

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	
Program Memory Type	-
EEPROM Size	-
RAM Size	
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	· .
Package / Case	-
Supplier Device Package	· · · · · · · · · · · · · · · · · · ·
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8272vrtmfa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- Floating-point unit (FPU) supports floating-point arithmetic
- Support for cache locking
- Low-power consumption
- Separate power supply for internal logic (1.5 V) and for I/O (3.3 V)
- Separate PLLs for G2_LE core and for the communications processor module (CPM)
 - G2_LE core and CPM can run at different frequencies for power/performance optimization
 - Internal core/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5.5:1, 6:1, 7:1, 8:1
 - Internal CPM/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1, 8:1 ratios
- 64-bit data and 32-bit address 60x bus
 - Bus supports multiple master designs—up to two external masters
 - Supports single transfers and burst transfers
 - 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
- 60x-to-PCI bridge
 - Programmable host bridge and agent
 - 32-bit data bus, 66 MHz, 3.3 V
 - Synchronous and asynchronous 60x and PCI clock modes
 - All internal address space available to external PCI host
 - DMA for memory block transfers
 - PCI-to-60x address remapping
- System interface unit (SIU)
 - Clock synthesizer
 - Reset controller
 - Real-time clock (RTC) register
 - Periodic interrupt timer
 - Hardware bus monitor and software watchdog timer
 - IEEE 1149.1 JTAG test access port
- Eight bank memory controller
 - Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash, and other user-definable peripherals
 - Byte write enables
 - 32-bit address decodes with programmable bank size
 - Three user-programmable machines, general-purpose chip-select machine, and page mode pipeline SDRAM machine
 - Byte selects for 64-bit bus width (60x)
 - Dedicated interface logic for SDRAM
- Disable CPU mode

- Integrated security engine (SEC) (MPC8272 and MPC8248 only)
 - Supports DES, 3DES, MD-5, SHA-1, AES, PKEU, RNG and RC-4 encryption algorithms in hardware
- Communications processor module (CPM)
 - Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support for communications peripherals
 - Interfaces to G2_LE core through on-chip dual-port RAM and DMA controller. (Dual-port RAM size is 16 KB plus 4 KB dedicated instruction RAM.)
 - Microcode tracing capabilities
 - Eight CPM trap registers
- Universal serial bus (USB) controller
 - Supports USB 2.0 full/low rate compatible
 - USB host mode
 - Supports control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - NRZI encoding/decoding with bit stuffing
 - Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and data rate configuration). Note that low-speed operation requires an external hub.
 - Flexible data buffers with multiple buffers per frame
 - Supports local loopback mode for diagnostics (12 Mbps only)
 - Supports USB slave mode
 - Four independent endpoints support control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - CRC5 checking
 - NRZI encoding/decoding with bit stuffing
 - 12- or 1.5-Mbps data rate
 - Flexible data buffers with multiple buffers per frame
 - Automatic retransmission upon transmit error
 - Serial DMA channels for receive and transmit on all serial channels
 - Parallel I/O registers with open-drain and interrupt capability
 - Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers
 - Two fast communication controllers (FCCs) supporting the following protocols:
 - 10-/100-Mbit Ethernet/IEEE 802.3 CDMA/CS interface through media independent interface (MII)
 - Transparent
 - HDLC—up to T3 rates (clear channel)

- PCI bridge
 - PCI Specification revision 2.2-compliant and supports frequencies up to 66 MHz
 - On-chip arbitration
 - Support for PCI to 60x memory and 60x memory to PCI streaming
 - PCI host bridge or peripheral capabilities
 - Includes four DMA channels for the following transfers:
 - PCI-to-60x to 60x-to-PCI
 - 60x-to-PCI to PCI-to-60x
 - PCI-to-60x to PCI-to-60x
 - 60x-to-PCI to 60x-to-PCI
 - Includes the configuration registers required by the PCI standard (which are automatically loaded from the EPROM to configure the MPC8272) and message and doorbell registers
 - Supports the I_2O standard
 - Hot-Swap friendly (supports the Hot Swap Specification as defined by PICMG 2.1 R1.0 August 3, 1998)
 - Support for 66 MHz, 3.3 V specification
 - 60x-PCI bus core logic, which uses a buffer pool to allocate buffers for each port

2 **Operating Conditions**

This table shows the maximum electrical ratings.

