				
LOE/LSDRAS/LGPL2/PCI_MODCKH2				
LSDCAS/LGPL3/PCI_MODCKH3				
LGTA/LUPMWAIT/LGPL4/LPBS				
LSDAMUX/LGPL5/PCI_MODCK				
LWR				
MODCK[1-3]/AP[1-3]/TC[0-2]/BNKSEL[0-2]				
I _{OL} = 3.2mA				
IOL				
L_A15/FRAME/SMI				
L_A16/TRDY				
L_A17/IRDY/CKSTP_OUT				
L_A18/STOP				
L_A19/DEVSEL				
L_A20/IDSEL				
L_A21/PERR				
L_A22/SERR				
L_A23/REQ0				
L_A24/REQ1/HSEJSW				
L_A25/GNT0				
L_A26/GNT1/HSLED				
L_A27/GNT2/HSENUM				
L_A28/RST/CORE_SRESET				
L_A29/INTAL_A30/REQ2				
L_A31				
LCL_D[0-31)]/AD[0-31]				
LCL_DP[03]/C/BE[0-3]				
PA[0-31]				
PB[4–31]				
PC[0-31]				
PD[4–31]				
TDO				
QREQ				1

 $[\]overline{\text{TCK}}$, $\overline{\text{TRST}}$ and $\overline{\text{PORESET}}$ have min VIH = 2.5V.

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

The leakage current is measured for nominal VDDH,VCCSYN, and VDD.
 V_{IL} for IIC interface does not match IIC standard, but does meet IIC standard for V_{OL} and should not cause any compatibility issue.

Thermal Characteristics

4.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application, or a more accurate and complex model of the package can be used in the thermal simulation.

4.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{IT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the case to avoid measurement errors caused by cooling effects of the thermocouple wire.

4.6 Layout Practices

Each VDD and VDDH pin should be provided with a low-impedance path to the board's power supplies. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VDD and VDDH power supplies should be bypassed to ground using bypass capacitors located as close as possible to the four sides of the package. For filtering high frequency noise, a capacitor of 0.1uF on each VDD and VDDH pin is recommended. Further, for medium frequency noise, a total of 2 capacitors of 47uF for VDD and 2 capacitors of 47uF for VDDH are also recommended. The capacitor leads and associated printed circuit traces connecting to chip VDD, VDDH and ground should be kept to less than half an inch per capacitor lead. Boards should employ separate inner layers for power and GND planes.

All output pins on the SoC have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

4.7 References

Semiconductor Equipment and Materials International (415) 964-5111 805 East Middlefield Rd.

Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) Specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications

http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

5 Power Dissipation

This table provides preliminary, estimated power dissipation for various configurations. Note that suitable thermal management is required to ensure the junction temperature does not exceed the maximum specified value. Also note that the I/O power should be included when determining whether to use a heat sink. For a complete list of possible clock configurations, see Section 7, "Clock Configuration Modes."

Table 8. Estimated Power Dissipation for Various Configurations¹

	СРМ		CPU		P _{INT} (W) ^{2,3}
Bus (MHz)	Multiplication Factor	CPM (MHz)	Multiplication Factor	CPU (MHz)	Vddl 1.	5 Volts
	1 actor		1 actor		Nominal	Maximum
66.67	3	200	4	266	1	1.2
100	2	200	3	300	1.1	1.3
100	2	200	4	400	1.3	1.5
133	2	267	3	400	1.5	1.8

¹ Test temperature = 105° C

66.7 MHz = 0.35 W (nominal), 0.4 W (maximum)

83.3 MHz = 0.4 W (nominal), 0.5 W (maximum)

100 MHz = 0.5 W (nominal), 0.6 W (maximum)

133 MHz = 0.7 W (nominal), 0.8 W (maximum)

 $^{^{2}}$ $P_{INT} = I_{DD} \times V_{DD}$ Watts

³ Values do not include I/O. Add the following estimates for active I/O based on the following bus speeds:

AC Electrical Characteristics

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.

This figure shows the interaction of several bus signals.