Table 3. Absolute Maximum Ratings¹

Rating	Symbol	Value	Unit
Core supply voltage ²	VDD	-0.3 - 2.25	V
PLL supply voltage ²	VCCSYN	-0.3 - 2.25	V
I/O supply voltage ³	VDDH	-0.3 - 4.0	V
Input voltage ⁴	VIN	GND(-0.3) - 3.6	V
Junction temperature	Тј	120	°C
Storage temperature range	T _{STG}	(–55) – (+150)	°C

¹ Absolute maximum ratings are stress ratings only; functional operation (see Table 4) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage.

- ² Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V during normal operation. It is recommended that VDD/VCCSYN should be raised before or simultaneous with VDDH during power-on reset. VDD/VCCSYN may exceed VDDH by more than 0.4 V during power-on reset for no more than 100 ms.
- ³ Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.5 V during normal operation.
- ⁴ Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset.

DC Electrical Characteristics

Characteristic	Symbol	Min	Мах	Unit
I _{OL} = 6.0mA	V _{OL}	—	0.4	V
BR	_			
BG/IRQ6				
ABB/IRQ2				
TS				
A[0-31]				
TT[0-4]				
TBST				
TSIZE[0-3]				
AACK				
ARTRY				
DBG/IRQ7				
DBB/IRQ3				
IRQ5/TBEN/EXT_DBG3/CINT				
PSDVAL TA				
GBL/IRQ1				
CI/BADDR29/IRQ2				
WT/BADDR30/IRQ3				
BADDR31/IRQ5/CINT				
CPU_BR/INT_OUT				
IRQ0/NMI_OUT				
PORESET/PCI_RST				
HRESET				
SRESET				
RSTCONF				

Table 5. DC Electrical Characteristics¹ (continued)

DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
I _{OL} = 5.3mA	V _{OL}		0.4	V
<u>ČŠ</u> [0–5]	01			
CS6/BCTL1/SMI				
CS7/TLBSYNC				
BADDR27/ IRQ1				
BADDR28/ IRQ2				
ALE/ IRQ4				
BCTL0				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4				
PSDAMUX/PGPL5				
PCI_CFG0 (PCI_HOST_EN)				
PCI_CFG1 (PCI_ARB_EN)				
PCI_CFG2 (DLL_ENABLE)				
MODCK1/RSRV/TC(0)/BNKSEL(0)				
MODCK2/CSE0/TC(1)/BNKSEL(1)				
MODCK3CSE1/TC(2)/BNKSEL(2)				
$I_{OL} = 3.2 \text{mA}$				
PCI_PAR				
PCI_FRAME				
PCI_TRDY				
PCI_IRDY				
PCI_STOP				
PCI_DEVSEL				
PCI_IDSEL				
PCI_PERR				
PCI_SERR				
PCI_REQ0				
PCI_REQ1/ CPI_HS_ES				
PCI_GNT0				
PCI_GNT1/ CPI_HS_LES				
PCI_GNT2/ CPI_HS_ENUM				
PCI_RST				
PCI_INTA				
PCI_REQ2				
DLLOUT				
PCI_AD(0-31)				
PCI_AD(0-31) PCI_C(0-3)/BE(0-3)				
PA[8–31]				
PB[18–31]				
PC[0–1,4–29]				
PD[7–25, 29–31]				
TDO				

Table 5. DC Electrical Characteristics¹ (continued)

The default configuration of the CPM pins (PA[8-31], PB[18-31], PC[0-1,4-29], PD[7-25, 29-31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

 ² TCK, TRST and PORESET have min VIH = 2.5V.
 ³ V_{IL} for IIC interface does not match IIC standard, but does meet IIC standard for V_{OL} and should not cause any compatibility issue.

⁴ The leakage current is measured for nominal VDDH,VCCSYN, and VDD.

4.7 References

Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd. Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) Specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

5 **Power Dissipation**

This table provides preliminary, estimated power dissipation for various configurations. Note that suitable thermal management is required to ensure the junction temperature does not exceed the maximum specified value. Also note that the I/O power should be included when determining whether to use a heat sink. For a complete list of possible clock configurations, see Section 7, "Clock Configuration Modes."