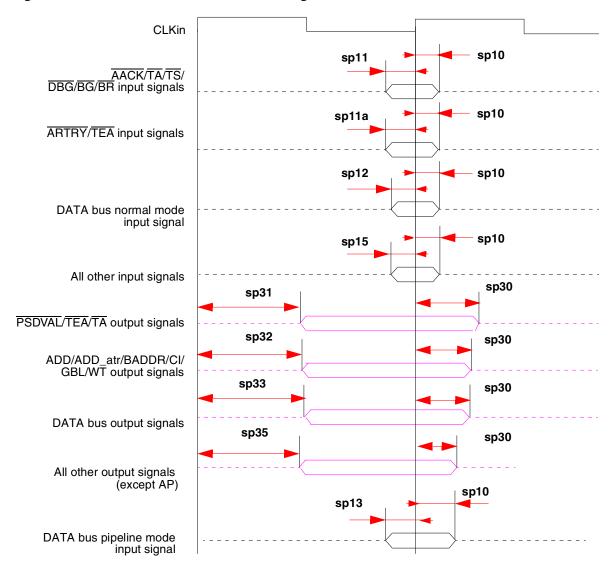


Figure 9. Bus Signals

This figure shows signal behavior in MEMC mode.

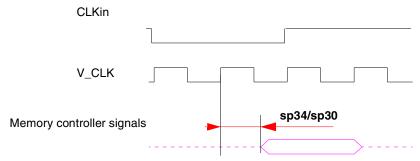


Figure 10. MEMC Mode Diagram

NOTE

Generally, all SoC bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 14.

Table 14. Tick Spacing for Memory Controller Signals

PLL Clock Ratio	Tick Spacing (T1	Occurs at the Risin	g Edge of CLKin)
PLE CIOCK NATIO	T2	Т3	Т4
1:2, 1:3, 1:4, 1:5, 1:6	1/4 CLKin	1/2 CLKin	3/4 CLKin
1:2.5	3/10 CLKin	1/2 CLKin	8/10 CLKin
1:3.5	4/14 CLKin	1/2 CLKin	11/14 CLKin

This table is a representation of the information in Table 14.

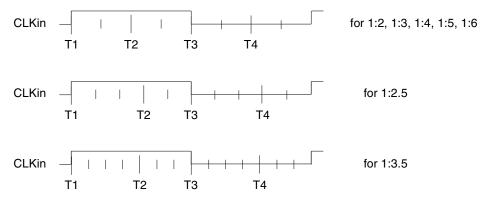


Figure 11. Internal Tick Spacing for Memory Controller Signals

Freescale Semiconductor 25

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

AC Electrical Characteristics

NOTE

The UPM machine outputs change on the internal tick determined by the memory controller programming; the AC specifications are relative to the internal tick. Note that SDRAM and GPCM machine outputs change on CLKin's rising edge.

6.3 JTAG Timings

This table lists the JTAG timings.

Table 15. JTAG Timings¹

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	_
JTAG external clock cycle time	t _{JTG}	30	_	ns	_
JTAG external clock pulse width measured at 1.4V	t _{JTKHKL}	15	_	ns	_
JTAG external clock rise and fall times	t _{JTGR} and t _{JTGF}	0	5	ns	6
TRST assert time	t _{TRST}	25	_	ns	3, 6
Input setup times Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4		ns ns	4, 7 4, 7
Input hold times Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns ns	4, 7 4, 7
Output valid times Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	_ _	10 10	ns ns	5, 7 5, 7
Output hold times Boundary-scan data TDO	t _{JTKLDX} t _{JTKLOX}	1 1		ns ns	5, 7 5, 7
JTAG external clock to output high impedance Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	1 1	10 10	ns ns	5, 6 5, 6

All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

³ TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

⁴ Non-JTAG signal input timing with respect to t_{TCLK}.

⁵ Non-JTAG signal output timing with respect to t_{TCLK}.

⁶ Guaranteed by design.

⁷ Guaranteed by design and device characterization.