	СРМ		CPU		P _{INT} (W) ^{2,3} Vddl 1.5 Volts		
Bus (MHz)	Multiplication Factor	CPM (MHz)	CPM Multiplication	CPU (MHz)			
	Factor		Factor		Nominal	Maximum	
66.67	3	200	4	266	1	1.2	
100	2	200	3	300	1.1	1.3	
100	2	200	4	400	1.3	1.5	
133	2	267	3	400	1.5	1.8	

Table 8. Estimated Power Dissipation for Various Configurations¹

¹ Test temperature = 105° C

² $P_{INT} = I_{DD} \times V_{DD}$ Watts

³ Values do not include I/O. Add the following estimates for active I/O based on the following bus speeds:

66.7 MHz = 0.35 W (nominal), 0.4 W (maximum)

83.3 MHz = 0.4 W (nominal), 0.5 W (maximum)

100 MHz = 0.5 W (nominal), 0.6 W (maximum)

133 MHz = 0.7 W (nominal), 0.8 W (maximum)

AC Electrical Characteristics

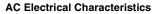
6 AC Electrical Characteristics

The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for 66.67/83.33/100/133 MHz devices. Note that AC timings are based on a 50-pf load for MAX Delay and 10-pf load for MIN delay. Typical output buffer impedances are shown in this table.

Output Buffers	Typical Impedance (Ω)
60x bus	45 or 27 ²
Memory controller	45 or 27 ²
Parallel I/O	45
PCI	27

¹ These are typical values at 65° C. Impedance may vary by ±25% with process and temperature.

² Impedance value is selected through SIUMCR[20,21]. See the SoC reference manual.


6.1 CPM AC Characteristics

This table lists CPM output characteristics.

Spec Number				Value (ns)						
Max Min	Characteristic	Maximum Delay				Minimum Delay				
		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz	
sp36a	sp37a	FCC outputs—internal clock (NMSI)	6	5.5	5.5	5.5	0.5	0.5	0.5	0.5
sp36b	sp37b	FCC outputs—external clock (NMSI)		8	8	8	2	2	2	2
sp38a	sp39a	SCC/SMC/SPI/I2C outputs—internal clock (NMSI)		10	10	10	0	0	0	0
sp38b	sp39b	SCC/SMC/SPI/I2C outputs—external clock (NMSI)	8	8	8	8	2	2	2	2
sp40	sp41	TDM outputs/SI	11	11	11	11	2.5	2.5	2.5	2.5
sp42	sp43	TIMER/IDMA outputs		11	11	11	0.5	0.5	0.5	0.5
sp42a	sp43a	PIO outputs	11	11	11	11	0.5	0.5	0.5	0.5

Table 10. AC Characteristics for CPM Outputs¹

¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

This table lists CPM input characteristics.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

Spec Number				Value (ns)						
	Characteristic	Setup				Hold				
Setup	Setup Hold			83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz
sp16a	sp17a	FCC inputs—internal clock (NMSI)	6	6	6	6	0	0	0	0
sp16b	sp17b	FCC inputs-external clock (NMSI)		2.5	2.5	2.5	2	2	2	2
sp18a	sp19a	SCC/SMC/SPI/I2C inputs—internal clock (NMSI)		6	6	6	0	0	0	0
sp18b	sp19b	SCC/SMC/SPI/I2C inputs—external clock (NMSI)		4	4	4	2	2	2	2
sp20	sp21	TDM inputs/SI		3	3	3	2.5	2.5	2.5	2.5
sp22	sp23	PIO/TIMER/IDMA inputs	8	8	8	8	0.5	0.5	0.5	0.5

Table 11. AC Characteristics for CPM Inputs¹

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

NOTE

Although the specifications generally reference the rising edge of the clock, the following AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the FCC internal clock.

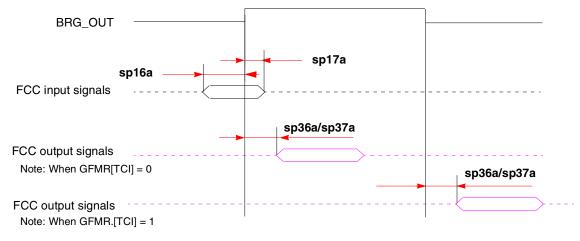
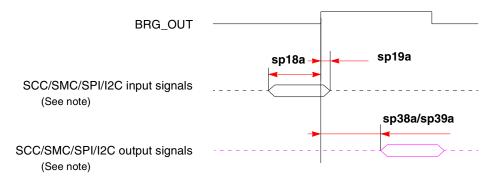
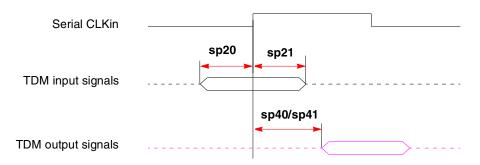



Figure 3. FCC Internal Clock Diagram

This figure shows the SCC/SMC/SPI/I²C internal clock.



Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I²C Internal Clock Diagram

This figure shows TDM input and output signals.

Note: There are four possible TDM timing conditions:

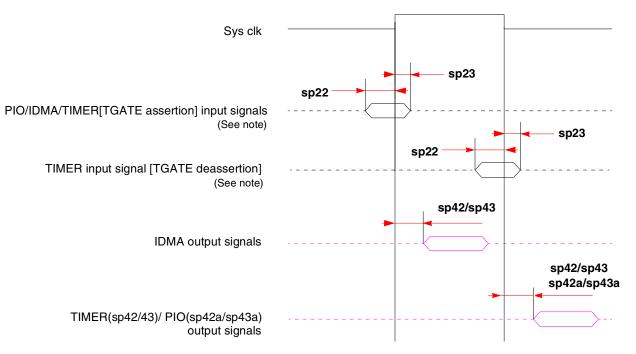

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 7. TDM Signal Diagram

AC Electrical Characteristics

This figure shows PIO and timer signals.

Note: TGATE is asserted on the rising edge of the clock; it is deasserted on the falling edge.

Figure 8. PIO and Timer Signal Diagram

6.2 SIU AC Characteristics

This table lists SIU input characteristics.

NOTE: CLKIN Jitter and Duty Cycle

The CLKIN input to the SoC should not exceed +/- 150 psec of jitter (peak-to-peak). This represents total input jitter—the combination of short term (peak-to-peak) and long term (cumulative). The duty cycle of CLKIN should not exceed the ratio of 40:60.

NOTE: Spread Spectrum Clocking

Spread spectrum clocking is allowed with 1% input frequency down-spread at maximum 60 KHz modulation rate regardless of input frequency.

NOTE: PCI AC Timing

The SoC meets the timing requirements of *PCI Specification Revision 2.2.* See Section 7, "Clock Configuration Modes," and "Note: Tval (Output Hold)" to determine if a specific clock configuration is compliant.

AC Electrical Characteristics

This figure shows signal behavior in MEMC mode.

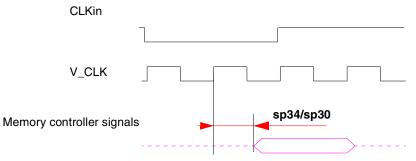


Figure 10. MEMC Mode Diagram

NOTE

Generally, all SoC bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 14.

Table 14.	. Tick Spacing for Memory Controller Signals
-----------	--

PLL Clock Ratio	Tick Spacing (T1 Occurs at the Rising Edge of CLKin)				
	T2	тз	Т4		
1:2, 1:3, 1:4, 1:5, 1:6	1/4 CLKin	1/2 CLKin	3/4 CLKin		
1:2.5	3/10 CLKin	1/2 CLKin	8/10 CLKin		
1:3.5	4/14 CLKin	1/2 CLKin	11/14 CLKin		

This table is a representation of the information in Table 14.

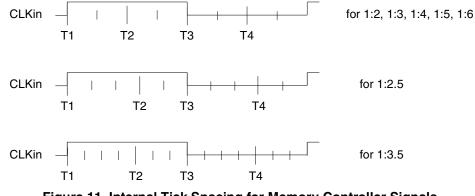


Figure 11. Internal Tick Spacing for Memory Controller Signals

7 Clock Configuration Modes

As shown in this table, the clocking mode is set according to two sources:

- PCI_CFG[0]— An input signal. Also defined as "PCI_HOST_EN." See Chapter 6, "External Signals," and Chapter 9, "PCI Bridge," in the SoC reference manual.
- PCI_MODCK—Bit 27 in the Hard Reset Configuration Word. See Chapter 5, "Reset," in the SoC reference manual.

Pi	ns	Clocking Mode	PCI Clock Frequency Range (MHz)	Reference
PCI_CFG[0] ¹	PCI_MODCK ²	Clocking Mode	Torolock rrequency hange (Milz)	neierence
0	0	PCI host	50–66	Table 17
0	1		25–50	Table 18
1	0	PCI agent	50–66	Table 19
1	1		25–50	Table 20

Table 16. SoC Clocking Modes

¹ PCI_HOST_EN

² Determines PCI clock frequency range.

Within each mode, the configuration of bus, core, PCI, and CPM frequencies is determined by seven bits during the power-on reset—three hardware configuration pins (MODCK[1–3]) and four bits from hardware configuration word[28–31] (MODCK_H). Both the PLLs and the dividers are set according to the selected clock operation mode as described in the following sections.