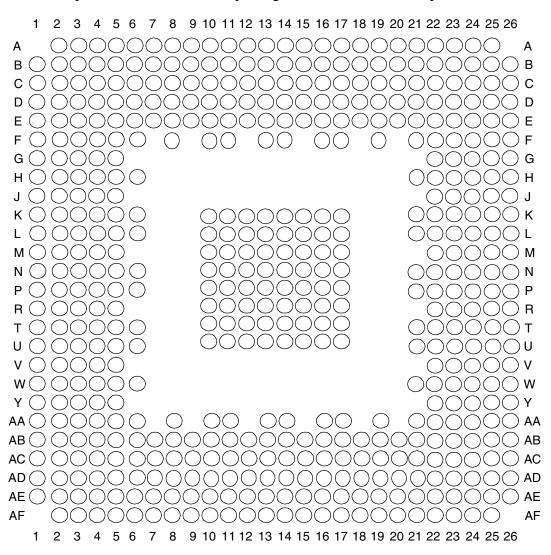
Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³	Bus (Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
0100_001	25.0	50.0	6	150.0	300.0	6	150.0	300.0	6	25.0	50.0
0100_010	25.0	50.0	6	150.0	300.0	7	175.0	350.0	6	25.0	50.0
0100_011	25.0	50.0	6	150.0	300.0	8	200.0	400.0	6	25.0	50.0
0101_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0101_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0
0101_010	50.0	100.0	2	100.0	200.0	3.5	175.0	350.0	4	25.0	50.0
0101_011	50.0	100.0	2	100.0	200.0	4	200.0	400.0	4	25.0	50.0
0101_100	50.0	100.0	2	100.0	200.0	4.5	225.0	450.0	4	25.0	50.0
	·	·		l.		1	·				·
0101_101	42.9	83.3	3	128.6	250.0	3.5	150.0	291.7	5	25.7	50.0
0101_110	41.7	83.3	3	125.0	250.0	4	166.7	333.3	5	25.0	50.0
0101_111	41.7	83.3	3	125.0	250.0	4.5	187.5	375.0	5	25.0	50.0
					•			•			
0110_000	60.0	120.0	2.5	150.0	300.0	2.5	150.0	300.0	6	25.0	50.0
0110_001	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0110_010	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0110_011	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0110_100	60.0	120.0	2.5	150.0	300.0	4.5	270.0	540.0	6	25.0	50.0
0110_101	60.0	120.0	2.5	150.0	300.0	5	300.0	600.0	6	25.0	50.0
0110_110	60.0	120.0	2.5	150.0	300.0	6	360.0	720.0	6	25.0	50.0
	·	·							·		
0111_000						Reserved					
0111_001	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0111_010	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
0111_011	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
0111_100	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0
1000_000						Reserved					
1000_001	66.7	133.3	3	200.0	400.0	3	200.0	400.0	8	25.0	50.0

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	PCI (Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
0011_000		•				Reserved	•				
0011_001						Reserved					
0011_010						Reserved					
0011_011						Reserved					
0011_100						Reserved					
0100_000						Reserved					
0100_001	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0100_010	50.0	66.7	3	150.0	200.0	3.5	175.0	200.0	3	50.0	66.7
0100_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0100_100	50.0	66.7	3	150.0	200.0	4.5	225.0	300.0	3	50.0	66.7
		•					•				
0101_000	50.0	66.7	5	250.0	333.3	2.5	250.0	333.3	2.5	100.0	133.3
0101_001	50.0	66.7	5	250.0	333.3	3	300.0	400.0	2.5	100.0	133.3
0101_010	50.0	66.7	5	250.0	333.3	3.5	350.0	466.6	2.5	100.0	133.3
0101_011	50.0	66.7	5	250.0	333.3	4	400.0	533.3	2.5	100.0	133.3
0101_100	50.0	66.7	5	250.0	333.3	4.5	450.0	599.9	2.5	100.0	133.3
0101_101	50.0	66.7	5	250.0	333.3	5	500.0	666.6	2.5	100.0	133.3
0101_110	50.0	66.7	5	250.0	333.3	5.5	550.0	733.3	2.5	100.0	133.3
		•					•				
0110_000						Reserved					
0110_001	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
0110_010	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0110_011	50.0	66.7	4	200.0	266.6	4	266.7	355.5	3	66.7	88.9
0110_100	50.0	66.7	4	200.0	266.6	4.5	300.0	400.0	3	66.7	88.9
0111_000	50.0	66.7	3	150.0	200.0	2	150.0	200.0	2	75.0	100.0
0111_001	50.0	66.7	3	150.0	200.0	2.5	187.5	250.0	2	75.0	100.0
0111_010	50.0	66.7	3	150.0	200.0	3	225.0	300.0	2	75.0	100.0
0111_011	50.0	66.7	3	150.0	200.0	3.5	262.5	350.0	2	75.0	100.0