NOTE

Clock configurations change only after PORESET is asserted.

NOTE: Tval (Output Hold)

The minimum Tval = 2 ns when $PCI_MODCK = 1$, and the minimum Tval = 1 ns when $PCI_MODCK = 0$. Therefore, designers should use clock configurations that fit this condition to achieve PCI-compliant AC timing.

7.1 PCI Host Mode

These tables show configurations for PCI host mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI host mode the input clock is the bus clock.

Mode ³	Bus Clock (MHz)				CPM Multiplication		Clock Hz)	CPU		Clock Hz)	PCI		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Division Factor ⁶	Low	High		
			Defau	ult Mode	es (MO	DCK_H=0000)							
0000_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0		
0000_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0		
0000_010	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0		
0000_011	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0		
0000_100	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0		
0000_101	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0		
0000_110	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0		
0000_111	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0		
	•		ŀ	ull Cor	figurati	on Modes	•			•	•		
0001_000	50.0	100.0	3	150.0	300.0	5	250.0	500.0	6	25.0	50.0		
0001_001	50.0	100.0	3	150.0	300.0	6	300.0	600.0	6	25.0	50.0		
0001_010	50.0	100.0	3	150.0	300.0	7	350.0	700.0	6	25.0	50.0		
0001_011	50.0	100.0	3	150.0	300.0	8	400.0	800.0	6	25.0	50.0		
		•						•					
0010_000	50.0	100.0	4	200.0	400.0	5	250.0	500.0	8	25.0	50.0		
0010_001	50.0	100.0	4	200.0	400.0	6	300.0	600.0	8	25.0	50.0		
0010_010	50.0	100.0	4	200.0	400.0	7	350.0	700.0	8	25.0	50.0		
0010_011	50.0	100.0	4	200.0	400.0	8	400.0	800.0	8	25.0	50.0		
0010_100	37.5	75.0	4	150.0	300.0	5	187.5	375.0	6	25.0	50.0		
0010_101	37.5	75.0	4	150.0	300.0	5.5	206.3	412.5	6	25.0	50.0		
0010_110	37.5	75.0	4	150.0	300.0	6	225.0	450.0	6	25.0	50.0		
0011_000	30.0	50.0	5	150.0	250.0	5	150.0	250.0	5	30.0	50.0		
0011_001	25.0	50.0	5	125.0	250.0	6	150.0	300.0	5	25.0	50.0		
0011_010	25.0	50.0	5	125.0	250.0	7	175.0	350.0	5	25.0	50.0		
0011_011	25.0	50.0	5	125.0	250.0	8	200.0	400.0	5	25.0	50.0		
0100_000						Reserved							

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2}

Mode ³	Bus Clock (MHz)				CPM Multiplication	CPM Clock (MHz)		CPU Multiplication	CPU Clock (MHz)		PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High		
0100_001	25.0	50.0	6	150.0	300.0	6	150.0	300.0	6	25.0	50.0		
0100_010	25.0	50.0	6	150.0	300.0	7	175.0	350.0	6	25.0	50.0		
0100_011	25.0	50.0	6	150.0	300.0	8	200.0	400.0	6	25.0	50.0		
0101_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0		
0101_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0		
0101_010	50.0	100.0	2	100.0	200.0	3.5	175.0	350.0	4	25.0	50.0		
0101_011	50.0	100.0	2	100.0	200.0	4	200.0	400.0	4	25.0	50.0		
0101_100	50.0	100.0	2	100.0	200.0	4.5	225.0	450.0	4	25.0	50.0		
0101_101	42.9	83.3	3	128.6	250.0	3.5	150.0	291.7	5	25.7	50.0		
0101_110	41.7	83.3	3	125.0	250.0	4	166.7	333.3	5	25.0	50.0		
0101_111	41.7	83.3	3	125.0	250.0	4.5	187.5	375.0	5	25.0	50.0		
	1	1			1		1						
0110_000	60.0	120.0	2.5	150.0	300.0	2.5	150.0	300.0	6	25.0	50.0		
0110_001	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0		
0110_010	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0		
0110_011	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0		
0110_100	60.0	120.0	2.5	150.0	300.0	4.5	270.0	540.0	6	25.0	50.0		
0110_101	60.0	120.0	2.5	150.0	300.0	5	300.0	600.0	6	25.0	50.0		
0110_110	60.0	120.0	2.5	150.0	300.0	6	360.0	720.0	6	25.0	50.0		
0111_000						Reserved							
0111_001	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0		
0111_010	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0		
0111_011	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0		
0111_100	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0		
	I												
1000_000			ſ			Reserved		I					
1000_001	66.7	133.3	3	200.0	400.0	3	200.0	400.0	8	25.0	50.0		

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1) ^{1,2} (continued)

Mode ³	Bus Clock		СРМ		Clock	CPU		Clock	PCI		Clock Hz)
	(MI	1Z)	CPM Multiplication	(IVI)	Hz)	Multiplication	(IVI	Hz)	Division	(IVI	ΠZ)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
1000_010	66.7	133.3	3	200.0	400.0	3.5	233.3	466.7	8	25.0	50.0
1000_011	66.7	133.3	3	200.0	400.0	4	266.7	533.3	8	25.0	50.0
1000_100	66.7	133.3	3	200.0	400.0	4.5	300.0	600.0	8	25.0	50.0
1000_101	66.7	133.3	3	200.0	400.0	6	400.0	800.0	8	25.0	50.0
1000_110	66.7	133.3	3	200.0	400.0	6.5	433.3	866.7	8	25.0	50.0
					1			1		1	
1001_000						Reserved					
1001_001						Reserved					
1001_010	57.1	114.3	3.5	200.0	400.0	3.5	200.0	400.0	8	25.0	50.0
1001_011	57.1	114.3	3.5	200.0	400.0	4	228.6	457.1	8	25.0	50.0
1001_100	57.1	114.3	3.5	200.0	400.0	4.5	257.1	514.3	8	25.0	50.0
1001_101	42.9	85.7	3.5	150.0	300.0	5	214.3	428.6	6	25.0	50.0
1001_110	42.9	85.7	3.5	150.0	300.0	5.5	235.7	471.4	6	25.0	50.0
1001_111	42.9	85.7	3.5	150.0	300.0	6	257.1	514.3	6	25.0	50.0
1010_000	75.0	150.0	2	150.0	300.0	2	150.0	300.0	6	25.0	50.0
1010_001	75.0	150.0	2	150.0	300.0	2.5	187.5	375.0	6	25.0	50.0
1010_010	75.0	150.0	2	150.0	300.0	3	225.0	450.0	6	25.0	50.0
1010_011	75.0	150.0	2	150.0	300.0	3.5	262.5	525.0	6	25.0	50.0
1010_100	75.0	150.0	2	150.0	300.0	4	300.0	600.0	6	25.0	50.0
					1			1		1	
1010_101	100.0	200.0	2	200.0	400.0	2.5	250.0	500.0	8	25.0	50.0
1010_110	100.0	200.0	2	200.0	400.0	3	300.0	600.0	8	25.0	50.0
1010_111	100.0	200.0	2	200.0	400.0	3.5	350.0	700.0	8	25.0	50.0
1011_000						Reserved					
1011_001	80.0	160.0	2.5	200.0	400.0	2.5	200.0	400.0	8	25.0	50.0
1011_010	80.0	160.0	2.5	200.0	400.0	3	240.0	480.0	8	25.0	50.0
1011_011	80.0	160.0	2.5	200.0	400.0	3.5	280.0	560.0	8	25.0	50.0
1011_100	80.0	160.0	2.5	200.0	400.0	4	320.0	640.0	8	25.0	50.0

Mode ³	PCI Clock (MHz)		CPM Multiplication	CPM Clock (MHz)		CPU Multiplication	CPU Clock (MHz)		Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴		Factor	Low	High				
	1										
1000_000			1			Reserved					r
1000_001	50.0	66.7	3	150.0	200.0	2.5	150.0	166.7	2.5	60.0	80.0
1000_010	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
1000_011	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
1000_100	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
1000_101	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0
1001 000											
1001_000						Reserved					
1001_001		Reserved									
1001_010						Reserved					
1001_011	50.0	66.7	4	200.0	266.6	4	200.0	266.6	4	50.0	66.7
1001_100	50.0	66.7	4	200.0	266.6	4.5	225.0	300.0	4	50.0	66.7
1010_000						Reserved					
1010_001	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
1010_010	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
1010_011	50.0	66.7	4	200.0	266.6	4	266.7	355.5	3	66.7	88.9
1010_100	50.0	66.7	4	200.0			300.0	400.0	3	66.7	88.9
	1										L
1011_000						Reserved					
1011_001	50.0	66.7	4	200.0	266.6	2.5	200.0	266.6	2.5	80.0	106.
1011_010	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.
1011_011	50.0	66.7	4	200.0	266.6	3.5	280.0	373.3	2.5	80.0	106.
1011_100	50.0	66.7	4	200.0			320.0	426.6	2.5	80.0	106.
									-		
	50.0	66.7	4	200.0	266.6	2.5	250.0	333.3	2	100.0	133.
1011_101	1	66.7	4	200.0	266.6	3	300.0	400.0	2	100.0	133.
1011_101 1011_110	50.0	00.7									