Clock Configuration Modes


Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³		Clock Hz)	CPM		Clock Hz)	CPU	CPU Clock (MHz)		Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Multiplication Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Factor	Low	High
1000_000						Reserved					
1000_000	50.0	66.7	3	150.0	200.0	2.5	150.0	166.7	2.5	60.0	80.0
1000_011	50.0	66.7	3	150.0	200.0	3		240.0	2.5	60.0	80.0
1000_011	50.0	66.7	3	150.0	200.0	3.5		280.0	2.5	60.0	80.0
1000_011	50.0	66.7	3	150.0	200.0	4		320.0	2.5	60.0	80.0
1000_100	50.0	66.7	3	150.0	200.0	4.5		360.0	2.5	60.0	80.0
	00.0	00.7		10010	= 00.0			000.0		00.0	00.0
1001_000						Reserved					
1001_001						Reserved					
1001_010						Reserved					
1001_011	50.0	66.7	4	200.0	266.6	4	200.0	266.6	4	50.0	66.7
1001_100	50.0	66.7	4	200.0	266.6	4.5	225.0	300.0	4	50.0	66.7
				I			I			I	I
1010_000						Reserved					
1010_001	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
1010_010	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
1010_011	50.0	66.7	4	200.0	266.6	4	266.7	355.5	3	66.7	88.9
1010_100	50.0	66.7	4	200.0	266.6	4.5	300.0	400.0	3	66.7	88.9
											•
1011_000						Reserved					
1011_001	50.0	66.7	4	200.0	266.6	2.5	200.0	266.6	2.5	80.0	106.
1011_010	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.
1011_011	50.0	66.7	4	200.0	266.6	3.5	280.0	373.3	2.5	80.0	106.
1011_100	50.0	66.7	4	200.0	266.6	4	320.0	426.6	2.5	80.0	106.
1011_101	50.0	66.7	4	200.0	266.6	2.5	250.0	333.3	2	100.0	133.
	50.0	66.7	4	200.0	266.6	3	300.0	400.0	2	100.0	133.
1011_110					1						

Pinout

This figure shows the pinout of the 516 PBGA package as viewed from the top surface.

Not to Scale

Figure 12. Pinout of the 516 PBGA Package (View from Top)

This table lists the pins of the MPC8272. Note that the pins in the "MPC8272/8271 Only" column relate to Utopia functionality.

Table 21. Pinout

Pin N	Pin Name					
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball				
B	R	A19				
BG/I	BG/IRQ6					
ABB/	ABB/IRQ2					

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Pinout

Table 21. Pinout (continued)

Pin Na	Pin Name					
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball				
D4	6	H4				
D4	7	F2				
D4	8	AB1				
D4	9	U4				
D5	0	U1				
D5	1	R3				
D5	2	N3				
D5	3	K2				
D5	4	H5				
D5	5	F4				
D5	6	AA3				
D5	7	U5				
D5	8	U2				
D5	9	P5				
D6	0	M3				
D6	1	K4				
D6	2	H3				
D6	3	E1				
ĪRQ3/CKSTP_C	OUT/EXT_BR3	B16				
IRQ4/CORE_SRE	SET/EXT_BG3	C15				
IRQ5/TBEN/EX	T_DBG3/CINT	Y4				
PSDV	/AL	C19				
TA		AA4				
TE.	Ā	AB6				
GBL/II	RQ1	D15				
CI/BADDR	29/IRQ2	D16				
WT/BADDF	R30/IRQ3	C16				
BADDR31/ĪĪ	RQ5/CINT	E17				
CPU_BR/I	NT_OUT	B20				
CS	0	AE6				
CS	1	AD7				