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	PCI Clock (MHz)					CPU Multiplication	CPU Clock (MHz)		Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
Default Modes (MODCK_H=0000)											
0000_000	30.0	50.0	4	120.0	200.0	2.5	150.0	250.0	2	60.0	100.0
0000_001	25.0	50.0	4	100.0	200.0	3	150.0	300.0	2	50.0	100.0
0000_010	25.0	50.0	6	150.0	300.0	3	150.0	300.0	3	50.0	100.0
0000_011	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0
0000_100	25.0	50.0	6	150.0	300.0	3	180.0	360.0	2.5	60.0	120.0
0000_101	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
0000_110	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3
0000_111	25.0	50.0	8	200.0	400.0	3	240.0	480.0	2.5	80.0	160.0
Full Configuration Modes											
0001_001	30.0	50.0	4	120.0	200.0	5	150.0	250.0	4	30.0	50.0
0001_010	25.0	50.0	4	100.0	200.0	6	150.0	300.0	4	25.0	50.0
0001_011	25.0	50.0	4	100.0	200.0	7	175.0	350.0	4	25.0	50.0
0001_100	25.0	50.0	4	100.0	200.0	8	200.0	400.0	4	25.0	50.0
0010_001	25.0	50.0	6	150.0	300.0	3	180.0	360.0	2.5	60.0	120.0
0010_010	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
0010_011	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0
0010_100	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0
0011_000						Reserved					
0011_001	37.5	50.0	4	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0011_010	32.1	50.0	4	128.6	200.0	3.5	150.0	233.3	3	42.9	66.7
0011_011	28.1	50.0	4	112.5	200.0	4	150.0	266.7	3	37.5	66.7
0011_100	25.0	50.0	4	100.0	200.0	4.5	150.0	300.0	3	33.3	66.7
0100_000						Reserved					
0100_001	25.0	50.0	6	150.0	300.0	3	150.0	300.0	3	50.0	100.0
0100_010	25.0	50.0	6	150.0	300.0	3.5	175.0	350.0	3	50.0	100.0
0100_011	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2}

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

MODCK[1-3] 1001_010 1001_011	Low 25.0 25.0	High 50.0 50.0	Multiplication Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Division Factor	Low	High
1001_011 1001_100			8					ingn		LOW	ingi
1001_100			8			Reserved					
	25.0	50.0	1	200.0	400.0	4	200.0	400.0	4	50.0	100.0
1010_000			8	200.0	400.0	4.5	225.0	450.0	4	50.0	100.0
1010_000						Reserved					
1010_001	25.0	50.0	8	200.0	400.0	3	200.0	400.0	3	66.7	133.3
	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3
	25.0	50.0	8	200.0	400.0	4	266.7	533.3	3	66.7	133.3
1010_100	25.0	50.0	8	200.0	400.0	4.5	300.0	600.0	3	66.7	133.3
1011_000						Reserved					
1011_001	25.0	50.0	8	200.0	400.0	2.5	200.0	400.0	2.5	80.0	160.0
1011_010	25.0	50.0	8	200.0	400.0	3	240.0	480.0	2.5	80.0	160.0
1011_011	25.0	50.0	8	200.0	400.0	3.5	280.0	560.0	2.5	80.0	160.0
1011_100	25.0	50.0	8	200.0	400.0	4	320.0	640.0	2.5	80.0	160.0
					1		1				r
1011_101	25.0	50.0	8	200.0	400.0	2.5	250.0	500.0	2	100.0	200.0
1011_110	25.0	50.0	8	200.0	400.0	3	300.0	600.0	2	100.0	200.0
1011_111	25.0	50.0	8	200.0	400.0	3.5	350.0	700.0	2	100.0	200.0
1100_101	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0
	25.0	50.0	6	150.0	300.0	4.5	225.0	450.0	3	50.0	100.0
1100_111	25.0	50.0	6	150.0	300.0	5	250.0	500.0	3	50.0	100.0
1101_000	25.0	50.0	6	150.0	300.0	5.5	275.0	550.0	3	50.0	100.0
			•			•					
1101_001	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
1101_010	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0
1101_011	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0
1101_100	25.0	50.0	6	150.0	300.0	5	300.0	600.0	2.5	60.0	120.0