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Pinout

Table 21. Pinout (continued)

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
PCI_	IRDY	AF15
PCI_	STOP	AE15
PCI_D	EVSEL	AE14
PCI_I	DSEL	AC17
PCI_I	PERR	AD14
PCI_S	SERR	AD13
PCI_I	REQ0	AE20
PCI_REQ1/0	CPCI_HS_ES	AF14
PCI_	GNT0	AD20
PCI_GNT1/C	PCI_HS_LED	AE13
PCI_GNT2/CF	PCI_HS_ENUM	AF21
PCI_	RST	AF22
PCI_	INTA	AE21
PCI_I	REQ2	AB14
DLL	OUT	AC22
PCI_AD0		AF7
PCI_	AD1	AE10
PCI_	PCI_AD2	
PCI_AD3		AD10
PCI_AD4		AE9
PCI_AD5		AF8
PCI_AD6		AC10
PCI_AD7		AE11
PCI_AD8		AB11
PCI_AD9		AF10
PCI_AD10		AF9
PCI_AD11		AB12
PCI_AD12		AC12
PCI_AD13		AD12
PCI_AD14		AF11
PCI_	PCI_AD15	

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 21. Pinout (continued)

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
PCI_	AD16	AE16
PCI_	AD17	AF17
PCI	AD18	AD16
PCI	AD19	AC16
PCI	AD20	AF18
PCI	AD21	AB16
PCI	AD22	AD17
PCI	AD23	AF19
PCI	AD24	AB17
PCI	AD25	AF20
PCI	AD26	AE19
PCI	AD27	AC18
PCI_AD28		AB18
PCI	PCI_AD29	
PCI	AD30	AD21
PCI_AD31		AC20
PCI_C0/BE0		AE12
PCI_C1/BE1		AF13
PCI_C	PCI_C2/BE2	
PCI_C3/BE3		AE18
ĪRQ0/NMI_OUT		A17
TRST ²		E21
TCK		B22
TMS		C23
TDI		B24
TDO		A22
TRIS		B23
PORESET ² /PCI_RST		C24
HRESET		D22
SRESET		F22
RSTCONF		A24

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 21. Pinout (continued)

Pin Name			
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball	
PC17/CLK15/BRGO8/ DONE 2		T26 ³	
PC18/CLK14/TGATE2		R26 ³	
PC19/CLK13/BRGO7/TGATE1		P24 ³	
PC20/CLK12/ USBOE		L26 ³	
PC21/CLK11/BRGO6/CP_INT		L24 ³	
PC22/CLK10/DONE3	FCC1_UT_TXPRTY	L23 ³	
PC23/CLK9/BRGO5/DACK3/CD1		K24 ³	
PC24/CLK8/TIN3/TOU	T4/DREQ2/BRGO1	K23 ³	
PC25/CLK7/BRGO4	/DACK2/SPISEL	F26 ³	
PC26/CLK6/TOI	JT3/TMCLK	H23 ³	
PC27/CLK5/BRGO3/TOUT1	FCC1_UT_RXPRTY	K22 ³	
PC28/CLK4/TIN1/TOUT2/SPICLK		D25 ³	
PC29/CLK3/TIN2/BRGO2/CTS1		F24 ³	
PD7/SMSYN2	FCC1_UT_TXADDR3	AB21 ³	
PD14/I2CSCL		AC26 ³	
PD15/I2CSDA		Y23 ³	
PD16/SPIMISO	FCC1_UT_TXPRTY	AA25 ³	
PD17/BRGO2/SPIMOSI	FCC1_UT_RXPRTY	Y26 ³	
PD18/SPICLK	FCC1_UT_RXADDR4	W25 ³	
PD19/SPISEL/BRGO1	FCC1_UT_TXADDR4	V25 ³	
PD20/RTS4/L1RSYNCA2		R24 ³	
PD21/TXD4/L1RXD0A2		P23 ³	
PD22/RXD4/L1TXD0A2		N25 ³	
PD23/RTS3/USB_TP		K26 ³	
PD24/TXD3/USB_TN		K25 ³	
PD25/RXD3/USB_RXD		J25 ³	
PD29/RTS1	FCC1_UT_RXADDR3	C26 ³	
PD30/TXD1		E24 ³	
PD31/RXD1		B25 ³	
VCCSYN		C18	
VCCSYN1		K6	

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

9.2 Mechanical Dimensions

This figure provides the mechanical dimensions and bottom surface nomenclature of the 516 PBGA package.