Table 21. Pinout	(continued)
------------------	-------------

Pin N	lame						
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball					
C	52	AF5					
C	CS3						
C	CS4						
C	55	AD8					
CS6/BC	TL1/SMI	AC9					
CS7/TL	BISYNC	AB9					
BADDR	27/IRQ1	AB8					
BADDR	28/IRQ2	AC7					
ALE/	IRQ4	AF4					
BC	TLO	AF3					
PWE0/PSDI	DQM0/PBS0	AD6					
PWE1/PSDI	PWE1/PSDDQM1/PBS1						
PWE2/PSDI	PWE2/PSDDQM2/PBS2						
PWE3/PSDI	DQM3/PBS3	AF2					
PWE4/PSDI	DQM4/PBS4	AC6					
PWE5/PSDI	DQM5/PBS5	AC5					
PWE6/PSDI	DQM6/PBS6	AD4					
PWE7/PSDI	DQM7/PBS7	AB5					
PSDA10)/PGPL0	AE2					
PSDWE	/PGPL1	AD3					
POE/PSDF	AS/PGPL2	AB4					
PSDCAS	5/PGPL3	AC3					
PGTA/PUPM	WAIT/PGPL4	AD2					
PSDAMU	X/PGPL5	AC2					
PCI_N	10DE ¹	AD22					
PCI_CFG0 (P	CI_HOST_EN)	AC21					
PCI_CFG1 (Ē	PCI_ARB_EN)	AE22					
PCI_CFG2 (D	DLL_ENABLE)	AE23					
PCI_	PAR	AF12					
PCI_F	RAME	AD15					
PCI_	TRDY	AF16					

Document Revision History

Revision	Date	Substantive Changes
Revision 0.2	Date 12/2003	 Table 1: New Table 2: New Table 4: Modification of VDD and VCCSYN to 1.45–1.60 V Table 8: Addition of note 2 regarding TRST and PORESET (see V_{IH} row of Table 8) Table 8 and Table 21: Addition of muxed signals CPCL_HS_ES to PCL_REQT (AF14) CPCL_HS_LED to PCL_GNT1 (AE13) CPCL_HS_ENUM to PCL_GNT2 (AF21) Table 8 and Table 21: Modification of PCI signal names for consistency with PCI signal names on other PowerQUICC II devices: PCL_CFG0 (PCI_HOST_EN) (AC21) PCL_CFG1 (PCI_ARB_EN) (AE22) PCL_CFG2 (DLL_ENABLE) (AE23) PCL_PAR (AF12) PCL_FRAME (AD15) PCI_TRD7 (AF16) PCI_TRD7 (AF16) PCI_TRD7 (AF15) DEVSEL (AE14) PCL_DSEL (AC17) PCI_RER (AD13) PCI_RER (AD13) PCI_REQO-2 (AAE20, AF14, AB14) PCI_CO-3 (AE12, AF13, AC15, AE18) PCL_AD0-31 Table 8 and Table 21: Corrected assertion level (added "-") PCI_HOST_EN (AC21) and PCI_ARB_EN (AE22) Table 7: Addition of H_{8UT} and note 4 Section 7, "Clock Configuration Modes": Modification to first paragraph. Note that PCI_MODCK is a bit in the Hard Reset Configuration Word. It is not an input signal as it is in the MPCR260 Family and MC260 Family. Addition of note 2 to TRST (E21) and PORESET (C24) Table 21: Addition of note 2 to TRST (E21) and PORESET (C24)
		 Table 21: Removal of Spare0 (AD24). This pin is now a "No connect." Note 5 unchanged. Table 21: Addition of PCI_MODE (AD22). This pin was previously listed as "Ground." Addition of note 1.
0.1	9/2003	 Addition of the MPC8271 and the MPC8247 (these devices do not have a security engine) Table 8: Addition of note 2 to V_{IH} Table 8: Changed I_{OL} for 60x signals to 6.0 mA Modification of note 1 for Table 17, Table 18, Table 19, and Table 20 Table 21: Addition of ball AD9 to GND. In rev 0 of this document, AD8 was listed as assigned to both CS5 and GND. AD8 is only assigned to CS5. Table 21: Addition of note 4 to Thermal0 (D19) and Thermal1(J3) Addition of ZQ package code to Figure 15
0	5/2003	NDA release

Table 23. Document Revision History (continued)