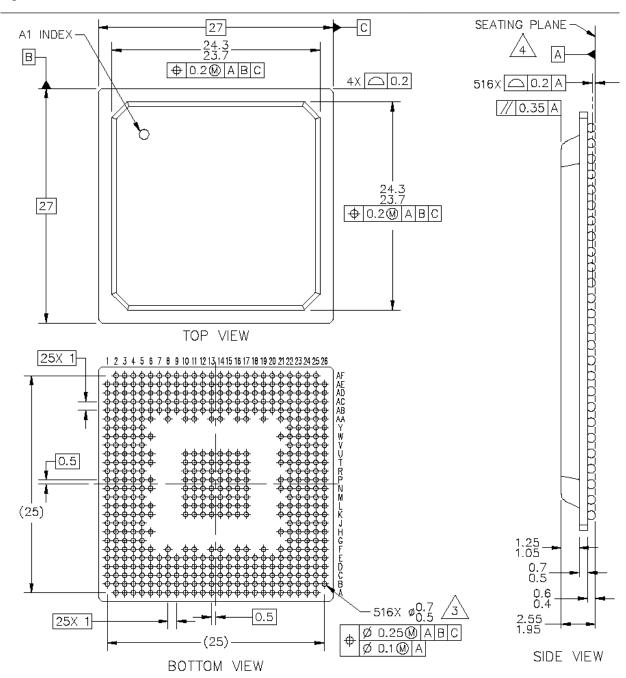


Figure 14. Mechanical Dimensions and Bottom Surface Nomenclature—516 PBGA

Ordering Information

10 Ordering Information

This figure provides an example of the Freescale part numbering nomenclature for the SoC. In addition to the processor frequency, the part numbering scheme also consists of a part modifier that indicates any enhancement(s) in the part from the original production design. Each part number also contains a revision code that refers to the die mask revision number and is specified in the part numbering scheme for identification purposes only. For more information, contact your local Freescale sales office.

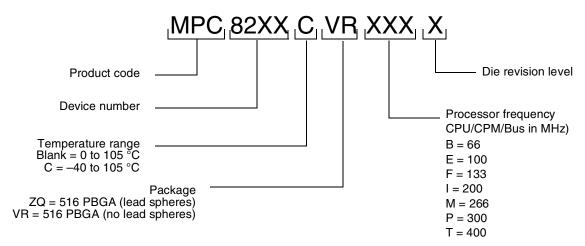


Figure 15. Freescale Part Number Key

11 Document Revision History

This table summarizes changes to this document.

Table 23. Document Revision History

Revision	Date	Substantive Changes
3	09/2011	In Figure 15, "Freescale Part Number Key," added speed decoding information below processor frequency information.
2	12/2008	 Modified Figure 5, "SCC/SMC/SPI/I2C External Clock Diagram," and added second section of figure notes. In Table 12, modified "Data bus in pipeline mode" row and showed 66 MHz as "N/A." In Section 10, "Ordering Information," added "F = 133" to CPU/CPM/Bus Frequency. Added footnote concerning CPM_CLK/PCI_CLK ratio to column "PCI Division Factor" in Table 17, "Clock Configurations for PCI Host Mode (PCI_MODCK=0)," and Table 18, "Clock Configurations for PCI Host Mode (PCI_MODCK=1),." Removed overbar from DLL_ENABLE in Table 21, "Pinout."
1.5	12/2006	Section 6, "AC Electrical Characteristics," removed deratings statement and clarified AC timing descriptions.
1.4	05/2006	Added row for 133 MHz configurations to Table 8.
1.3	02/2006	Inserted Section 6.3, "JTAG Timings."